Skip to main content

Aging of the Immune System Across Different Species

  • Chapter
  • First Online:
The Comparative Biology of Aging

Abstract

Aging of the immune system, called immunosenescence, has been linked to reduced ability to resist infection, and increased mortality and morbidity from infectious diseases, which consistently rank in the top five causes of death in the old age, even in industrial societies. This review summarizes our knowledge about the evolution of the innate and adaptive immune systems in light of the longevity of the organism, as well as the current state of our understanding of age-related changes in each of the arms of the immune system in various model organisms. It is clear that adaptive immunity, which we propose evolved as an essential function that provides longevity, eventually erodes in the old age. The jury is still out as to whether innate immunity undergoes a similar decay, whether it stays the same, or whether, perhaps, it is able to compensate for the loss of adaptive immune function.

Supported by USPHS awards AG20719, AG21384 and AG23664 (J.N-Z.) and RR-0163 (ONPRC) from the NIA and NCRR, National Institutes of Health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Ag:

Antigen

ASR:

Antigen Specific Receptors

BCR:

B-cell Receptor

CD:

Cluster of Differentiation

CMV:

Cytomegalovirus

DC:

Dendritic Cell

IFNγ:

Interferon γ

Ig:

Immunoglobulin

IL:

Interleukin

LAT:

Linker of Activated T-cells

LPS:

Lipopolysaccharide

LRR:

Leucine Rich Region

Mf:

Macrophage

MHC:

Main Histocompatibility Antigens

MyD88:

Myeloid Differentiation Factor 88

NF-κB:

Nuclear Factor κB

NHP:

Non-human Primates

NK:

Natural Killer

NLR:

NOD-like Receptor

NOD:

Nuclear Oligomerization Domain

PAM:

Pathogen Associated Molecular Pattern

PBMC:

Peripheral Blood Mononuclear Cell

PGRP:

Peptidoglycan Recognition Protein

PRR:

Pathogen Recognition Receptors

RAG:

Recombination Activating Gene

RBC:

Red Blood Cell

RLH:

RIG-I like helicase

RM:

Rhesus Macaque

TCE:

T-cell Clonal Expansion, BCE – B-cell Clonal Expansion

TCR:

T-cell receptor

TEMRA:

T-cell Effector Memory Cells expressing CD45RA

TIR:

Toll/IL1 Receptor

TLR:

Toll-like Receptor

TNFα:

Tumor Necrosis Factor α

VLR:

Variable Lymphocyte Receptor

References

  1. MacArthur RH and Wilson EO (1967). The Theory of Island Biogeography. Princeton, NJ: Princeton University Press.

    Google Scholar 

  2. Van Bodegom D, May L, Meij HJ, and Westendorp RG (2007). Regulation of human life histories: the role of the inflammatory host response. Ann N Y Acad Sci 1100: 84–97.

    PubMed  Google Scholar 

  3. Medzhitov R (2007). Recognition of microorganisms and activation of the immune response. Nature 449(7164): 819–826.

    CAS  PubMed  Google Scholar 

  4. Kawai T and Akira S (2006). TLR signaling. Cell Death Differ 13(5): 816–825.

    CAS  PubMed  Google Scholar 

  5. Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C et al. (1998). Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282(5396): 2085–2088.

    CAS  PubMed  Google Scholar 

  6. Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC et al. (2001). The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410(6832): 1099–1103.

    CAS  PubMed  Google Scholar 

  7. Hacker H, Vabulas RM, Takeuchi O, Hoshino K, Akira S et al. (2000). Immune cell activation by bacterial CpG-DNA through myeloid differentiation marker 88 and tumor necrosis factor receptor-associated factor (TRAF)6. J Exp Med 192(4): 595–600.

    CAS  PubMed  Google Scholar 

  8. Chamaillard M, Hashimoto M, Horie Y, Masumoto J, Qiu S et al. (2003). An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid. Nat Immunol 4(7): 702–707.

    CAS  PubMed  Google Scholar 

  9. Girardin SE, Boneca IG, Viala J, Chamaillard M, Labigne A et al. (2003). Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J Biol Chem 278(11): 8869–8872.

    CAS  PubMed  Google Scholar 

  10. Inohara N, Ogura Y, Fontalba A, Gutierrez O, Pons F et al. (2003). Host recognition of bacterial muramyl dipeptide mediated through NOD2. Implications for Crohn’s disease. J Biol Chem 278(8): 5509–5512.

    CAS  PubMed  Google Scholar 

  11. Alexopoulou L, Holt AC, Medzhitov R, and Flavell RA (2001). Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413(6857): 732–738.

    CAS  PubMed  Google Scholar 

  12. Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C et al. (2004). Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 303(5663): 1526–1529.

    CAS  PubMed  Google Scholar 

  13. Krug A, French AR, Barchet W, Fischer JA, Dzionek A et al. (2004). TLR9-dependent recognition of MCMV by IPC and DC generates coordinated cytokine responses that activate antiviral NK cell function. Immunity 21(1): 107–119.

    CAS  PubMed  Google Scholar 

  14. Lemaitre B, Nicolas E, Michaut L, Reichhart JM, and Hoffmann JA (1996). The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86(6): 973–983.

    CAS  PubMed  Google Scholar 

  15. Kurata S, Ariki S, and Kawabata S (2006). Recognition of pathogens and activation of immune responses in Drosophila and horseshoe crab innate immunity. Immunobiology 211(4): 237–249.

    CAS  PubMed  Google Scholar 

  16. Nurnberger T, Brunner F, Kemmerling B, and Piater L (2004). Innate immunity in plants and animals: striking similarities and obvious differences. Immunol Rev 198: 249–266.

    PubMed  Google Scholar 

  17. Medzhitov R and Janeway CA, Jr. (1997). Innate immunity: the virtues of a nonclonal system of recognition. Cell 91(3): 295–298.

    CAS  PubMed  Google Scholar 

  18. Rast JP, Smith LC, Loza-Coll M, Hibino T, and Litman GW (2006). Genomic insights into the immune system of the sea urchin. Science 314(5801): 952–956.

    CAS  PubMed  Google Scholar 

  19. Zipfel C (2008). Pattern-recognition receptors in plant innate immunity. Curr Opin Immunol 20(1): 10–16.

    CAS  PubMed  Google Scholar 

  20. Takeuchi O and Akira S (2008). MDA5/RIG-I and virus recognition. Curr Opin Immunol 20(1): 17–22.

    CAS  PubMed  Google Scholar 

  21. Zhang SM, Zeng Y, and Loker ES (2007). Characterization of immune genes from the schistosome host snail Biomphalaria glabrata that encode peptidoglycan recognition proteins and gram-negative bacteria binding protein. Immunogenetics 59(11): 883–898.

    CAS  PubMed  Google Scholar 

  22. Aggrawal K and Silverman N (2007). Peptidoglycan recognition in Drosophila. Biochem Soc Trans 35(Pt 6): 1496–1500.

    CAS  PubMed  Google Scholar 

  23. Kawai T and Akira S (2007). Antiviral signaling through pattern recognition receptors. J Biochem 141(2): 137–145.

    CAS  PubMed  Google Scholar 

  24. Nishiya T, Kajita E, Miwa S, and Defranco AL (2005). TLR3 and TLR7 are targeted to the same intracellular compartments by distinct regulatory elements. J Biol Chem 280(44): 37107–37117.

    CAS  PubMed  Google Scholar 

  25. Hoebe K, Du X, Georgel P, Janssen E, Tabeta K et al. (2003). Identification of Lps2 as a key transducer of MyD88-independent TIR signalling. Nature 424(6950): 743–748.

    CAS  PubMed  Google Scholar 

  26. Molofsky AB, Byrne BG, Whitfield NN, Madigan CA, Fuse ET et al. (2006). Cytosolic recognition of flagellin by mouse macrophages restricts Legionella pneumophila infection. J Exp Med 203(4): 1093–1104.

    CAS  PubMed  Google Scholar 

  27. Amer A, Franchi L, Kanneganti TD, Body-Malapel M, Ozoren N et al. (2006). Regulation of Legionella phagosome maturation and infection through flagellin and host Ipaf. J Biol Chem 281(46): 35217–35223.

    CAS  PubMed  Google Scholar 

  28. Franchi L, Amer A, Body-Malapel M, Kanneganti TD, Ozoren N et al. (2006). Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1beta in salmonella-infected macrophages. Nat Immunol 7(6): 576–582.

    CAS  PubMed  Google Scholar 

  29. Ting JP, Willingham SB, and Bergstralh DT (2008). NLRs at the intersection of cell death and immunity. Nat Rev Immunol 8(5): 372–379.

    CAS  PubMed  Google Scholar 

  30. Kanneganti TD, Ozoren N, Body-Malapel M, Amer A, Park JH et al. (2006). Bacterial RNA and small antiviral compounds activate caspase-1 through cryopyrin/Nalp3. Nature 440(7081): 233–236.

    CAS  PubMed  Google Scholar 

  31. Belkhadir Y, Subramaniam R, and Dangl JL (2004). Plant disease resistance protein signaling: NBS-LRR proteins and their partners. Curr Opin Plant Biol 7(4): 391–399.

    CAS  PubMed  Google Scholar 

  32. Davis MM and Bjorkman PJ (1988). T-cell antigen receptor genes and T-cell recognition. Nature 334: 395.

    CAS  PubMed  Google Scholar 

  33. Cooper MD and Alder MN (2006). The evolution of adaptive immune systems. Cell 124(4): 815–822.

    CAS  PubMed  Google Scholar 

  34. Alder MN, Rogozin IB, Iyer LM, Glazko GV, Cooper MD et al. (2005). Diversity and function of adaptive immune receptors in a jawless vertebrate. Science 310(5756): 1970–1973.

    CAS  PubMed  Google Scholar 

  35. Pancer Z, Amemiya CT, Ehrhardt GR, Ceitlin J, Gartland GL et al. (2004). Somatic diversification of variable lymphocyte receptors in the agnathan sea lamprey. Nature 430(6996): 174–180.

    CAS  PubMed  Google Scholar 

  36. Du Pasquier L (2005). Meeting the demand for innate and adaptive immunities during evolution. Scand J Immunol 62(Suppl 1): 39–48.

    CAS  PubMed  Google Scholar 

  37. Alder MN, Herrin BR, Sadlonova A, Stockard CR, Grizzle WE et al. (2008). Antibody responses of variable lymphocyte receptors in the lamprey. Nat Immunol 9(3): 319–327.

    CAS  PubMed  Google Scholar 

  38. Janeway CA, Travers P, Wahlport M, and Capra JD (2000). Immunobiology: The Immune System in Health and Disease (4th ed.). Florence, KY: Garland.

    Google Scholar 

  39. Agrawal A, Eastman QM, and Schatz DG (1998). Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system. Nature 394(6695): 744–751.

    CAS  PubMed  Google Scholar 

  40. Gallegos AM and Bevan MJ (2006). Central tolerance: good but imperfect. Immunol Rev 209: 290–296.

    PubMed  Google Scholar 

  41. Monroe JG, Bannish G, Fuentes-Panana EM, King LB, Sandel PC et al. (2003). Positive and negative selection during B lymphocyte development. Immunol Res 27(2–3): 427–442.

    CAS  PubMed  Google Scholar 

  42. Kraaijeveld AR and Godfray HC (1997). Trade-off between parasitoid resistance and larval competitive ability in Drosophila melanogaster. Nature 389(6648): 278–280.

    CAS  PubMed  Google Scholar 

  43. Rolff J and Siva-Jothy MT (2003). Invertebrate ecological immunology. Science 301(5632): 472–475.

    CAS  PubMed  Google Scholar 

  44. Wolinsky SM, Korber BT, Neumann AU, Daniels M, Kunstman KJ et al. (1996). Adaptive evolution of human immunodeficiency virus-type 1 during the natural course of infection. Science 272(5261): 537–542.

    CAS  PubMed  Google Scholar 

  45. Koenig S, Conley AJ, Brewah YA, Jones GM, Leath S et al. (1995). Transfer of HIV-1-specific cytotoxic T lymphocytes to an AIDS patient leads to selection for mutant HIV variants and subsequent disease progression. Nat Med 1(4): 330–336.

    CAS  PubMed  Google Scholar 

  46. Allen TM, Yu XG, Kalife ET, Reyor LL, Lichterfeld M et al. (2005). De novo generation of escape variant-specific CD8+ T-cell responses following cytotoxic T-lymphocyte escape in chronic human immunodeficiency virus type 1 infection. J Virol 79(20): 12952–12960.

    CAS  PubMed  Google Scholar 

  47. Feeney ME, Tang Y, Pfafferott K, Roosevelt KA, Draenert R et al. (2005). HIV-1 viral escape in infancy followed by emergence of a variant-specific CTL response. J Immunol 174(12): 7524–7530.

    CAS  PubMed  Google Scholar 

  48. Lin MY, Selin LK, and Welsh RM (2000). Evolution of the CD8 T-cell repertoire during infections. Microbes Infect 2(9): 1025–1039.

    CAS  PubMed  Google Scholar 

  49. Miller RA (1996). The aging immune system: primer and prospectus. Science 273(5271): 70–74.

    CAS  PubMed  Google Scholar 

  50. Salminen A, Huuskonen J, Ojala J, Kauppinen A, Kaarniranta K et al. (2008). Activation of innate immunity system during aging: NF-kB signaling is the molecular culprit of inflamm-aging. Ageing Res Rev 7(2): 83–105.

    CAS  PubMed  Google Scholar 

  51. Franceschi C, Bonafe M, and Valensin S (2000). Human immunosenescence: the prevailing of innate immunity, the failing of clonotypic immunity, and the filling of immunological space. Vaccine 18(16): 1717–1720.

    CAS  PubMed  Google Scholar 

  52. Franceschi C, Valensin S, Bonafe M, Paolisso G, Yashin AI et al. (2000). The network and the remodeling theories of aging: historical background and new perspectives. Exp Gerontol 35(6–7): 879–896.

    CAS  PubMed  Google Scholar 

  53. Kirkwood TB and Austad SN (2000). Why do we age? Nature 408(6809): 233–238.

    CAS  PubMed  Google Scholar 

  54. Gruver AL, Hudson LL, and Sempowski GD (2007). Immunosenescence of ageing. J Pathol 211(2): 144–156.

    CAS  PubMed  Google Scholar 

  55. Wagner WM, Ouyang Q, Sekeri-Pataryas K, Sourlingas TG, and Pawelec G (2004). Basic biology and clinical impact of immunosenescence. Biogerontology 5(1): 63–66.

    CAS  PubMed  Google Scholar 

  56. Cambier J (2005). Immunosenescence: a problem of lymphopoiesis, homeostasis, microenvironment, and signaling. Immunol Rev 205: 5–6.

    PubMed  Google Scholar 

  57. Nikolich-Žugich J (2008). Ageing and life-long maintenance of T-cell subsets in the face of latent persistent infections. Nat Rev Immunol 8(7): 512–522.

    CAS  PubMed  Google Scholar 

  58. Butcher SK, Chahal H, Nayak L, Sinclair A, Henriquez NV et al. (2001). Senescence in innate immune responses: reduced neutrophil phagocytic capacity and CD16 expression in elderly humans. J Leukoc Biol 70(6): 881–886.

    CAS  PubMed  Google Scholar 

  59. Solana R, Pawelec G, and Tarazona R (2006). Aging and innate immunity. Immunity 24(5): 491–494.

    CAS  PubMed  Google Scholar 

  60. Linton PJ and Dorshkind K (2004). Age-related changes in lymphocyte development and function. Nat Immunol 5(2): 133–139.

    CAS  PubMed  Google Scholar 

  61. Min H, Montecino-Rodriguez E, and Dorshkind K (2004). Reduction in the developmental potential of intrathymic T cell progenitors with age. J Immunol 173(1): 245–250.

    CAS  PubMed  Google Scholar 

  62. Agrawal A, Agrawal S, Tay J, and Gupta S (2008). Biology of dendritic cells in aging. J Clin Immunol 28(1): 14–20.

    PubMed  Google Scholar 

  63. Ramsden S, Cheung YY, and Seroude L (2008). Functional analysis of the Drosophila immune response during aging. Aging Cell 7(2): 225–236.

    CAS  PubMed  Google Scholar 

  64. Laws TR, Harding SV, Smith MP, Atkins TP, and Titball RW (2004). Age influences resistance of Caenorhabditis elegans to killing by pathogenic bacteria. FEMS Microbiol Lett 234(2): 281–287.

    CAS  PubMed  Google Scholar 

  65. Kurz CL and Ewbank JJ (2003). Caenorhabditis elegans: an emerging genetic model for the study of innate immunity. Nat Rev Genet 4(5): 380–390.

    CAS  PubMed  Google Scholar 

  66. Kurz CL and Tan MW (2004). Regulation of aging and innate immunity in C. elegans. Aging Cell 3(4): 185–193.

    CAS  PubMed  Google Scholar 

  67. Zerofsky M, Harel E, Silverman N, and Tatar M (2005). Aging of the innate immune response in Drosophila melanogaster. Aging Cell 4(2): 103–118.

    CAS  PubMed  Google Scholar 

  68. Garsin DA, Villanueva JM, Begun J, Kim DH, Sifri CD et al. (2003). Long-lived C. elegans daf-2 mutants are resistant to bacterial pathogens. Science 300(5627): 1921.

    CAS  PubMed  Google Scholar 

  69. Libert S, Chao Y, Chu X, and Pletcher SD (2006). Trade-offs between longevity and pathogen resistance in Drosophila melanogaster are mediated by NFkappaB signaling. Aging Cell 5(6): 533–543.

    CAS  PubMed  Google Scholar 

  70. Landis GN, Abdueva D, Skvortsov D, Yang J, Rabin BE et al. (2004). Similar gene expression patterns characterize aging and oxidative stress in Drosophila melanogaster. Proc Natl Acad Sci U S A 101(20): 7663–7668.

    CAS  PubMed  Google Scholar 

  71. Kurtz J (2002). Phagocytosis by invertebrate hemocytes: causes of individual variation in Panorpa vulgaris scorpionflies. Microsc Res Tech 57(6): 456–468.

    PubMed  Google Scholar 

  72. Holmes DJ and Austad SN (1995). Birds as animal models for the comparative biology of aging: a prospectus. J Gerontol A Biol Sci Med Sci 50(2): B59–B66.

    CAS  PubMed  Google Scholar 

  73. Kernacki KA, Barrett RP, McClellan SA, and Hazlett LD (2000). Aging and PMN response to P. aeruginosa infection. Invest Ophthalmol Vis Sci 41(10): 3019–3025.

    CAS  PubMed  Google Scholar 

  74. Butcher SK, Killampalli V, Lascelles D, Wang K, Alpar EK et al. (2005). Raised cortisol:DHEAS ratios in the elderly after injury: potential impact upon neutrophil function and immunity. Aging Cell 4(6): 319–324.

    CAS  PubMed  Google Scholar 

  75. HogenEsch H, Thompson S, Dunham A, Ceddia M, and Hayek M (2004). Effect of age on immune parameters and the immune response of dogs to vaccines: a cross-sectional study. Vet Immunol Immunopathol 97(1–2): 77–85.

    CAS  PubMed  Google Scholar 

  76. Greeley EH, Ballam JM, Harrison JM, Kealy RD, Lawler DF et al. (2001). The influence of age and gender on the immune system: a longitudinal study in labrador retriever dogs. Vet Immunol Immunopathol 82(1–2): 57–71.

    CAS  PubMed  Google Scholar 

  77. Solana R, Alonso MC, and Pena J (1999). Natural killer cells in healthy aging. Exp Gerontol 34(3): 435–443.

    CAS  PubMed  Google Scholar 

  78. Faunce DE, Palmer JL, Paskowicz KK, Witte PL, and Kovacs EJ (2005). CD1d-restricted NKT cells contribute to the age-associated decline of T cell immunity. J Immunol 175(5): 3102–3109.

    CAS  PubMed  Google Scholar 

  79. Boehmer ED, Goral J, Faunce DE, and Kovacs EJ (2004). Age-dependent decrease in Toll-like receptor 4-mediated proinflammatory cytokine production and mitogen-activated protein kinase expression. J Leukoc Biol 75(2): 342–349.

    CAS  PubMed  Google Scholar 

  80. Boehmer ED, Meehan MJ, Cutro BT, and Kovacs EJ (2005). Aging negatively skews macrophage TLR2- and TLR4-mediated pro-inflammatory responses without affecting the IL-2-stimulated pathway. Mech Ageing Dev 126(12): 1305–1313.

    CAS  PubMed  Google Scholar 

  81. Richards A, Kavanagh D, and Atkinson JP (2007). Inherited complement regulatory protein deficiency predisposes to human disease in acute injury and chronic inflammatory states the examples of vascular damage in atypical hemolytic uremic syndrome and debris accumulation in age-related macular degeneration. Adv Immunol 96: 141–177.

    CAS  PubMed  Google Scholar 

  82. Hazlett LD, Masinick-McClellan SA, and Barrett RP (1999). Complement defects in aged mice compromise phagocytosis of Pseudomonas aeruginosa. Curr Eye Res 19(1): 26–32.

    CAS  PubMed  Google Scholar 

  83. Linton PJ, Li SP, Zhang Y, Bautista B, Huynh Q et al. (2005). Intrinsic versus environmental influences on T-cell responses in aging. Immunol Rev 205: 207–219.

    CAS  PubMed  Google Scholar 

  84. Goronzy JJ and Weyand CM (2003). Aging, autoimmunity and arthritis: T-cell senescence and contraction of T-cell repertoire diversity – catalysts of autoimmunity and chronic inflammation. Arthritis Res Ther 5(5): 225–234.

    CAS  PubMed  Google Scholar 

  85. Miller JP and Allman D (2003). The decline in B lymphopoiesis in aged mice reflects loss of very early B-lineage precursors. J Immunol 171(5): 2326–2330.

    CAS  PubMed  Google Scholar 

  86. Chidgey AP and Boyd RL (2006). Stemming the tide of thymic aging. Nat Immunol 7(10): 1013–1016.

    CAS  PubMed  Google Scholar 

  87. Mathies M, Lipps L, Smith GS, and Walford RL (1973). Age-related decline in response to phytohemagglutinin and pokeweed mitogen by spleen cells from hamsters and a long-lived mouse strain. J Gerontol 28(4): 425–430.

    CAS  PubMed  Google Scholar 

  88. Perillo NL, Naeim F, Walford RL, and Effros RB (1993). The in vitro senescence of human T lymphocytes: failure to divide is not associated with a loss of cytolytic activity or memory T cell phenotype. Mech Ageing Dev 67(1–2): 173–185.

    CAS  PubMed  Google Scholar 

  89. Miller RA (2000). Effect of aging on T lymphocyte activation. Vaccine 18(16): 1654–1660.

    CAS  PubMed  Google Scholar 

  90. Trebilcock GU and Ponnappan U (1998). Nuclear factor-kappaB induction in CD45RO+ and CD45RA+ T cell subsets during aging. Mech Ageing Dev 102(2–3): 149–163.

    CAS  PubMed  Google Scholar 

  91. Miller RA and Stutman O (1981). Decline, in aging mice, of the anti-2,4,6-trinitrophenyl (TNP) cytotoxic T cell response attributable to loss of Lyt-2-, interleukin 2-producing helper cell function. Eur J Immunol 11(10): 751–756.

    CAS  PubMed  Google Scholar 

  92. Thoman ML and Weigle WO (1981). Lymphokines and aging: interleukin-2 production and activity in aged animals. J Immunol 127(5): 2102–2106.

    CAS  PubMed  Google Scholar 

  93. Gillis S, Kozak R, Durante M, and Weksler ME (1981). Immunological studies of aging. Decreased production of and response to T cell growth factor by lymphocytes from aged humans. J Clin Invest 67(4): 937–942.

    CAS  PubMed  Google Scholar 

  94. Effros RB and Walford RL (1983). The immune response of aged mice to influenza: diminished T-cell proliferation, interleukin 2 production and cytotoxicity. Cell Immunol 81(2): 298–305.

    CAS  PubMed  Google Scholar 

  95. Warren RP, Yonk LJ, Burger RA, and Singh VK (1990). Age-related changes in CD45R and CDw29 helper T cells in human subjects. Aging Immunol Infect Dis 2: 91–94.

    Google Scholar 

  96. Han SN and Meydani SN (2000). Antioxidants, cytokines, and influenza infection in aged mice and elderly humans. J Infect Dis 182(Suppl 1): S74–S80.

    CAS  PubMed  Google Scholar 

  97. LeMaoult J, Szabo P, and Weksler ME (1997). Effect of age on humoral immunity, selection of the B-cell repertoire and B-cell development. Immunol Rev 160: 115–126.

    CAS  PubMed  Google Scholar 

  98. Song H, Price PW, and Cerny J (1997). Age-related changes in antibody repertoire: contribution from T cells. Immunol Rev 160: 55.

    CAS  PubMed  Google Scholar 

  99. Boyman O, Purton JF, Surh CD, and Sprent J (2007). Cytokines and T-cell homeostasis. Curr Opin Immunol 19(3): 320–326.

    CAS  PubMed  Google Scholar 

  100. Kim HR, Hong MS, Dan JM, and Kang I (2005). Altered IL-7R{alpha} expression with aging and the potential implications of IL-7 therapy on CD8+ T cell immune responses. Blood 107: 2855–2862.

    PubMed  Google Scholar 

  101. Kim HR, Hwang KA, Kim KC, and Kang I (2007). Down-regulation of IL-7R{alpha} expression in human T cells via DNA methylation. J Immunol 178(9): 5473–5479.

    CAS  PubMed  Google Scholar 

  102. Garcia GG and Miller RA (2001). Single-cell analyses reveal two defects in peptide-specific activation of naive T cells from aged mice. J Immunol 166(5): 3151–3157.

    CAS  PubMed  Google Scholar 

  103. Kirk CJ and Miller RA (1998). Analysis of Raf-1 activation in response to TCR activation and costimulation in murine T-lymphocytes: effect of age. Cell Immunol 190(1): 33–42.

    CAS  PubMed  Google Scholar 

  104. Gorgas G, Butch ER, Guan KL, and Miller RA (1997). Diminished activation of the MAP kinase pathway in CD3-stimulated T lymphocytes from old mice. Mech Ageing Dev 94((1–3)): 71–83.

    CAS  PubMed  Google Scholar 

  105. Dunne PJ, Belaramani L, Fletcher JM, Fernandez de Mattos S, Lawrenz M et al. (2005). Quiescence and functional reprogramming of Epstein-Barr virus (EBV)-specific CD8+ T cells during persistent infection. Blood 106(2): 558–565.

    CAS  PubMed  Google Scholar 

  106. Plunkett FJ, Franzese O, Finney HM, Fletcher JM, Belaramani LL et al. (2007). The loss of telomerase activity in highly differentiated CD8+CD28-CD27- T cells is associated with decreased Akt (Ser473) phosphorylation. J Immunol 178(12): 7710–7719.

    CAS  PubMed  Google Scholar 

  107. Clambey ET, van Dyk LF, Kappler JW, and Marrack P (2005). Non-malignant clonal expansions of CD8+ memory T cells in aged individuals. Immunol Rev 205: 170–189.

    CAS  PubMed  Google Scholar 

  108. Messaoudi I, Warner J, Nikolich-Žugich D, Fischer M, and Nikolich-Žugich J (2006). Molecular, cellular, and antigen requirements for development of age-associated T cell clonal expansions in vivo. J Immunol 176(1): 301–308.

    CAS  PubMed  Google Scholar 

  109. Messaoudi I, Warner J, and Nikolich-Žugich J (2006). Age-related CD8+ T cell clonal expansions express elevated levels of CD122 and CD127 and display defects in perceiving homeostatic signals. J Immunol 177(5): 2784–2792.

    CAS  PubMed  Google Scholar 

  110. Callahan JE, Kappler JW, and Marrack P (1993). Unexpected expansions of CD8-bearing cells in old mice. J Immunol 151: 6657–6669.

    CAS  PubMed  Google Scholar 

  111. Hingorani R, Choi I-H, Akolka P, Gulwani-Akolkar B, Pergolizzi R et al. (1993). Clonal predominance of T cell receptors within the CD8+ CD45RO+ subset in normal human subjects. J Immunol 151: 5762–5769.

    CAS  PubMed  Google Scholar 

  112. Posnett DN, Sinha R, Kabak S, and Russo C (1994). Clonal populations of T cells in normal elderly humans: the T cell equivalent to “benign monoclonal gammapathy”. J Exp Med 179(2): 609–618.

    CAS  PubMed  Google Scholar 

  113. Pawelec G, Akbar A, Caruso C, Effros R, Grubeck-Loebenstein B et al. (2004). Is immunosenescence infectious? Trends Immunol 25(8): 406–410.

    CAS  PubMed  Google Scholar 

  114. Karrer U, Sierro S, Wagner M, Oxenius A, Hengel H et al. (2003). Memory inflation: continuous accumulation of antiviral CD8+ T cells over time. J Immunol 170(4): 2022–2029.

    CAS  PubMed  Google Scholar 

  115. Lang A, Brien JD, Messaoudi I, and Nikolich-Žugich J (2008). Age-related dysregulation of CD8+ T cell memory specific for a persistent virus is independent of viral replication. J Immunol 180(7): 4848–4857.

    CAS  PubMed  Google Scholar 

  116. Effros RB (1997). Loss of CD28 expression on T lymphocytes: a marker of replicative senescence. Dev Comp Immunol 21(6): 471–478.

    CAS  PubMed  Google Scholar 

  117. Vallejo AN, Nestel AR, Schirmer M, Weyand CM, and Goronzy JJ (1998). Aging-related deficiency of CD28 expression in CD4+ T cells is associated with the loss of gene-specific nuclear factor binding activity. J Biol Chem 273(14): 8119–8129.

    CAS  PubMed  Google Scholar 

  118. Messaoudi I, Lemaoult J, Guevara-Patino JA, Metzner BM, and Nikolich-Žugich J (2004). Age-related CD8 T cell clonal expansions constrict CD8 T cell repertoire and have the potential to impair immune defense. J Exp Med 200(10): 1347–1358.

    CAS  PubMed  Google Scholar 

  119. Palacios MG, Cunnick JE, Winkler DW, and Vleck CM (2007). Immunosenescence in some but not all immune components in a free-living vertebrate, the tree swallow. Proc Biol Sci 274(1612): 951–957.

    PubMed  Google Scholar 

  120. Lavoie ET, Sorrell EM, Perez DR, and Ottinger MA (2007). Immunosenescence and age-related susceptibility to influenza virus in Japanese quail. Dev Comp Immunol 31(4): 407–414.

    CAS  PubMed  Google Scholar 

  121. Haussmann MF, Winkler DW, Huntington CE, Vleck D, Sanneman CE et al. (2005). Cell-mediated immunosenescence in birds. Oecologia 145(2): 270–275.

    PubMed  Google Scholar 

  122. Cichon M, Sendecka J, and Gustafsson L (2003). Age-related decline in humoral immune function in Collared Flycatchers. J Evol Biol 16(6): 1205–1210.

    CAS  PubMed  Google Scholar 

  123. Barton ES, White DW, Cathelyn JS, Brett-McClellan KA, Engle M et al. (2007). Herpesvirus latency confers symbiotic protection from bacterial infection. Nature 447(7142): 326–329.

    CAS  PubMed  Google Scholar 

  124. Field CJ, Van Aerde A, Drager KL, Goruk S, and Basu T (2006). Dietary folate improves age-related decreases in lymphocyte function. J Nutr Biochem 17(1): 37–44.

    CAS  PubMed  Google Scholar 

  125. Hale JS, Boursalian TE, Turk GL, and Fink PJ (2006). Thymic output in aged mice. Proc Natl Acad Sci U S A 103(22): 8447–8452.

    CAS  PubMed  Google Scholar 

  126. Higami Y, Yu BP, Shimokawa I, Masoro EJ, and Ikeda T (1994). Duration of dietary restriction: an important determinant for the incidence and age of onset of leukemia in male F344 rats. J Gerontol 49(5): B239–B244.

    CAS  PubMed  Google Scholar 

  127. Masoro EJ (2005). Overview of caloric restriction and ageing. Mech Ageing Dev 126(9): 913–922.

    CAS  PubMed  Google Scholar 

  128. Chen J, Astle CM, and Harrison DE (1998). Delayed immune aging in diet-restricted B6CBAT6 F1 mice is associated with preservation of naive T cells. J Gerontol A Biol Sci Med Sci 53A: B330–B337.

    Google Scholar 

  129. Messaoudi I, Warner J, Fischer M, Park B, Hill B et al. (2006). Delay of T cell senescence by caloric restriction in aged long-lived nonhuman primates. Proc Natl Acad Sci USA 103(51): 19448–19453.

    CAS  PubMed  Google Scholar 

  130. Imani F, Horii Y, Suthanthiran M, Skolnik EY, Makita Z et al. (1993). Advanced glycosylation endproduct-specific receptors on human and rat T-lymphocytes mediate synthesis of interferon gamma: role in tissue remodeling. J Exp Med 178(6): 2165–2172.

    CAS  PubMed  Google Scholar 

  131. Holbrook NJ, Chopra RK, McCoy MT, Nagel JE, Powers DC et al. (1989). Expression of interleukin 2 and the interleukin 2 receptor in aging rats. Cell Immunol 120(1): 1–9.

    CAS  PubMed  Google Scholar 

  132. Smith KA, Baker PE, Gillis S, and Ruscetti FW (1980). Functional and molecular characteristics of T-cell growth factor. Mol Immunol 17(5): 579–589.

    CAS  PubMed  Google Scholar 

  133. Schmucker DL (2002). Intestinal mucosal immunosenescence in rats. Exp Gerontol 37(2–3): 197–203.

    CAS  PubMed  Google Scholar 

  134. Kealy RD, Lawler DF, Ballam JM, Mantz SL, Biery DN et al. (2002). Effects of diet restriction on life span and age-related changes in dogs. J Am Vet Med Assoc 220(9): 1315–1320.

    PubMed  Google Scholar 

  135. Nikolich-Žugich J (2007). Non-human primate models of T-cell reconstitution. Semin Immunol 19(5): 310–317.

    CAS  PubMed  Google Scholar 

  136. Harshyne LA, Watkins SC, Gambotto A, and Barratt-Boyes M (2001). Dendritic cells acquire antigens from live cells for cross-presentation to CTL. J Immunol 166: 3717–3723.

    CAS  PubMed  Google Scholar 

  137. Pitcher CJ, Hagen SI, Walker JM, Lum R, Mitchell BL et al. (2002). Development and homeostasis of T cell memory in rhesus macaque. J Immunol 168(1): 29–43.

    CAS  PubMed  Google Scholar 

  138. Jankovic V, Messaoudi I, and Nikolich-Žugich J (2003). Phenotypic and functional T-cell aging in rhesus macaques (Macaca mulatta): differential behavior of CD4 and CD8 subsets. Blood 102(9): 3244–3251.

    CAS  PubMed  Google Scholar 

  139. Čičin-Šain L, Messaoudi I, Park B, Currier N, Planer S et al. (2007). Dramatic increase in naive T cell turnover is linked to loss of naive T cells from old primates. Proc Natl Acad Sci USA 104: 19960–19965.

    CAS  PubMed  Google Scholar 

  140. Naylor K, Li G, Vallejo AN, Lee WW, Koetz K et al. (2005). The influence of age on T cell generation and TCR diversity. J Immunol 174(11): 7446–7452.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janko Nikolich-Žugich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Nikolich-Žugich, J., Čičin-Šain, L. (2010). Aging of the Immune System Across Different Species. In: Wolf, N. (eds) The Comparative Biology of Aging. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3465-6_15

Download citation

Publish with us

Policies and ethics