Advertisement

A Multiscale Progressive Damage and Failure Modeling Approach For Laminated Fiber Reinforced Composites

  • Evan J. PinedaEmail author
  • Anthony M. Waas
  • Brett A. Bednarcyk
  • Craig S. Collier
  • Phillip W. Yarrington
Chapter
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 168)

Abstract

Design optimization of composite structures is limited by the predictive capabilities of current progressive damage and failure analysis methods. In order to increase the robustness of these prediction methods, a distinction between damage and failure should be established. Damage is a highly distributed phenomenon, such as microscopic void growth, that leads to a gradual reduction in (not complete absence of) load carrying capability. Failure, though, is a more localized phenomenon representing the end of damage growth and the complete loss of integrity of the material in the failed region. By considering both progressive damage and localized failure, the response of a carbon fiber laminated composite structure may be more accurately characterized.

Keywords

Failure Criterion Transverse Crack Fiber Breakage Progressive Damage Fiber Failure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    ABAQUS user’s manual (2003), vols 1–3, Version 6.5. Hibbitt, Karlsson, and Sorenson, Pawtucket, RIGoogle Scholar
  2. 2.
    Aboudi J (1991) Mechanics of composite materials: A unified micromechanical approach. Elsevier, AmsterdamGoogle Scholar
  3. 3.
    Aboudi J, Pindera MJ, Arnold, SM (1999) Compos Part B Eng 30:777–832CrossRefGoogle Scholar
  4. 4.
    Basu S (2005) Computational modeling of progrssive failure and damage in composite laminates. Ph.D. dissertation, Univeristy of Michigan, Ann ArborGoogle Scholar
  5. 5.
    Basu S, Waas AM, Ambur DR (2006) Int J Solids and Struct 44:2648–2676CrossRefGoogle Scholar
  6. 6.
    Bazant ZP, Cedolin L (1991) Stability of structures: Elastic, inelastic, fracture and damage theories. Oxford University Press, New YorkGoogle Scholar
  7. 7.
    Beaumont PWR, Dimant RA, Shercliff HR (2006) J Mater Sci 41:6526–6546CrossRefGoogle Scholar
  8. 8.
    Bednarcyk BA, Arnold SM (2002) MAC/GMC 4.0 user’s manual – Keywords manual, NASA/TM 2002-212077/VOL2Google Scholar
  9. 9.
    Bednarcyk BA, Arnold SM (2002) MAC/GMC 4.0 user’s manual – Example problems manual, NASA/TM 2002-212077/VOL3Google Scholar
  10. 10.
    Bednarcyk BA, Arnold SM (2006) Proceedings of the 2006 ABAQUS user’s conference, Boston, MA, May 23–25Google Scholar
  11. 11.
    Belytschko T, Liu WK, Moran B (2000) Nonlinear finite elements for continua and structures. WileyGoogle Scholar
  12. 12.
    Belytschko T, Mish K (2001) Int J Numer Method Eng 52:3–21CrossRefGoogle Scholar
  13. 13.
    Bhargava A, Shivakumar KN (2007) Aeronaut J 111:777–786Google Scholar
  14. 14.
    Bogert PB, Satyanarayana A, Chunchu PB (2006) 47th AIAA structures, structural dynamics, and materials conference, 1–4 May, Newport, Rhode IslandGoogle Scholar
  15. 15.
    Jones RM (2009) Mechanics of composite materials, 2nd edn, Taylor & FrancisGoogle Scholar
  16. 16.
    Paley M, Aboudi J (1992) Mech Mater 14:127–139CrossRefGoogle Scholar
  17. 17.
    Pineda EJ, Waas AM, Bednarcyk BA, Collier CS (2008) Proceedings of the American society for composites twenty-third technical conference, 9–11 September, Memphis, TNGoogle Scholar
  18. 18.
    Pineda EJ, Waas AM, Bednarcyk BA, Collier CS, Yarrington PW (2008) NASA-TM-2008-215448Google Scholar
  19. 19.
    Rice JR (1971) J Mech Phys Solids 19:433–455CrossRefGoogle Scholar
  20. 20.
    Schapery RA (1990) J Mech Phys Solids 38:215–253CrossRefGoogle Scholar
  21. 21.
    Schapery RA, Sicking DL (1995) On nonlinear constitutive equations for elastic and viscoelastic composites with growing damage. In: Bakker, A (ed) Mechanical behaviour of materials. Delft University Press, Delft, The NetherlandsGoogle Scholar
  22. 22.
    Sicking DL (1992) Mechanical characterization of nonlinear laminated composites with transverse crack growth. Ph.D. Theses, Texas A&M University, College Station, TXGoogle Scholar
  23. 23.
    Tay TE (2003) Appl Mech Rev 56:1–31CrossRefGoogle Scholar
  24. 24.
    Tay TE, Liu G, Tan VBC, Sun XS, Pham DC (2008) J Compos Mater 42:1921–1966CrossRefGoogle Scholar
  25. 25.
    Tsai SW (2009) Strength and life of composites. Aero & Astro, StanfordGoogle Scholar
  26. 26.
    Wilt TE (1995) NASA-CR-195451Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Evan J. Pineda
    • 1
    Email author
  • Anthony M. Waas
  • Brett A. Bednarcyk
  • Craig S. Collier
  • Phillip W. Yarrington
  1. 1.Department of Mechanical EngineeringUniversity of MichiganAnn ArborUSA

Personalised recommendations