Advertisement

Diffusion Linked Solidification Model of Axisymmetric Growth of Gold Nanorods

  • Tyler R. Ray
  • Catherine J. Murphy
  • Sarah C. BaxterEmail author
Chapter
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 168)

Abstract

Colloidal gold nanospheres have been used in a variety of applications since the Middle Ages, when artisans blended tissue paper thin gold sheets into molten glass, creating stained glass panels with rich ruby red hues. Despite both substantial interest and well-established procedures for producing nanoparticles of various shapes, little is known about the growth mechanisms that govern the formation of shapes such as rods, cubes, tetrahedrons, and dog-bones. Understanding these mechanisms is an important step in developing applications using nanoparticles. With more finely defined controls, metallic nanoparticles could be fabricated or grown in desired shapes with far less trial and error, offering greater potential for complex and functional nanostructures. In this work, a cellular automata model is used to model the growth of high aspect ratio gold nanorods. One mechanism that has been suggested for nanorod growth is competitive binding between the colloidal gold in solution and a surfactant, which functions as a structure-directing agent. The model incorporates experimental conditions in the framework of this competitive binding. Results suggest that cellular automata modeling can be a computationally efficient means of modeling the competitive and non-deterministic interactions involved in the growth of gold nanorods.

Keywords

Gold Nanoparticles Cellular Automaton Cellular Automaton Seed Particle Gold Nanorods 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Baxter SC, Reynolds AP (2004) Probabil Eng Mech 19 (1–2):3–8CrossRefGoogle Scholar
  2. 2.
    Beltran-Sanchez L, Stefanescu D (2003) Metallurgic Mater Trans A 34A:367–382CrossRefGoogle Scholar
  3. 3.
    Bullard JW, Garboczi EJ, Carter WC, Fuller ER (1995) Computat Mat Sci 4:103–116CrossRefGoogle Scholar
  4. 4.
    Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chem Rev 105:1025–1102CrossRefGoogle Scholar
  5. 5.
    Daniel MC, Astruc D (2004) Chem Rev 104:293346CrossRefGoogle Scholar
  6. 6.
    El-Brolossy TA, Abdallah T, Mohamed MB, Abdalah S, Easawi K, Negm S, Talaat H (2008) Eur Phys J Special Topics 153:361–364CrossRefGoogle Scholar
  7. 7.
    Hernandez J, Solla-Gullon J, Herrero E, Aldaz A, Feliu J (2005) J Phys Chem B Lett 109:12651–12654Google Scholar
  8. 8.
    Jana NR, Gearheart L, Murphy CJ (2001) J Phys Chem B 105(19):4065 4067Google Scholar
  9. 9.
    Johnson CJ, Dujardin E, Davis S, Murphy CJ, Mann S (2002) J Mat Chem 12:1765–1770CrossRefGoogle Scholar
  10. 10.
    Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) J Phys Chem B 107(3):668–677CrossRefGoogle Scholar
  11. 11.
    Krishnamachari B, McLean J, Cooper B, Sethna J (1996) Phys Rev B 54(12):8899–8907CrossRefGoogle Scholar
  12. 12.
    Kremeyer K (1998) J Computat Phys 142:243–262CrossRefGoogle Scholar
  13. 13.
    Liu F, Goldenfeld N (1990) Phys Rev A 42(2):895CrossRefGoogle Scholar
  14. 14.
    Mie G (1908) Annalen der Physik 25 (3):377–445CrossRefGoogle Scholar
  15. 15.
    Murphy CJ (2002) Science 298:2139–2141CrossRefGoogle Scholar
  16. 16.
    Murphy CJ, Sau TK, Gole AM, Orendorff CJ, Gao J, Gou L, Hunyadi SE, Li T (2005) J Phys Chem B 109:1385713870CrossRefGoogle Scholar
  17. 17.
    Pérez-Juste J, Pastoriza-Santos I, Liz-Marzán L, Mulvaney P (2005) Coordination Chem Rev 249:1870–1901CrossRefGoogle Scholar
  18. 18.
    Pidaparti RM, Murugesan K, Yokota H (2006) J Computat Theoret Nanosci 3(5):643–648Google Scholar
  19. 19.
    Rosi NL, Mirkin CA (2005) Chem Rev 105: 15471562CrossRefGoogle Scholar
  20. 20.
    Sau TK, Murphy CJ (2004) J Am Chem Soc 126:8648CrossRefGoogle Scholar
  21. 21.
    Stone JW, Sisco PN, Goldsmith EC, Baxter SC, Murphy CJ (2007) NanoLetters 7(1):116–119CrossRefGoogle Scholar
  22. 22.
    Taylor JE (1992) Acta Metal Mat 40(7):1475–1485CrossRefGoogle Scholar
  23. 23.
    Tong L, Zhao Y, Huff T, Hansen M, Wei A, Cheng J (2007) Adv Mat 19(20):3136–3141CrossRefGoogle Scholar
  24. 24.
    Yu YY, Change SS, Lee CL, Wang CRC (1997) J Phys Chem B 101:6661CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Tyler R. Ray
  • Catherine J. Murphy
  • Sarah C. Baxter
    • 1
    Email author
  1. 1.Department of Mechanical EngineeringUniversity of South CarolinaColumbiaUSA

Personalised recommendations