Advertisement

Consistent Loading in Structural Reduction Procedures for Thin Plate Models

  • I. HarariEmail author
  • I. Sokolov
  • S. Krylov
Chapter
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 168)

Abstract

We distinguish between a plate which is a flat structure that has thickness much smaller than the other dimensions and between a plate model or theory which is the collection of assumptions that is used to dimensionally reduce the three-dimensional formulation and approximate its solution.

Keywords

Thin Plate Plate Model Finite Element Solution Natural Boundary Condition Essential Boundary Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Actis RL, Szabo BA, Schwab C (1999) Hierarchic models for laminated plates and shells. Comput Methods Appl Mech Eng 172:79–107CrossRefGoogle Scholar
  2. 2.
    Antman SS (1991) Nonlinear problems of elasticity. Applied Mathematical Science, vol 107. Springer, BerlinGoogle Scholar
  3. 3.
    Bisegna P, Sacco E (1997) A layer-wise laminate theory rationally deduced from the three-dimensional elasticity. J Appl Mech Trans ASME 64:538–545CrossRefGoogle Scholar
  4. 4.
    Bogner FK, Fox RL, Schmit LA (1966) The generation of interelement-compatible stiffness and mass matrices by the use of interpolation formulae. In: Proc First Conf Matrix Methods Struct Mech AFFDL-TR-66-80:397–443Google Scholar
  5. 5.
    Calcote LR (1969) The analysis of laminated composite structures. Van Nostrand, New YorkGoogle Scholar
  6. 6.
    Ciarlet PG (1997) Mathematical elasticity, vol. II: Theory of plates. North-Holland, AmsterdamGoogle Scholar
  7. 7.
    Hughes TJR, (1987) The finite element method. Prentice Hall, Englewood Cliffs, NJGoogle Scholar
  8. 8.
    Kirchhoff G (1850) Über das gleichgewicht und die bewegung einer elastischen scheibe. J Reine Angew Math 40:51–58CrossRefGoogle Scholar
  9. 9.
    Krylov S, Harari I, Gadasi D (2006) Consistent loading in structural reduction procedures for beam models. Int J Multiscale Comput Eng 4:559–584CrossRefGoogle Scholar
  10. 10.
    O’Leary JR, Harari I (1985) Finite element analysis of stiffened plates. Comput Struct 21(5):973–985CrossRefGoogle Scholar
  11. 11.
    Libai A, Simmonds JG (1998) The nonlinear theory of elastic shells, 2nd edn. Cambridge Univ Press, CambridgeCrossRefGoogle Scholar
  12. 12.
    Madureira AL (2002) An improved biharmonic model – Incorporating higher order responses of the plate bending phenomena. Anal Appl 149:215–225Google Scholar
  13. 13.
    Podio-Guidugli P (2000) Recent results in the theory of elastic plates. Transp Theory Stat Phys 29(1, 2):217–224Google Scholar
  14. 14.
    Poisson SD (1829) Mémoire sur l’équilibre et le mouvement des corps élastiques. Memoires l’Acad Sci Paris 8:357–570Google Scholar
  15. 15.
    Reddy JN (1999) Theory and analysis of elastic plates. Taylor and Francis, LondonGoogle Scholar
  16. 16.
    Reissner E (1969) On generalized two-dimensional plate theory. II. Int J Solids Struct 5(6):629–637CrossRefGoogle Scholar
  17. 17.
    Rubin MB (2000) Cosserat theories: Shells, rods and points. Kluwer, DordrechtGoogle Scholar
  18. 18.
    Sayir M, Mitropoulos C (1980) On elementary theories of linear elastic beams, plates and shells. (review paper). Zeitschrift fur Angewandte Mathematik und Physik 31:1–55CrossRefGoogle Scholar
  19. 19.
    Sutyrin VG, Hodges DH (1996) On asymptotically correct linear laminated plate theory. Int J Solids Struct 33:3649–3671CrossRefGoogle Scholar
  20. 20.
    Taylor RL, Beresford PJ, Wilson EL (1976) A non-conforming element for stress analysis. Int J Numer Methods Eng 10(6):1211–1219CrossRefGoogle Scholar
  21. 21.
    Vasil’ev VV, Lur’e SA (1992) On refined theories of beams, plates, and shells. J Compos Mater 26:546–557 Removed 5.03.09Google Scholar
  22. 22.
    Vogelius M, Babuska I (1981) On a dimensional reducion method I. The optimal selection of basis functions. Math Comput 37(55):31–46Google Scholar
  23. 23.
    Zienkiewicz OC, Taylor RL (2000) The finite element method, vol II. McGraw-Hill, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.School of Mechanical EngineeringTel Aviv UniversityTel AvivIsrael

Personalised recommendations