Compressive Response of Dentin Micro-Pillars

  • Daniel ZiskindEmail author
  • Sharly Fleischer
  • Kaiyin Zhang
  • Sidney R. Cohen
  • H. Daniel Wagner
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 168)


We propose a new experimental approach for the study of Young’s modulus and the strength of dentin, using micro sized pillar-like specimens tested under compression using a nanoindenter apparatus fitted with a flat punch indenter. Dentin micro pillars were prepared by ablation with ultra short laser pulses, and subsequently compressed with a 30 μm diameter flat punch. Tubule orientation is found to affect the compression behavior of dry dentine in air, more so for Young’s modulus than for strength. We propose to fit these results with adaptations of fiber composite theoretical models.


Compressive Strength Ultra Short Laser Pulse Resonant Ultrasound Spectroscopy Dentin Specimen Tubule Orientation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was supported by the Israel Science Foundation (grant No. 758/07) and by the G. M. J. Schmidt Minerva Centre of Supramolecular Architectures. H. Daniel Wagner is the incumbent of the Livio Norzi Professorial Chair in Materials Science.


  1. 1.
    Agarwal BD, Broutman LJ (1980) Analysis and performance of fiber composites. Wiley-Interscience, New YorkGoogle Scholar
  2. 2.
    Angker L, Swain MV (2006) J Mater Res 21 (8):1893–1905CrossRefGoogle Scholar
  3. 3.
    Arola DD, Reprogel RK (2006) Biomater 27(9):2131–2140CrossRefGoogle Scholar
  4. 4.
    Hull D, Clyne TW (2001) An introduction to composite materials, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  5. 5.
    Kinney JH, Gladden JR, Marshall GW, Marshall SJ, So JH, Maynard JD (2004) J Biomech 37(4):437–441CrossRefGoogle Scholar
  6. 6.
    Krüger J, Kautek W, Newesely H (1999) Appl Phys A 69(Suppl.):S403–S407Google Scholar
  7. 7.
    Lees F, Rollins FR (1972) J Biomech 5:557–566CrossRefGoogle Scholar
  8. 8.
    Mjor IA (1984) The morphology of dentin and dentinogenesis. In: Linde A (ed) Dentin and dentinogenesis. CRC Press, Boca Raton, FL, pp 2–18Google Scholar
  9. 9.
    Nanci A (2003) Ten Cate’s oral histology: Development, structure, and function, 6th edn. Mosby, St. Louis, MOGoogle Scholar
  10. 10.
    Nolte S, Momma C, Jacobs H, Tunnermann A, Chichkov BN, Wellegehausen B, Welling H (1997) J Opt Soc Amer B 14:2716–2722CrossRefGoogle Scholar
  11. 11.
    Palamara JEA, Wilson PR, Thomas CDL, Messer HH (2000) J Dent 28:141–146CrossRefGoogle Scholar
  12. 12.
    Peyton FA, Mahler DB, Hershenov B (1952) J Dent Res 31:336–370Google Scholar
  13. 13.
    Vasile MJ, Niu Z, Nassar R, Zhang W, Liu SJ (1997) Vac Sci Technol B 15:2350CrossRefGoogle Scholar
  14. 14.
    Wagner HD (2009) The compressive strength of dentin (in preparation)Google Scholar
  15. 15.
    Yang, Y, Ye, JC, Lu, J, Liu, FX, Liaw, PK (2009) Acta Mater 57:1613–1623Google Scholar
  16. 16.
    Wagner HD (1989) J Polym Sci Polym Phys 27(1):115–149CrossRefGoogle Scholar
  17. 17.
    Wang R, Weiner S (1998) Connect Tissue Res 39(4):269–279CrossRefGoogle Scholar
  18. 18.
    Watts DC, El Mowafy OM, Grant AA (1987) J Dent Res 66:29–32CrossRefGoogle Scholar
  19. 19.
    Wellershoff S-S, Hohlfeld J, Güdde J, Matthias E (1999) Appl Phys A 69:S99–S107Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Daniel Ziskind
    • 1
    Email author
  • Sharly Fleischer
  • Kaiyin Zhang
  • Sidney R. Cohen
  • H. Daniel Wagner
  1. 1.Department of Materials & InterfacesWeizmann Institute of ScienceRehovotIsrael

Personalised recommendations