Skip to main content

Exploring Mechanisms of Aging Retardation by Caloric Restriction: Studies in Model Organisms and Mammals

  • Chapter
  • First Online:
The Comparative Biology of Aging

Abstract

There has been expanding interest in research on aging and in the identification of underlying mechanisms of the aging process. The promise that by understanding aging we may also understand the factors that lead to age-associated disease has been held for some time and now, through the use of model organisms, this potential is being realized. A key subgroup within this gamut are investigations that seek to understand the impact of nutrition and diet on aging, and foremost among these are studies of caloric restriction (CR). Herein, we discuss a number of commonly used laboratory organisms, describe the methodology employed to study aging and the impact of nutrition, briefly discuss the main findings from these studies and present candidate factors emerging from these studies that may play a mechanistic role in the retardation of aging by CR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jazwinski SM (2005). Yeast longevity and aging – the mitochondrial connection. Mech Ageing Dev 126: 243–248.

    CAS  PubMed  Google Scholar 

  2. Sinclair DA (2005). Toward a unified theory of caloric restriction and longevity regulation. Mech Ageing Dev 126: 987–1002.

    CAS  PubMed  Google Scholar 

  3. Sinclair DA and Guarente L (1997). Extrachromosomal rDNA circles – a cause of aging in yeast. Cell 91: 1033–1042.

    CAS  PubMed  Google Scholar 

  4. Jiang JC, Jaruga E, Repnevskaya MV, and Jazwinski SM (2000). An intervention resembling caloric restriction prolongs life span and retards aging in yeast. FASEB J 14: 2135–2137.

    CAS  PubMed  Google Scholar 

  5. Lin SJ, Defossez PA, and Guarente L (2000). Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 289: 2126–2128.

    CAS  PubMed  Google Scholar 

  6. Fabrizio P, Li L, and Longo VD (2005). Analysis of gene expression profile in yeast aging chronologically. Mech Ageing Dev 126: 11–16.

    CAS  PubMed  Google Scholar 

  7. Longo VD and Kennedy BK (2006). Sirtuins in aging and age-related disease. Cell 126: 257–268.

    CAS  PubMed  Google Scholar 

  8. Smith DL Jr., McClure JM, Matecic M, and Smith JS (2007). Calorie restriction extends the chronological lifespan of Saccharomyces cerevisiae independently of the Sirtuins. Aging Cell 6: 649–662.

    CAS  PubMed  Google Scholar 

  9. Fabrizio P and Longo VD (2007). The chronological life span of Saccharomyces cerevisiae. Methods Mol Biol 371: 89–95.

    CAS  PubMed  Google Scholar 

  10. Fabrizio P, Gattazzo C, Battistella L, Wei M, Cheng C, McGrew K, and Longo VD (2005). Sir2 blocks extreme life-span extension. Cell 123: 655–667.

    CAS  PubMed  Google Scholar 

  11. Lin SS, Manchester JK, and Gordon JI (2001). Enhanced gluconeogenesis and increased energy storage as hallmarks of aging in Saccharomyces cerevisiae. J Biol Chem 276: 36000–36007.

    CAS  PubMed  Google Scholar 

  12. Lin SJ, Kaeberlein M, Andalis AA, Sturtz LA, Defossez PA, Culotta VC, Fink GR, and Guarente L (2002). Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration. Nature 418: 344–348.

    CAS  PubMed  Google Scholar 

  13. Lee YL and Lee CK (2008). Transcriptional response according to strength of calorie restriction in Saccharomyces cerevisiae. Mol Cells 26: 299–307.

    CAS  PubMed  Google Scholar 

  14. Kaeberlein M, Hu D, Kerr EO, Tsuchiya M, Westman EA, Dang N, Fields S, and Kennedy BK (2005). Increased life span due to calorie restriction in respiratory-deficient yeast. PLoS Genet 1: e69.

    PubMed  Google Scholar 

  15. Tsuchiya M, Dang N, Kerr EO, Hu D, Steffen KK, Oakes JA, Kennedy BK, and Kaeberlein M (2006). Sirtuin-independent effects of nicotinamide on lifespan extension from calorie restriction in yeast. Aging Cell 5: 505–514.

    CAS  PubMed  Google Scholar 

  16. Kirchman PA, Kim S, Lai CY, and Jazwinski SM (1999). Interorganelle signaling is a determinant of longevity in Saccharomyces cerevisiae. Genetics 152: 179–190.

    CAS  PubMed  Google Scholar 

  17. Epstein CB, Waddle JA, Hale WT, Dave V, Thornton J, Macatee TL, Garner HR, and Butow RA (2001). Genome-wide responses to mitochondrial dysfunction. Mol Biol Cell 12: 297–308.

    CAS  PubMed  Google Scholar 

  18. Imai S, Armstrong CM, Kaeberlein M, and Guarente L (2000). Transcriptional silencing and longevity protein Sir2 is an NAD- dependent histone deacetylase. Nature 403: 795–800.

    CAS  PubMed  Google Scholar 

  19. Landry J, Sutton A, Tafrov ST, Heller RC, Stebbins J, Pillus L, and Sternglanz R (2000). The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. Proc Natl Acad Sci U S A 97: 5807–5811.

    CAS  PubMed  Google Scholar 

  20. Tanner KG, Landry J, Sternglanz R, and Denu JM (2000). Silent information regulator 2 family of NAD- dependent histone/protein deacetylases generates a unique product, 1-O-acetyl-ADP-ribose. Proc Natl Acad Sci U S A 97: 14178–14182.

    CAS  PubMed  Google Scholar 

  21. Kaeberlein M, Kirkland KT, Fields S, and Kennedy BK (2004). Sir2-independent life span extension by calorie restriction in yeast. PLoS Biol 2: E296.

    PubMed  Google Scholar 

  22. Smith JS and Boeke JD (1997). An unusual form of transcriptional silencing in yeast ribosomal DNA. Genes Dev 11: 241–254.

    CAS  PubMed  Google Scholar 

  23. Gottlieb S and Esposito RE (1989). A new role for a yeast transcriptional silencer gene, SIR2, in regulation of recombination in ribosomal DNA. Cell 56: 771–776.

    CAS  PubMed  Google Scholar 

  24. Kaeberlein M, McVey M, and Guarente L (1999). The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev 13: 2570–2580.

    CAS  PubMed  Google Scholar 

  25. Anderson RM, Bitterman KJ, Wood JG, Medvedik O, and Sinclair DA (2003). Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae. Nature 423: 181–185.

    CAS  PubMed  Google Scholar 

  26. Anderson RM, Bitterman KJ, Wood JG, Medvedik O, Cohen H, Lin SS, Manchester JK, Gordon JI, and Sinclair DA (2002). Manipulation of a nuclear NAD+ salvage pathway delays aging without altering steady-state NAD+ levels. J Biol Chem 277: 18881–18890.

    CAS  PubMed  Google Scholar 

  27. Bitterman KJ, Anderson RM, Cohen HY, Latorre-Esteves M, and Sinclair DA (2002). Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1. J Biol Chem 277: 45099–45107.

    CAS  PubMed  Google Scholar 

  28. Medvedik O, Lamming DW, Kim KD, and Sinclair DA (2007). MSN2 and MSN4 link calorie restriction and TOR to sirtuin-mediated lifespan extension in Saccharomyces cerevisiae. PLoS Biol 5: e261.

    PubMed  Google Scholar 

  29. Lamming DW, Latorre-Esteves M, Medvedik O, Wong SN, Tsang FA, Wang C, Lin SJ, and Sinclair DA (2005). HST2 mediates SIR2-independent life-span extension by calorie restriction. Science 309: 1861–1864.

    CAS  PubMed  Google Scholar 

  30. Martin DE and Hall MN (2005). The expanding TOR signaling network. Curr Opin Cell Biol 17: 158–166.

    CAS  PubMed  Google Scholar 

  31. Wullschleger S, Loewith R, and Hall MN (2006). TOR signaling in growth and metabolism. Cell 124: 471–484.

    CAS  PubMed  Google Scholar 

  32. Kaeberlein M, Powers RW, 3rd, Steffen KK, Westman EA, Hu D, Dang N, Kerr EO, Kirkland KT, Fields S, and Kennedy BK (2005). Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science 310: 1193–1196.

    CAS  PubMed  Google Scholar 

  33. Li H, Tsang CK, Watkins M, Bertram PG, and Zheng XF (2006). Nutrient regulates Tor1 nuclear localization and association with rDNA promoter. Nature 442: 1058–1061.

    CAS  PubMed  Google Scholar 

  34. Butow RA and Avadhani NG (2004). Mitochondrial signaling: the retrograde response. Mol Cell 14: 1–15.

    CAS  PubMed  Google Scholar 

  35. Jazwinski SM (2000). Metabolic control and ageing. Trends Genet 16: 506–511.

    CAS  PubMed  Google Scholar 

  36. Komeili A, Wedaman KP, O’Shea EK, and Powers T (2000). Mechanism of metabolic control. Target of rapamycin signaling links nitrogen quality to the activity of the Rtg1 and Rtg3 transcription factors. J Cell Biol 151: 863–878.

    CAS  PubMed  Google Scholar 

  37. DeRisi JL, Iyer VR, and Brown PO (1997). Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278: 680–686.

    CAS  PubMed  Google Scholar 

  38. Barros MH, Bandy B, Tahara EB, and Kowaltowski AJ (2004). Higher respiratory activity decreases mitochondrial reactive oxygen release and increases life span in Saccharomyces cerevisiae. J Biol Chem 279: 49883–49888.

    CAS  PubMed  Google Scholar 

  39. Fabrizio P, Pozza F, Pletcher SD, Gendron CM, and Longo VD (2001). Regulation of longevity and stress resistance by Sch9 in yeast. Science 292: 288–290.

    CAS  PubMed  Google Scholar 

  40. Urban J, Soulard A, Huber A, Lippman S, Mukhopadhyay D, Deloche O, Wanke V, Anrather D, Ammerer G, Riezman H et al. (2007). Sch9 is a major target of TORC1 in Saccharomyces cerevisiae. Mol Cell 26: 663–674.

    CAS  PubMed  Google Scholar 

  41. Fabrizio P, Liou LL, Moy VN, Diaspro A, Valentine JS, Gralla EB, and Longo VD (2003). SOD2 functions downstream of Sch9 to extend longevity in yeast. Genetics 163: 35–46.

    CAS  PubMed  Google Scholar 

  42. Bonawitz ND, Chatenay-Lapointe M, Pan Y, and Shadel GS (2007). Reduced TOR signaling extends chronological life span via increased respiration and upregulation of mitochondrial gene expression. Cell Metab 5: 265–277.

    CAS  PubMed  Google Scholar 

  43. Powers RW 3rd, Kaeberlein M, Caldwell SD, Kennedy BK, and Fields S (2006). Extension of chronological life span in yeast by decreased TOR pathway signaling. Genes Dev 20: 174–184.

    CAS  PubMed  Google Scholar 

  44. Wei M, Fabrizio P, Hu J, Ge H, Cheng C, Li L, and Longo VD (2008). Life span extension by calorie restriction depends on Rim15 and transcription factors downstream of Ras/PKA, Tor, and Sch9. PLoS Genet 4: e13.

    PubMed  Google Scholar 

  45. Houthoofd K and Vanfleteren JR (2007). Public and private mechanisms of life extension in Caenorhabditis elegans. Mol Genet Genomics 277: 601–617.

    CAS  PubMed  Google Scholar 

  46. Kenyon C (2005). The plasticity of aging: insights from long-lived mutants. Cell 120: 449–460.

    CAS  PubMed  Google Scholar 

  47. Braeckman BP, Houthoofd K, and Vanfleteren JR (2001). Insulin-like signaling, metabolism, stress resistance and aging in Caenorhabditis elegans. Mech Ageing Dev 122: 673–693.

    CAS  PubMed  Google Scholar 

  48. Kenyon C, Chang J, Gensch E, Rudner A, and Tabtiang R:AC (1993). elegans mutant that lives twice as long as wild type. Nature 366: 461–464.

    CAS  PubMed  Google Scholar 

  49. Murphy CT, McCarroll SA, Bargmann CI, Fraser A, Kamath RS, Ahringer J, Li H, and Kenyon C (2003). Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 424: 277–283.

    CAS  PubMed  Google Scholar 

  50. Garigan D, Hsu AL, Fraser AG, Kamath RS, Ahringer J, and Kenyon C (2002). Genetic analysis of tissue aging in Caenorhabditis elegans: a role for heat-shock factor and bacterial proliferation. Genetics 161: 1101–1112.

    CAS  PubMed  Google Scholar 

  51. Gems D and Riddle DL (2000). Genetic, behavioral and environmental determinants of male longevity in Caenorhabditis elegans. Genetics 154: 1597–1610.

    CAS  PubMed  Google Scholar 

  52. Klass MR (1977). Aging in the nematode Caenorhabditis elegans: major biological and environmental factors influencing life span. Mech Ageing Dev 6: 413–429.

    CAS  PubMed  Google Scholar 

  53. Houthoofd K, Braeckman BP, Lenaerts I, Brys K, De Vreese A, Van Eygen S, and Vanfleteren JR (2002). No reduction of metabolic rate in food restricted Caenorhabditis elegans. Exp Gerontol 37: 1359–1369.

    PubMed  Google Scholar 

  54. Houthoofd K, Braeckman BP, Lenaerts I, Brys K, De Vreese A, Van Eygen S, and Vanfleteren JR (2002). Axenic growth up-regulates mass-specific metabolic rate, stress resistance, and extends life span in Caenorhabditis elegans. Exp Gerontol 37: 1371–1378.

    PubMed  Google Scholar 

  55. Walker G, Houthoofd K, Vanfleteren JR, and Gems D (2005). Dietary restriction in C. elegans: from rate-of-living effects to nutrient sensing pathways. Mech Ageing Dev 126: 929–937.

    CAS  PubMed  Google Scholar 

  56. Lakowski B and Hekimi S (1998). The genetics of caloric restriction in Caenorhabditis elegans. Proc Natl Acad Sci U S A 95: 13091–13096.

    CAS  PubMed  Google Scholar 

  57. Kaeberlein TL, Smith ED, Tsuchiya M, Welton KL, Thomas JH, Fields S, Kennedy BK, and Kaeberlein M (2006). Lifespan extension in Caenorhabditis elegans by complete removal of food. Aging Cell 5: 487–494.

    CAS  PubMed  Google Scholar 

  58. Lee GD, Wilson MA, Zhu M, Wolkow CA, de Cabo R, Ingram DK, and Zou S (2006). Dietary deprivation extends lifespan in Caenorhabditis elegans. Aging Cell 5: 515–524.

    CAS  PubMed  Google Scholar 

  59. Smith ED, Kaeberlein TL, Lydum BT, Sager J, Welton KL, Kennedy BK, and Kaeberlein M (2008). Age- and calorie-independent life span extension from dietary restriction by bacterial deprivation in Caenorhabditis elegans. BMC Dev Biol 8: 49.

    PubMed  Google Scholar 

  60. Wolff S and Dillin A (2006). The trifecta of aging in Caenorhabditis elegans. Exp Gerontol 41: 894–903.

    PubMed  Google Scholar 

  61. Castelein N, Hoogewijs D, De Vreese A, Braeckman BP, and Vanfleteren JR (2008). Dietary restriction by growth in axenic medium induces discrete changes in the transcriptional output of genes involved in energy metabolism in Caenorhabditis elegans. Biotechnol J 3: 803–812.

    CAS  PubMed  Google Scholar 

  62. Bishop NA and Guarente L (2007). Two neurons mediate diet-restriction-induced longevity in C. elegans. Nature 447: 545–549.

    CAS  PubMed  Google Scholar 

  63. Schulz TJ, Zarse K, Voigt A, Urban N, Birringer M, and Ristow M (2007). Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress. Cell Metab 6: 280–293.

    CAS  PubMed  Google Scholar 

  64. Houthoofd K, Braeckman BP, Johnson TE, and Vanfleteren JR (2003). Life extension via dietary restriction is independent of the Ins/IGF-1 signalling pathway in Caenorhabditis elegans. Exp Gerontol 38: 947–954.

    CAS  PubMed  Google Scholar 

  65. Greer EL, Dowlatshahi D, Banko MR, Villen J, Hoang K, Blanchard D, Gygi SP, and Brunet A (2007). An AMPK-FOXO pathway mediates longevity induced by a novel method of dietary restriction in C. elegans. Curr Biol 17: 1646–1656.

    CAS  PubMed  Google Scholar 

  66. Tissenbaum HA and Guarente L (2001). Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 410: 227–230.

    CAS  PubMed  Google Scholar 

  67. Lin K, Dorman JB, Rodan A, and Kenyon C (1997). daf-16: An HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science 278: 1319–1322.

    CAS  PubMed  Google Scholar 

  68. Wang Y, Oh SW, Deplancke B, Luo J, Walhout AJ, and Tissenbaum HA (2006). C. elegans 14-3-3 proteins regulate life span and interact with SIR-2.1 and DAF-16/FOXO. Mech Ageing Dev 127: 741–747.

    CAS  PubMed  Google Scholar 

  69. Berdichevsky A, Viswanathan M, Horvitz HR, and Guarente L (2006). C. elegans SIR-2.1 interacts with 14-3-3 proteins to activate DAF-16 and extend life span. Cell 125: 1165–1177.

    CAS  PubMed  Google Scholar 

  70. Panowski SH, Wolff S, Aguilaniu H, Durieux J, and Dillin A (2007). PHA-4/Foxa mediates diet-restriction-induced longevity of C. elegans. Nature 447: 550–555.

    CAS  PubMed  Google Scholar 

  71. Vellai T, Takacs-Vellai K, Zhang Y, Kovacs AL, Orosz L, and Muller F (2003). Genetics: influence of TOR kinase on lifespan in C. elegans. Nature 426: 620.

    CAS  PubMed  Google Scholar 

  72. Jia K, Chen D, and Riddle DL (2004). The TOR pathway interacts with the insulin signaling pathway to regulate C. elegans larval development, metabolism and life span. Development 131: 3897–3906.

    CAS  PubMed  Google Scholar 

  73. Hansen M, Taubert S, Crawford D, Libina N, Lee SJ, and Kenyon C (2007). Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans. Aging Cell 6: 95–110.

    CAS  PubMed  Google Scholar 

  74. Helfand SL and Rogina B (2003). Molecular genetics of aging in the fly: is this the end of the beginning? Bioessays 25: 134–141.

    CAS  PubMed  Google Scholar 

  75. Magwere T, Chapman T, and Partridge L (2004). Sex differences in the effect of dietary restriction on life span and mortality rates in female and male Drosophila melanogaster. J Gerontol A Biol Sci Med Sci 59: 3–9.

    PubMed  Google Scholar 

  76. Bass TM, Grandison RC, Wong R, Martinez P, Partridge L, and Piper MD (2007). Optimization of dietary restriction protocols in Drosophila. J Gerontol A Biol Sci Med Sci 62: 1071–1081.

    PubMed  Google Scholar 

  77. Tatar M (2007). Diet restriction in Drosophila melanogaster. Design and analysis. Interdiscip Top Gerontol 35: 115–136.

    CAS  PubMed  Google Scholar 

  78. Mair W, Piper MD, and Partridge L (2005). Calories do not explain extension of life span by dietary restriction in Drosophila. PLoS Biol 3: e223.

    PubMed  Google Scholar 

  79. Min KJ, Flatt T, Kulaots I, and Tatar M (2007). Counting calories in Drosophila diet restriction. Exp Gerontol 42: 247–251.

    PubMed  Google Scholar 

  80. Min KJ and Tatar M (2006). Restriction of amino acids extends lifespan in Drosophila melanogaster. Mech Ageing Dev 127: 643–646.

    CAS  PubMed  Google Scholar 

  81. Carvalho GB, Kapahi P, and Benzer S (2005). Compensatory ingestion upon dietary restriction in Drosophila melanogaster. Nat Methods 2: 813–815.

    CAS  PubMed  Google Scholar 

  82. Chapman T and Partridge L (1996). Female fitness in Drosophila melanogaster: an interaction between the effect of nutrition and of encounter rate with males. Proc Biol Sci 263: 755–759.

    CAS  PubMed  Google Scholar 

  83. Piper MD and Partridge L (2007). Dietary restriction in Drosophila: delayed aging or experimental artefact? PLoS Genet 3: e57.

    PubMed  Google Scholar 

  84. Pletcher SD, Macdonald SJ, Marguerie R, Certa U, Stearns SC, Goldstein DB, and Partridge L (2002). Genome-wide transcript profiles in aging and calorically restricted Drosophila melanogaster. Curr Biol 12: 712–723.

    CAS  PubMed  Google Scholar 

  85. Morrow G and Tanguay RM (2008). Mitochondria and ageing in Drosophila. Biotechnol J 3: 728–739.

    CAS  PubMed  Google Scholar 

  86. Miwa S, Riyahi K, Partridge L, and Brand MD (2004). Lack of correlation between mitochondrial reactive oxygen species production and life span in Drosophila. Ann N Y Acad Sci 1019: 388–391.

    CAS  PubMed  Google Scholar 

  87. Girardot F, Lasbleiz C, Monnier V, and Tricoire H (2006). Specific age-related signatures in Drosophila body parts transcriptome. BMC Genomics 7: 69.

    PubMed  Google Scholar 

  88. Magwere T, Goodall S, Skepper J, Mair W, Brand MD, and Partridge L (2006). The effect of dietary restriction on mitochondrial protein density and flight muscle mitochondrial morphology in Drosophila. J Gerontol A Biol Sci Med Sci 61: 36–47.

    PubMed  Google Scholar 

  89. Rogina B, Helfand SL, and Frankel S (2002). Longevity regulation by Drosophila Rpd3 deacetylase and caloric restriction. Science 298: 1745.

    CAS  PubMed  Google Scholar 

  90. Rogina B and Helfand SL (2004). Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc Natl Acad Sci U S A 101: 15998–16003.

    CAS  PubMed  Google Scholar 

  91. Wood JG, Rogina B, Lavu S, Howitz K, Helfand SL, Tatar M, and Sinclair D (2004). Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 430: 686–689.

    CAS  PubMed  Google Scholar 

  92. Simon AF, Shih C, Mack A, and Benzer S (2003). Steroid control of longevity in Drosophila melanogaster. Science 299: 1407–1410.

    CAS  PubMed  Google Scholar 

  93. Tsai CC, Kao HY, Yao TP, McKeown M, and Evans RM (1999). SMRTER, a Drosophila nuclear receptor coregulator, reveals that EcR-mediated repression is critical for development. Mol Cell 4: 175–186.

    CAS  PubMed  Google Scholar 

  94. Pile LA, Spellman PT, Katzenberger RJ, and Wassarman DA (2003). The SIN3 deacetylase complex represses genes encoding mitochondrial proteins: implications for the regulation of energy metabolism. J Biol Chem 278: 37840–37848.

    CAS  PubMed  Google Scholar 

  95. Tatar M, Bartke A, and Antebi A (2003). The endocrine regulation of aging by insulin-like signals. Science 299: 1346–1351.

    CAS  PubMed  Google Scholar 

  96. Junger MA, Rintelen F, Stocker H, Wasserman JD, Vegh M, Radimerski T, Greenberg ME, and Hafen E (2003). The Drosophila forkhead transcription factor FOXO mediates the reduction in cell number associated with reduced insulin signaling. J Biol 2: 20.

    PubMed  Google Scholar 

  97. Giannakou ME, Goss M, Junger MA, Hafen E, Leevers SJ, and Partridge L (2004). Long-lived Drosophila with overexpressed dFOXO in adult fat body. Science 305: 361.

    CAS  PubMed  Google Scholar 

  98. Hwangbo DS, Gersham B, Tu MP, Palmer M, and Tatar M (2004). Drosophila dFOXO controls lifespan and regulates insulin signalling in brain and fat body. Nature 429: 562–566.

    CAS  PubMed  Google Scholar 

  99. Giannakou ME, Goss M, and Partridge L (2008). Role of dFOXO in lifespan extension by dietary restriction in Drosophila melanogaster: not required, but its activity modulates the response. Aging Cell 7: 187–198.

    CAS  PubMed  Google Scholar 

  100. Min KJ, Yamamoto R, Buch S, Pankratz M, and Tatar M (2008). Drosophila lifespan control by dietary restriction independent of insulin-like signaling. Aging Cell 7: 199–206.

    CAS  PubMed  Google Scholar 

  101. Colombani J, Raisin S, Pantalacci S, Radimerski T, Montagne J, and Leopold P (2003). A nutrient sensor mechanism controls Drosophila growth. Cell 114: 739–749.

    CAS  PubMed  Google Scholar 

  102. Kapahi P, Zid BM, Harper T, Koslover D, Sapin V, and Benzer S (2004). Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Curr Biol 14: 885–890.

    CAS  PubMed  Google Scholar 

  103. Luong N, Davies CR, Wessells RJ, Graham SM, King MT, Veech R, Bodmer R, and Oldham SM (2006). Activated FOXO-mediated insulin resistance is blocked by reduction of TOR activity. Cell Metab 4: 133–142.

    CAS  PubMed  Google Scholar 

  104. Schieke SM, Phillips D, McCoy JP, Jr., Aponte AM, Shen RF, Balaban RS, and Finkel T (2006). The mammalian target of rapamycin (mTOR) pathway regulates mitochondrial oxygen consumption and oxidative capacity. J Biol Chem 281: 27643–27652.

    CAS  PubMed  Google Scholar 

  105. McCay CM, Crowell MF, and Maynard LA (1935). The effect of retarded growth upon the length of life span and upon the ultimate body size. Nutrition 5: 155–171; discussion 172.

    Google Scholar 

  106. Weindruch RH and Walford RL (1988). The Retardation of Aging and Disease by Dietary Restriction. Springfield, IL: Charles C Thomas.

    Google Scholar 

  107. Piper MD and Bartke A (2008). Diet and aging. Cell Metab 8: 99–104.

    CAS  PubMed  Google Scholar 

  108. Weindruch R and Sohal RS (1997). Seminars in medicine of the Beth Israel Deaconess Medical Center. Caloric intake and aging. N Engl J Med 337: 986–994.

    CAS  PubMed  Google Scholar 

  109. Weindruch R, Walford RL, Fligiel S, and Guthrie D (1986). The retardation of aging in mice by dietary restriction: longevity, cancer, immunity and lifetime energy intake. J Nutr 116: 641–654.

    CAS  PubMed  Google Scholar 

  110. Ross MH (1961). Length of life and nutrition in the rat. J Nutr 75: 197–210.

    CAS  PubMed  Google Scholar 

  111. Ross MH and Bras G (1973). Influence of protein under- and overnutrition on spontaneous tumor prevalence in the rat. J Nutr 103: 944–963.

    CAS  PubMed  Google Scholar 

  112. Weindruch R, Gottesman SR, and Walford RL (1982). Modification of age-related immune decline in mice dietarily restricted from or after midadulthood. Proc Natl Acad Sci U S A 79: 898–902.

    CAS  PubMed  Google Scholar 

  113. Cao SX, Dhahbi JM, Mote PL, and Spindler SR (2001). Genomic profiling of short- and long-term caloric restriction effects in the liver of aging mice. Proc Natl Acad Sci U S A 98: 10630–10635.

    CAS  PubMed  Google Scholar 

  114. Aspnes LE, Lee CM, Weindruch R, Chung SS, Roecker EB, and Aiken JM (1997). Caloric restriction reduces fiber loss and mitochondrial abnormalities in aged rat muscle. FASEB J 11: 573–581.

    CAS  PubMed  Google Scholar 

  115. Zangarelli A, Chanseaume E, Morio B, Brugere C, Mosoni L, Rousset P, Giraudet C, Patrac V, Gachon P, Boirie Y et al. (2006). Synergistic effects of caloric restriction with maintained protein intake on skeletal muscle performance in 21-month-old rats: a mitochondria-mediated pathway. FASEB J 20: 2439–2450.

    CAS  PubMed  Google Scholar 

  116. Liang H, Masoro EJ, Nelson JF, Strong R, McMahan CA, and Richardson A (2003). Genetic mouse models of extended lifespan. Exp Gerontol 38: 1353–1364.

    CAS  PubMed  Google Scholar 

  117. Barger JL, Walford RL, and Weindruch R (2003). The retardation of aging by caloric restriction: its significance in the transgenic era. Exp Gerontol 38: 1343–1351.

    PubMed  Google Scholar 

  118. Swindell WR (2007). Gene expression profiling of long-lived dwarf mice: longevity-associated genes and relationships with diet, gender and aging. BMC Genomics 8: 353.

    PubMed  Google Scholar 

  119. Martin B, Mattson MP, and Maudsley S (2006). Caloric restriction and intermittent fasting: two potential diets for successful brain aging. Ageing Res Rev 5: 332–353.

    CAS  PubMed  Google Scholar 

  120. Varady KA and Hellerstein MK (2007). Alternate-day fasting and chronic disease prevention: a review of human and animal trials. Am J Clin Nutr 86: 7–13.

    CAS  PubMed  Google Scholar 

  121. Inness CL and Metcalfe NB (2008). The impact of dietary restriction, intermittent feeding and compensatory growth on reproductive investment and lifespan in a short-lived fish. Proc Biol Sci 275: 1703–1708.

    PubMed  Google Scholar 

  122. Plunet WT, Streijger F, Lam CK, Lee JH, Liu J, and Tetzlaff W (2008). Dietary restriction started after spinal cord injury improves functional recovery. Exp Neurol 213: 28–35.

    PubMed  Google Scholar 

  123. Castello L, Froio T, Cavallini G, Biasi F, Sapino A, Leonarduzzi G, Bergamini E, Poli G, and Chiarpotto E (2005). Calorie restriction protects against age-related rat aorta sclerosis. FASEB J 19: 1863–1865.

    CAS  PubMed  Google Scholar 

  124. Richie JP Jr., Leutzinger Y, Parthasarathy S, Malloy V, Orentreich N, and Zimmerman JA (1994). Methionine restriction increases blood glutathione and longevity in F344 rats. FASEB J 8: 1302–1307.

    CAS  PubMed  Google Scholar 

  125. Miller RA, Buehner G, Chang Y, Harper JM, Sigler R, and Smith-Wheelock M (2005). Methionine-deficient diet extends mouse lifespan, slows immune and lens aging, alters glucose, T4, IGF-I and insulin levels, and increases hepatocyte MIF levels and stress resistance. Aging Cell 4: 119–125.

    CAS  PubMed  Google Scholar 

  126. Sanz A, Caro P, Ayala V, Portero-Otin M, Pamplona R, and Barja G (2006). Methionine restriction decreases mitochondrial oxygen radical generation and leak as well as oxidative damage to mitochondrial DNA and proteins. FASEB J 20: 1064–1073.

    CAS  PubMed  Google Scholar 

  127. Ingram DK, Zhu M, Mamczarz J, Zou S, Lane MA, and Roth GS (2006). deCabo R: calorie restriction mimetics: an emerging research field. Aging Cell 5: 97–108.

    CAS  PubMed  Google Scholar 

  128. Opie LH and Lecour S (2007). The red wine hypothesis: from concepts to protective signalling molecules. Eur Heart J 28: 1683–1693.

    CAS  PubMed  Google Scholar 

  129. Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, Zipkin RE, Chung P, Kisielewski A, Zhang LL et al. (2003). Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425: 191–196.

    CAS  PubMed  Google Scholar 

  130. Bass TM, Weinkove D, Houthoofd K, Gems D, and Partridge L (2007). Effects of resveratrol on lifespan in Drosophila melanogaster and Caenorhabditis elegans. Mech Ageing Dev 128: 546–552.

    CAS  PubMed  Google Scholar 

  131. Kaeberlein M, McDonagh T, Heltweg B, Hixon J, Westman EA, Caldwell SD, Napper A, Curtis R, DiStefano PS, Fields S et al. (2005). Substrate-specific activation of sirtuins by resveratrol. J Biol Chem 280: 17038–17045.

    CAS  PubMed  Google Scholar 

  132. Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, Prabhu VV, Allard JS, Lopez-Lluch G, Lewis K et al. (2006). Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444: 337–342.

    CAS  PubMed  Google Scholar 

  133. Barger JL, Kayo T, Vann JM, Arias EB, Wang J, Hacker TA, Wang Y, Raederstorff D, Morrow JD, Leeuwenburgh C et al. (2008). A low dose of dietary resveratrol partially mimics caloric restriction and retards aging parameters in mice. PLoS ONE 3: e2264.

    PubMed  Google Scholar 

  134. Anderson RM and Weindruch R (2007). Metabolic reprogramming in dietary restriction. Interdiscip Top Gerontol 35: 18–38.

    CAS  PubMed  Google Scholar 

  135. Guarente L (2008). Mitochondria – a nexus for aging, calorie restriction, and sirtuins? Cell 132: 171–176.

    CAS  PubMed  Google Scholar 

  136. Kennedy BK, Steffen KK, and Kaeberlein M (2007). Ruminations on dietary restriction and aging. Cell Mol Life Sci 64: 1323–1328.

    CAS  PubMed  Google Scholar 

  137. Weindruch R, Colman RJ, Perez V, and Richardson AG (2008). How does caloric restriction increase the longevity of mammals? In Molecular Biology of Aging. (Guarente L, Partridge, L, Wallace, D, eds). New York: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  138. Lee CK, Klopp RG, Weindruch R, and Prolla TA (1999). Gene expression profile of aging and its retardation by caloric restriction. Science 285: 1390–1393.

    CAS  PubMed  Google Scholar 

  139. Lee CK, Weindruch R, and Prolla TA (2000). Gene-expression profile of the ageing brain in mice. Nat Genet 25: 294–297.

    CAS  PubMed  Google Scholar 

  140. Lee CK, Allison DB, Brand J, Weindruch R, and Prolla TA (2002). Transcriptional profiles associated with aging and middle age-onset caloric restriction in mouse hearts. Proc Natl Acad Sci U S A 99: 14988–14993.

    CAS  PubMed  Google Scholar 

  141. Higami Y, Pugh TD, Page GP, Allison DB, Prolla TA, and Weindruch R (2004). Adipose tissue energy metabolism: altered gene expression profile of mice subjected to long-term caloric restriction. FASEB J 18: 415–417.

    CAS  PubMed  Google Scholar 

  142. Higami Y, Barger JL, Page GP, Allison DB, Smith SR, Prolla TA, and Weindruch R (2006). Energy restriction lowers the expression of genes linked to inflammation, the cytoskeleton, the extracellular matrix, and angiogenesis in mouse adipose tissue. J Nutr 136: 343–352.

    CAS  PubMed  Google Scholar 

  143. Mohamed-Ali V, Pinkney JH, and Coppack SW (1998). Adipose tissue as an endocrine and paracrine organ. Int J Obes Relat Metab Disord 22: 1145–1158.

    CAS  PubMed  Google Scholar 

  144. Kershaw EE and Flier JS (2004). Adipose tissue as an endocrine organ. J Clin Endocrinol Metab 89: 2548–2556.

    CAS  PubMed  Google Scholar 

  145. Ahima RS (2006). Adipose tissue as an endocrine organ. Obesity (Silver Spring) 14(Suppl 5): 242S–249S.

    CAS  Google Scholar 

  146. Finck BN and Kelly DP (2006). PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. J Clin Invest 116: 615–622.

    CAS  PubMed  Google Scholar 

  147. Scarpulla RC (2006). Nuclear control of respiratory gene expression in mammalian cells. J Cell Biochem 97: 673–683.

    CAS  PubMed  Google Scholar 

  148. Corton JC and Brown-Borg HM (2005). Peroxisome proliferator-activated receptor gamma coactivator 1 in caloric restriction and other models of longevity. J Gerontol A Biol Sci Med Sci 60: 1494–1509.

    PubMed  Google Scholar 

  149. Puigserver P and Spiegelman BM (2003). Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator. Endocr Rev 24: 78–90.

    CAS  PubMed  Google Scholar 

  150. Evans RM, Barish GD, and Wang YX (2004). PPARs and the complex journey to obesity. Nat Med 10: 355–361.

    CAS  PubMed  Google Scholar 

  151. Corton JC, Apte U, Anderson SP, Limaye P, Yoon L, Latendresse J, Dunn C, Everitt JI, Voss KA, Swanson C et al. (2004). Mimetics of caloric restriction include agonists of lipid-activated nuclear receptors. J Biol Chem 279: 46204–46212.

    CAS  PubMed  Google Scholar 

  152. Anderson RM, Barger JL, Edwards MG, Braun KH, O’Connor CE, Prolla TA, and Weindruch R (2008). Dynamic regulation of PGC-1alpha localization and turnover implicates mitochondrial adaptation in calorie restriction and the stress response. Aging Cell 7: 101–111.

    CAS  PubMed  Google Scholar 

  153. Lawler DF, Larson BT, Ballam JM, Smith GK, Biery DN, Evans RH, Greeley EH, Segre M, Stowe HD, and Kealy RD (2008). Diet restriction and ageing in the dog: major observations over two decades. Br J Nutr 99: 793–805.

    CAS  PubMed  Google Scholar 

  154. Ingram DK, Cutler RG, Weindruch R, Renquist DM, Knapka JJ, April M, Belcher CT, Clark MA, Hatcherson CD, Marriott BM et al. (1990). Dietary restriction and aging: the initiation of a primate study. J Gerontol 45: B148–B163.

    CAS  PubMed  Google Scholar 

  155. Lane MA, Ingram DK, Cutler RG, Knapka JJ, Barnard DE, and Roth GS (1992). Dietary restriction in nonhuman primates: progress report on the NIA study. Ann N Y Acad Sci 673: 36–45.

    CAS  PubMed  Google Scholar 

  156. Mattison JA, Lane MA, Roth GS, and Ingram DK (2003). Calorie restriction in rhesus monkeys. Exp Gerontol 38: 35–46.

    PubMed  Google Scholar 

  157. National Research Council CoAN, Agricultural Board (1978). Nutrient requirements of nonhuman primates, Washington, DC.

    Google Scholar 

  158. Kemnitz JW, Weindruch R, Roecker EB, Crawford K, Kaufman PL, and Ershler WB (1993). Dietary restriction of adult male rhesus monkeys: design, methodology, and preliminary findings from the first year of study. J Gerontol 48: B17–B26.

    CAS  PubMed  Google Scholar 

  159. Ramsey JJ, Colman RJ, Binkley NC, Christensen JD, Gresl TA, Kemnitz JW, and Weindruch R (2000). Dietary restriction and aging in rhesus monkeys: the University of Wisconsin study. Exp Gerontol 35: 1131–1149.

    CAS  PubMed  Google Scholar 

  160. Bodkin NL, Alexander TM, Ortmeyer HK, Johnson E, and Hansen BC (2003). Mortality and morbidity in laboratory-maintained Rhesus monkeys and effects of long-term dietary restriction. J Gerontol A Biol Sci Med Sci 58: 212–219.

    PubMed  Google Scholar 

  161. Colman RJ, Ramsey JJ, Roecker EB, Havighurst T, Hudson JC, and Kemnitz JW (1999). Body fat distribution with long-term dietary restriction in adult male rhesus macaques. J Gerontol A Biol Sci Med Sci 54: B283–B290.

    CAS  PubMed  Google Scholar 

  162. Gresl TA, Colman RJ, Roecker EB, Havighurst TC, Huang Z, Allison DB, Bergman RN, and Kemnitz JW (2001). Dietary restriction and glucose regulation in aging rhesus monkeys: a follow-up report at 8.5 yr. Am J Physiol Endocrinol Metab 281: E757–E765.

    CAS  PubMed  Google Scholar 

  163. Kemnitz JW, Roecker EB, Weindruch R, Elson DF, Baum ST, and Bergman RN (1994). Dietary restriction increases insulin sensitivity and lowers blood glucose in rhesus monkeys. Am J Physiol 266: E540–E547.

    CAS  PubMed  Google Scholar 

  164. Lane MA, Ball SS, Ingram DK, Cutler RG, Engel J, Read V, and Roth GS (1995). Diet restriction in rhesus monkeys lowers fasting and glucose-stimulated glucoregulatory end points. Am J Physiol 268: E941–E948.

    CAS  PubMed  Google Scholar 

  165. Mattison JA, Roth GS, Lane MA, and Ingram DK (2007). Dietary restriction in aging nonhuman primates. Interdiscip Top Gerontol 35: 137–158.

    CAS  PubMed  Google Scholar 

  166. Black A, Allison DB, Shapses SA, Tilmont EM, Handy AM, Ingram DK, Roth GS, and Lane MA (2001). Calorie restriction and skeletal mass in rhesus monkeys (Macaca mulatta): evidence for an effect mediated through changes in body size. J Gerontol A Biol Sci Med Sci 56: B98–B107.

    CAS  PubMed  Google Scholar 

  167. Colman RJ, Lane MA, Binkley N, Wegner FH, and Kemnitz JW (1999). Skeletal effects of aging in male rhesus monkeys. Bone 24: 17–23.

    CAS  PubMed  Google Scholar 

  168. Lane MA, Baer DJ, Rumpler WV, Weindruch R, Ingram DK, Tilmont EM, Cutler RG, and Roth GS (1996). Calorie restriction lowers body temperature in rhesus monkeys, consistent with a postulated anti-aging mechanism in rodents. Proc Natl Acad Sci U S A 93: 4159–4164.

    CAS  PubMed  Google Scholar 

  169. Edwards IJ, Rudel LL, Terry JG, Kemnitz JW, Weindruch R, and Cefalu WT (1998). Caloric restriction in rhesus monkeys reduces low density lipoprotein interaction with arterial proteoglycans. J Gerontol A Biol Sci Med Sci 53: B443–B448.

    CAS  PubMed  Google Scholar 

  170. Colman RJ, Beasley TM, Allison DB, and Weindruch R (2008). Attenuation of sarcopenia by dietary restriction in rhesus monkeys. J Gerontol A Biol Sci Med Sci 63: 556–559.

    PubMed  Google Scholar 

  171. Chan YC, Suzuki M, and Yamamoto S (1997). Dietary, anthropometric, hematological and biochemical assessment of the nutritional status of centenarians and elderly people in Okinawa, Japan. J Am Coll Nutr 16: 229–235.

    CAS  PubMed  Google Scholar 

  172. Kagawa Y (1978). Impact of Westernization on the nutrition of Japanese: changes in physique, cancer, longevity and centenarians. Prev Med 7: 205–217.

    CAS  PubMed  Google Scholar 

  173. Suzuki M, Wilcox BJ, and Wilcox CD (2001). Implications from and for food cultures for cardiovascular disease: longevity. Asia Pac J Clin Nutr 10: 165–171.

    CAS  PubMed  Google Scholar 

  174. Weindruch R (2003). Caloric restriction, gene expression, and aging. Alzheimer Dis Assoc Disord 17(Suppl 2): S58–S59.

    CAS  PubMed  Google Scholar 

  175. Das M, Gabriely I, and Barzilai N (2004). Caloric restriction, body fat and ageing in experimental models. Obes Rev 5: 13–19.

    CAS  PubMed  Google Scholar 

  176. Wisse BE (2004). The inflammatory syndrome: the role of adipose tissue cytokines in metabolic disorders linked to obesity. J Am Soc Nephrol 15: 2792–2800.

    CAS  PubMed  Google Scholar 

  177. Heilbronn LK and Ravussin E (2003). Calorie restriction and aging: review of the literature and implications for studies in humans. Am J Clin Nutr 78: 361–369.

    CAS  PubMed  Google Scholar 

  178. Holloszy JO and Fontana L (2007). Caloric restriction in humans. Exp Gerontol 42: 709–712.

    CAS  PubMed  Google Scholar 

  179. Heilbronn LK, de Jonge L, Frisard MI, DeLany JP, Larson-Meyer DE, Rood J, Nguyen T, Martin CK, Volaufova J, Most MM et al. (2006). Effect of 6-month calorie restriction on biomarkers of longevity, metabolic adaptation, and oxidative stress in overweight individuals: a randomized controlled trial. J Am Med Assoc 295: 1539–1548.

    CAS  Google Scholar 

  180. Redman LM, Heilbronn LK, Martin CK, Alfonso A, Smith SR, and Ravussin E (2007). Effect of calorie restriction with or without exercise on body composition and fat distribution. J Clin Endocrinol Metab 92: 865–872.

    CAS  PubMed  Google Scholar 

  181. Lefevre M, Redman LM, Heilbronn LK, Smith JV, Martin CK, Rood JC, Greenway FL, Williamson DA, Smith SR, and Ravussin E (2009). Caloric restriction alone and with exercise improves CVD risk in healthy non-obese individuals. Atherosclerosis 203(1): 206–213.

    CAS  PubMed  Google Scholar 

  182. Civitarese AE, Carling S, Heilbronn LK, Hulver MH, Ukropcova B, Deutsch WA, Smith SR, and Ravussin E (2007). Calorie restriction increases muscle mitochondrial biogenesis in healthy humans. PLoS Med 4: e76.

    PubMed  Google Scholar 

  183. Weiss EP, Racette SB, Villareal DT, Fontana L, Steger-May K, Schechtman KB, Klein S, and Holloszy JO (2006). Improvements in glucose tolerance and insulin action induced by increasing energy expenditure or decreasing energy intake: a randomized controlled trial. Am J Clin Nutr 84: 1033–1042.

    CAS  PubMed  Google Scholar 

  184. Fontana L, Villareal DT, Weiss EP, Racette SB, Steger-May K, Klein S, and Holloszy JO (2007). Calorie restriction or exercise: effects on coronary heart disease risk factors. A randomized, controlled trial. Am J Physiol Endocrinol Metab 293: E197–E202.

    CAS  PubMed  Google Scholar 

  185. Racette SB, Weiss EP, Villareal DT, Arif H, Steger-May K, Schechtman KB, Fontana L, Klein S, and Holloszy JO (2006). One year of caloric restriction in humans: feasibility and effects on body composition and abdominal adipose tissue. J Gerontol A Biol Sci Med Sci 61: 943–950.

    PubMed  Google Scholar 

  186. Fontana L, Meyer TE, Klein S, and Holloszy JO (2004). Long-term calorie restriction is highly effective in reducing the risk for atherosclerosis in humans. Proc Natl Acad Sci U S A 101: 6659–6663.

    CAS  PubMed  Google Scholar 

  187. Meyer TE, Kovacs SJ, Ehsani AA, Klein S, Holloszy JO, and Fontana L (2006). Long-term caloric restriction ameliorates the decline in diastolic function in humans. J Am Coll Cardiol 47: 398–402.

    CAS  PubMed  Google Scholar 

  188. Barger JL, Kayo T, Pugh TD, Prolla TA, and Weindruch R (2008). Short-term consumption of a resveratrol-containing nutracuetical mixture mimics gene expression of long-term caloric restriction in mouse heart. Exp Gerontol 43(9): 859-866.

    CAS  PubMed  Google Scholar 

  189. Pearson KJ, Baur JA, Lewis KN, Peshkin L, Price NL, Labinskyy N, Swindell WR, Kamara D, Minor RK, Perez E et al. (2008). Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span. Cell Metab 8: 157–168.

    CAS  PubMed  Google Scholar 

  190. Colman RJ, Anderson RM, Johnson SC, Kastman EK, Kosmatka KJ, Beasley TM, Allison DB, Cruzen C, Simmons HA, Kemnitz JW, and Weindruch R (2009). Caloric Restriction Delays Disease Onset and Mortality in Rhesus Monkeys. Science 325: 201–204.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rozalyn M. Anderson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Anderson, R.M., Colman, R.J., Weindruch, R. (2010). Exploring Mechanisms of Aging Retardation by Caloric Restriction: Studies in Model Organisms and Mammals. In: Wolf, N. (eds) The Comparative Biology of Aging. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3465-6_4

Download citation

Publish with us

Policies and ethics