Advertisement

Computational Homogenization of Polymeric Nanofiber Scaffolds and Biological Cells

  • J. N. ReddyEmail author
  • V. U. Unnikrishnan
  • G. U. Unnikrishnan
Chapter
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 168)

Abstract

An understanding of the structure–property relationship is essential for the estimation of mechanical properties of nano-materials like polymeric nanofibers and biological materials like cells and tissues. The properties of these structures are closely related to the internal molecular structure and therefore a multiscale based mathematical modeling is required for the determination of its macroscopic properties. In this investigation, we present multiscale mathematical models to estimate the mechanical properties of polymeric nanofibers from the basic building blocks to the macroscale nanofibrous structures and also study the homogenization of biological cells considering the microcellular constituents.Theoretical analysis of polymeric nanofibers based scaffolds are necessary towards designing novel bio-medical applications, while through homogenization of biological cells new diagnostic tools based on mechanical properties could be developed.

Keywords

Actin Filament Representative Volume Element Stress Fiber Effective Modulus Nanofibrous Scaffold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors gratefully acknowledge the support of this research through Oscar S. Wyatt Endowed Chair funds at the Texas A&M University.

References

  1. 1.
    Aboudi J (1991) Mechanics of composite materials – A unified micromechanical approach. Elsevier, AmsterdamGoogle Scholar
  2. 2.
    Balac I, Milovancevic M, Tang C-Y, Uskokovic PS, Uskokovic DP (2004) Estimation of elastic properties of a particulate polymer composite using a face-centered cubic FE model. Mater Lett 58:2437–2441CrossRefGoogle Scholar
  3. 3.
    Baltussen JJM, Northolt MG, van der Hout R (1997) The continuous chain model for the elastic extension of polymer fibers in the glassy state. J Rheol 41:549–573CrossRefGoogle Scholar
  4. 4.
    Costa KD, Yin FCP (1999) Analysis of indentation: Implications for measuring mechanical properties with atomic force microscopy. J Biomech Eng-T ASME 121:462–471CrossRefGoogle Scholar
  5. 5.
    Costa KD, Sim AJ, Yin FC-P (2006) Non-Hertzian approach to analyzing mechanical properties of endothelial cells probed by atomic force microscopy. J Biomech Eng-T ASME 128:176–184CrossRefGoogle Scholar
  6. 6.
    Fambri L, Pergoretti A, Fenner R, Incardona D, Migliaresi C (1997) Biodegradable fibres of poly(L-lactic acid) produced by melt spinning. Polymer 38:79–85CrossRefGoogle Scholar
  7. 7.
    Freed LE, Vunjak-Novakovic G, Biron RJ, Eagles DB, Lesnoy DC, Barlow SK, Langer R (1994) Biodegradable polymer scaffolds for tissue engineering. Bio/Technol 12:689–693CrossRefGoogle Scholar
  8. 8.
    Griebel M, Hamaekers J (2004) Molecular dynamics simulations of the elastic moduli of polymer-carbon nanotube composites. Comput Method Appl M 193:1773–1788CrossRefGoogle Scholar
  9. 9.
    Hibbitt K, and Sorensen Inc, HKS (2002) ABAQUS standard, Version 6.3-2. HKS, Providence, RIGoogle Scholar
  10. 10.
    Hoogsteen W, Postema AR, Pennings AJ, ten Brinke G (1990) Crystal structure, conformation, and morphology of solution-spun poly(L-lactide) fibers. Macromolecules 23:634–642CrossRefGoogle Scholar
  11. 11.
    Hu S, Eberhard L, Chen J, Love JC (2004) Mechanical anisotropy of adherent cells probed by a three-dimensional magnetic twisting device. Am J Physiol-Cell Ph 287:C1184–C1191CrossRefGoogle Scholar
  12. 12.
    Humphrey JD (2002) On mechanical modeling of dynamic changes in the structure and properties in adherent cells. Math Mech Solids 7:521–539CrossRefGoogle Scholar
  13. 13.
    Inai R, Kotaki M, Ramakrishna S (2005) Structure and properties of electrospun PLLA single nanofibres. Nanotechnology 16:208–213CrossRefGoogle Scholar
  14. 14.
    Karcher H, Lammerding J, Huang H, Lee RT, Kamm RD, Kaazempur-Mofrad MR (2003) A three-dimensional viscoelastic model for cell deformation with experimental verification. Biophys J 85:3336–3349CrossRefGoogle Scholar
  15. 15.
    Lee JH, Park TG, Park HS, Lee DS, Lee YK, Yoon SC, Nam J-D (2003) Thermal and mechanical characteristics of poly(-lactic acid) nanocomposite scaffold. Biomaterials 24:2773–2778CrossRefGoogle Scholar
  16. 16.
    Leenslag JW, Pennings AJ (1987) High-strength poly(L-lactide) fibres by a dry-spinning/hot-drawing process. Polymer 28:1695–1702CrossRefGoogle Scholar
  17. 17.
    Lim JY, Kim SH, Lim S, Kim YH (2002) Improvement of flexural strengths of poly(L-lactic acid) by solid-state extrusion. Macromol Chem Phys 202:2447–2453CrossRefGoogle Scholar
  18. 18.
    Mezghani K, Spruiell JE (1998) High speed melt spinning of poly(L-lactic acid) filaments. J Polym Sci Part B: Polym Phys 36:1005–1012CrossRefGoogle Scholar
  19. 19.
    Mura T (1997) Micromechanics of defects in solids. Martinus Nijhoff, Hague, The NetherlandsGoogle Scholar
  20. 20.
    Mylvaganam K, Zhang LC (2004) Important issues in a molecular dynamics simulation for characterising the mechanical properties of carbon nanotubes. Carbon 42:2025–2032CrossRefGoogle Scholar
  21. 21.
    Na S, Sun Z, Meininger GA, Humphrey JD (2004) On atomic force microscopy and the constitutive behavior of cells. Biomech Model Mechanobiol 3:75–84CrossRefGoogle Scholar
  22. 22.
    Ohayon J, Tracqui P (2005) Computation of adherent cell elasticity for critical cell-bead geometry in magnetic twisting experiments. Ann Biomed Eng 33:131–141CrossRefGoogle Scholar
  23. 23.
    Pabst W, Gregorova E (2004) Effective elastic properties of alumina–zirconia composite ceramics – Part 2. Micromechanical modeling. Ceram Silik 48:14–23Google Scholar
  24. 24.
    Rappe AK, Casewit CJ, Colwell KS, Goddard WA, Skiff WM (1992) UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc 114:10024-10035CrossRefGoogle Scholar
  25. 25.
    Reddy JN (2006) An introduction to the finite element method, 3rd edn. McGraw-Hill, New YorkGoogle Scholar
  26. 26.
    Reddy JN (2004) An introduction to nonlinear finite element analysis. Oxford University Press, OxfordCrossRefGoogle Scholar
  27. 27.
    Reddy JN (2008) An introduction to continuum mechanics with applications. Cambridge University Press, New YorkGoogle Scholar
  28. 28.
    Rotsch C, Radmacher M (2000) Drug-induced changes of cytoskeletal structure and mechanics in fibroblasts: An atomic force microscopy study. Biophys J 78:520–535CrossRefGoogle Scholar
  29. 29.
    Tan EPS, Lim CT (2004) Physical properties of a single polymeric nanofiber. Appl Phys Lett 84:1603–1605CrossRefGoogle Scholar
  30. 30.
    Tan EPS, Lim CT (2006) Nanomechanical characterization of nanofibers – A review. Compos Sci Technol 66:1099–1108CrossRefGoogle Scholar
  31. 31.
    Thelen S, Barthelat F, Brinson LC (2004) Mechanics considerations for microporous titanium as an orthopaedic implant material. J Biomed Mater Res 69A:601–610CrossRefGoogle Scholar
  32. 32.
    Unnikrishnan VU, Reddy JN (2005) Characteristics of silicon doped carbon nanotube reinforced nanocomposites. Int J Multiscale Comput Eng 3:437–450CrossRefGoogle Scholar
  33. 33.
    Unnikrishnan VU, Unnikrishnan GU, Reddy JN, Lim CT (2007) Atomistic-mesoscale coupled mechanical analysis of polymeric nanofibers. J Mater Sci 42:8844–8852CrossRefGoogle Scholar
  34. 34.
    Unnikrishnan GU, Unnikrishnan VU, Reddy JN (2007) Constitutive material modeling of cell: A micromechanics approach. J Biomed Eng 129:315–323Google Scholar
  35. 35.
    Zussman E, Rittel D, Yarin AL (2003) Failure modes of electrospun nanofibers. Appl Phys Lett 82:3958–3960CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • J. N. Reddy
    • 1
    Email author
  • V. U. Unnikrishnan
  • G. U. Unnikrishnan
  1. 1.Advanced Computational Mechanics Laboratory, Department of Mechanical EngineeringTexas A&M UniversityCollege StationUSA

Personalised recommendations