Skip to main content

Aging of the Nervous System

  • Chapter
  • First Online:

Abstract

The aging nervous system encompasses two related research areas. One is the effect of aging itself on nervous system function, also referred to as “normal” aging. A second area of consideration is that of neurodegenerative diseases with aging-associated onset, which are not representative of normal nervous system aging. This chapter examines both aspects of the aging nervous system, with emphasis on comparative studies that have revealed important insights in these areas. Both normal and pathological nervous system aging involve elevated oxidative stress, perturbed energy metabolism and the accumulation of protein aggregates. Changes in pathways for cell replacement, regeneration and repair are also important factors that are altered in the aging nervous system. The major neurodegenerative diseases associated with aging are Alzheimer’s disease, Parkinson’s disease, Huntington’s disease and ALS. Clinical, cellular and molecular features of each disease are described. For many of these diseases, underlying genetic and environmental causes have been identified. Environmental factors capable of modifying nervous system aging and neurodegenerative disease susceptibility are also examined. Overall, many factors impact the nervous system during aging in humans as well as other species. Recent studies have shown that some are protective (exercise, dietary energy restriction and cognitive stimulation) while others (diabetes, depression and dietary factors) enhance nervous system decline at the end of life. Comparative approaches have identified those changes that represent evolutionarily conserved aspects of nervous system aging.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Rapp PR and Gallagher M (1996). Preserved neuron number in the hippocampus of aged rats with spatial learning deficits. Proc Natl Acad Sci U S A 93: 9926–9930.

    CAS  PubMed  Google Scholar 

  2. Herndon LA, Schmeissner PJ, Dudaronek JM, Brown PA, Listner KM, Sakano Y, Paupard MC, Hall DH, and Driscoll M (2002). Stochastic and genetic factors influence tissue-specific decline in ageing C. elegans. Nature 419: 808–814.

    CAS  PubMed  Google Scholar 

  3. Smith TD, Adams MM, Gallagher M, Morrison JH, and Rapp PR (2000). Circuit-specific alterations in hippocampal synaptophysin immunoreactivity predict spatial learning impairment in aged rats. J Neurosci 20: 6587–6593.

    CAS  PubMed  Google Scholar 

  4. Pelvig DP, Pakkenberg H, Stark AK, and Pakkenberg B (2008). Neocortical glial cell numbers in human brains. Neurobiol Aging 29(11): 1754–1762.

    CAS  PubMed  Google Scholar 

  5. Riddle DR, Sonntag WE, and Lichtenwalner RJ (2003). Microvascular plasticity in aging. Ageing Res Rev 2: 149–168.

    PubMed  Google Scholar 

  6. Frisoni GB, Galluzzi S, Pantoni L, and Filippi M (2007). The effect of white matter lesions on cognition in the elderly – small but detectable. Nat Clin Pract Neurol 3: 620–627.

    PubMed  Google Scholar 

  7. Carman MB (1997). The psychology of normal aging. Psychiatr Clin North Am 20: 15–24.

    CAS  PubMed  Google Scholar 

  8. Raz N and Rodrigue KM (2006). Differential aging of the brain: patterns, cognitive correlates and modifiers. Neurosci Biobehav Rev 30: 730–748.

    PubMed  Google Scholar 

  9. Golden TR, Hinerfeld DA, and Melov S (2002). Oxidative stress and aging: beyond correlation. Aging Cell 1: 117–123.

    CAS  PubMed  Google Scholar 

  10. Harman D (2006). Free radical theory of aging: an update: increasing the functional life span. Ann N Y Acad Sci 1067: 10–21.

    CAS  PubMed  Google Scholar 

  11. Cutler RG and Mattson MP (2006). The adversities of aging. Ageing Res Rev 5: 221–238.

    CAS  PubMed  Google Scholar 

  12. Heilbronn LK and Ravussin E (2003). Calorie restriction and aging: review of the literature and implications for studies in humans. Am J Clin Nutr 78: 361–369.

    CAS  PubMed  Google Scholar 

  13. Hunt ND, Hyun DH, Allard JS, Minor RK, Mattson MP, Ingram DK, and de Cabo R (2006). Bioenergetics of aging and calorie restriction. Ageing Res Rev 5: 125–143.

    CAS  PubMed  Google Scholar 

  14. Brand MD, Buckingham JA, Esteves TC, Green K, Lambert AJ, Miwa S, Murphy MP, Pakay JL, Talbot DA, and Echtay KS (2004). Mitochondrial superoxide and aging: uncoupling-protein activity and superoxide production. Biochem Soc Symp 71: 203–213.

    CAS  PubMed  Google Scholar 

  15. Keller JN, Kindy MS, Holtsberg FW, St Clair DK, Yen HC, Germeyer A, Steiner SM, Bruce-Keller AJ, Hutchins JB, and Mattson MP (1998). Mitochondrial manganese superoxide dismutase prevents neural apoptosis and reduces ischemic brain injury: suppression of peroxynitrite production, lipid peroxidation, and mitochondrial dysfunction. J Neurosci 18: 687–697.

    CAS  PubMed  Google Scholar 

  16. Sohal RS and Orr WC (1992). Relationship between antioxidants, prooxidants, and the aging process. Ann N Y Acad Sci 663: 74–84.

    CAS  PubMed  Google Scholar 

  17. Mattson MP (1998). Modification of ion homeostasis by lipid peroxidation: roles in neuronal degeneration and adaptive plasticity. Trends Neurosci 21: 53–57.

    CAS  PubMed  Google Scholar 

  18. Boehning D and Snyder SH (2003). Novel neural modulators. Annu Rev Neurosci 26: 105–131.

    CAS  PubMed  Google Scholar 

  19. Virag L, Szabo E, Gergely P, and Szabo C (2003). Peroxynitrite-induced cytotoxicity: mechanism and opportunities for intervention. Toxicol Lett 140–141: 113–124.

    PubMed  Google Scholar 

  20. Hyun DH, Hernandez JO, Mattson MP, and de Cabo R (2006). The plasma membrane redox system in aging. Ageing Res Rev 5: 209–220.

    CAS  PubMed  Google Scholar 

  21. Droge W, Kinscherf R, Hildebrandt W, and Schmitt T (2006). The deficit in low molecular weight thiols as a target for antiageing therapy. Curr Drug Targets 7: 1505–1512.

    PubMed  Google Scholar 

  22. Hanukoglu I (2006). Antioxidant protective mechanisms against reactive oxygen species (ROS) generated by mitochondrial P450 systems in steroidogenic cells. Drug Metab Rev 38: 171–196.

    CAS  PubMed  Google Scholar 

  23. Nystrom T (2005). Role of oxidative carbonylation in protein quality control and senescence. Embo J 24: 1311–1317.

    PubMed  Google Scholar 

  24. Schopfer FJ, Baker PR, and Freeman BA (2003). NO-dependent protein nitration: a cell signaling event or an oxidative inflammatory response? Trends Biochem Sci 28: 646–654.

    CAS  PubMed  Google Scholar 

  25. el-Remessy AB, Bartoli M, Platt DH, Fulton D, and Caldwell RB (2005). Oxidative stress inactivates VEGF survival signaling in retinal endothelial cells via PI 3-kinase tyrosine nitration. J Cell Sci 118: 243–252.

    CAS  PubMed  Google Scholar 

  26. Zhan X, Du Y, Crabb JS, Gu X, Kern TS, and Crabb JW (2008). Targets of tyrosine nitration in diabetic rat retina. Mol Cell Proteomics 7(5): 864–874.

    CAS  PubMed  Google Scholar 

  27. Blanc EM, Kelly JF, Mark RJ, Waeg G, and Mattson MP (1997). 4-Hydroxynonenal, an aldehydic product of lipid peroxidation, impairs signal transduction associated with muscarinic acetylcholine and metabotropic glutamate receptors: possible action on G alpha(q/11). J Neurochem 69: 570–580.

    CAS  PubMed  Google Scholar 

  28. Mark RJ, Pang Z, Geddes JW, Uchida K, and Mattson MP (1997). Amyloid beta-peptide impairs glucose transport in hippocampal and cortical neurons: involvement of membrane lipid peroxidation. J Neurosci 17: 1046–1054.

    CAS  PubMed  Google Scholar 

  29. Mark RJ, Lovell MA, Markesbery WR, Uchida K, and Mattson MP (1997). A role for 4-hydroxynonenal, an aldehydic product of lipid peroxidation, in disruption of ion homeostasis and neuronal death induced by amyloid beta-peptide. J Neurochem 68: 255–264.

    CAS  PubMed  Google Scholar 

  30. Mattson MP, Fu W, Waeg G, and Uchida K (1997). 4-Hydroxynonenal, a product of lipid peroxidation, inhibits dephosphorylation of the microtubule-associated protein tau. Neuroreport 8: 2275–2281.

    CAS  PubMed  Google Scholar 

  31. Perez M, Hernandez F, Gomez-Ramos A, Smith M, Perry G, and Avila J (2002). Formation of aberrant phosphotau fibrillar polymers in neural cultured cells. Eur J Biochem 269: 1484–1489.

    CAS  PubMed  Google Scholar 

  32. Cutler RG, Pedersen WA, Camandola S, Rothstein JD, and Mattson MP (2002). Evidence that accumulation of ceramides and cholesterol esters mediates oxidative stress-induced death of motor neurons in amyotrophic lateral sclerosis. Ann Neurol 52: 448–457.

    CAS  PubMed  Google Scholar 

  33. Kruman I, Bruce-Keller AJ, Bredesen D, Waeg G, and Mattson MP (1997). Evidence that 4-hydroxynonenal mediates oxidative stress-induced neuronal apoptosis. J Neurosci 17: 5089–5100.

    CAS  PubMed  Google Scholar 

  34. Lovell MA, Xie C, and Markesbery WR (2001). Acrolein is increased in Alzheimer’s disease brain and is toxic to primary hippocampal cultures. Neurobiol Aging 22: 187–194.

    CAS  PubMed  Google Scholar 

  35. Lodovici M, Giovannelli L, Pitozzi V, Bigagli E, Bardini G, and Rotella CM (2008). Oxidative DNA damage and plasma antioxidant capacity in type 2 diabetic patients with good and poor glycaemic control. Mutat Res 638: 98–102.

    CAS  PubMed  Google Scholar 

  36. Mercer J, Mahmoudi M, and Bennett M (2007). DNA damage, p53, apoptosis and vascular disease. Mutat Res 621: 75–86.

    CAS  PubMed  Google Scholar 

  37. Rass U, Ahel I, and West SC (2007). Defective DNA repair and neurodegenerative disease. Cell 130: 991–1004.

    CAS  PubMed  Google Scholar 

  38. Evans MD, Dizdaroglu M, and Cooke MS (2004). Oxidative DNA damage and disease: induction, repair and significance. Mutat Res 567: 1–61.

    CAS  PubMed  Google Scholar 

  39. Bohr VA (2002). Repair of oxidative DNA damage in nuclear and mitochondrial DNA, and some changes with aging in mammalian cells. Free Radic Biol Med 32: 804–812.

    CAS  PubMed  Google Scholar 

  40. Bohr VA, Ottersen OP, and Tonjum T (2007). Genome instability and DNA repair in brain ageing and neurological disease. Neuroscience 145: 1183–1186.

    CAS  PubMed  Google Scholar 

  41. Lovell MA and Markesbery WR (2008). Oxidatively modified RNA in mild cognitive impairment. Neurobiol Dis 29: 169–175.

    CAS  PubMed  Google Scholar 

  42. Lu T, Pan Y, Kao SY, Li C, Kohane I, Chan J, and Yankner BA (2004). Gene regulation and DNA damage in the ageing human brain. Nature 429: 883–891.

    CAS  PubMed  Google Scholar 

  43. Mattson MP and Magnus T (2006). Ageing and neuronal vulnerability. Nat Rev Neurosci 7: 278–294.

    CAS  PubMed  Google Scholar 

  44. Keller JN and Mattson MP (1998). Roles of lipid peroxidation in modulation of cellular signaling pathways, cell dysfunction, and death in the nervous system. Rev Neurosci 9: 105–116.

    CAS  PubMed  Google Scholar 

  45. Keller JN, Pang Z, Geddes JW, Begley JG, Germeyer A, Waeg G, and Mattson MP (1997). Impairment of glucose and glutamate transport and induction of mitochondrial oxidative stress and dysfunction in synaptosomes by amyloid beta-peptide: role of the lipid peroxidation product 4-hydroxynonenal. J Neurochem 69: 273–284.

    CAS  PubMed  Google Scholar 

  46. Opii WO, Joshi G, Head E, Milgram NW, Muggenburg BA, Klein JB, Pierce WM, Cotman CW, and Butterfield DA (2008). Proteomic identification of brain proteins in the canine model of human aging following a long-term treatment with antioxidants and a program of behavioral enrichment: relevance to Alzheimer’s disease. Neurobiol Aging 29: 51–70.

    CAS  PubMed  Google Scholar 

  47. Poon HF, Calabrese V, Calvani M, and Butterfield DA (2006). Proteomics analyses of specific protein oxidation and protein expression in aged rat brain and its modulation by L-acetylcarnitine: insights into the mechanisms of action of this proposed therapeutic agent for CNS disorders associated with oxidative stress. Antioxid Redox Signal 8: 381–394.

    CAS  PubMed  Google Scholar 

  48. Poon HF, Castegna A, Farr SA, Thongboonkerd V, Lynn BC, Banks WA, Morley JE, Klein JB, and Butterfield DA (2004). Quantitative proteomics analysis of specific protein expression and oxidative modification in aged senescence-accelerated-prone 8 mice brain. Neuroscience 126: 915–926.

    CAS  PubMed  Google Scholar 

  49. Soreghan BA, Lu BW, Thomas SN, Duff K, Rakhmatulin EA, Nikolskaya T, Chen T, and Yang AJ (2005). Using proteomics and network analysis to elucidate the consequences of synaptic protein oxidation in a PS1 + AbetaPP mouse model of Alzheimer’s disease. J Alzheimers Dis 8: 227–241.

    CAS  PubMed  Google Scholar 

  50. Mattson MP (2006). Neuronal life-and-death signaling, apoptosis, and neurodegenerative disorders. Antioxid Redox Signal 8: 1997–2006.

    CAS  PubMed  Google Scholar 

  51. Schindowski K, Kratzsch T, Peters J, Steiner B, Leutner S, Touchet N, Maurer K, Czech C, Pradier L, Frolich L, Muller WE, and Eckert A (2003). Impact of aging: sporadic, and genetic risk factors on vulnerability to apoptosis in Alzheimer’s disease. Neuromolecular Med 4: 161–178.

    CAS  PubMed  Google Scholar 

  52. Bruce-Keller AJ, Li YJ, Lovell MA, Kraemer PJ, Gary DS, Brown RR, Markesbery WR, and Mattson MP (1998). 4-Hydroxynonenal, a product of lipid peroxidation, damages cholinergic neurons and impairs visuospatial memory in rats. J Neuropathol Exp Neurol 57: 257–267.

    CAS  PubMed  Google Scholar 

  53. Onodera K, Omoi NO, Fukui K, Hayasaka T, Shinkai T, Suzuki S, Abe K, and Urano S (2003). Oxidative damage of rat cerebral cortex and hippocampus, and changes in antioxidative defense systems caused by hyperoxia. Free Radic Res 37: 367–372.

    CAS  PubMed  Google Scholar 

  54. Omoi NO, Arai M, Saito M, Takatsu H, Shibata A, Fukuzawa K, Sato K, Abe K, Fukui K, and Urano S (2006). Influence of oxidative stress on fusion of pre-synaptic plasma membranes of the rat brain with phosphatidyl choline liposomes, and protective effect of vitamin E. J Nutr Sci Vitaminol (Tokyo) 52: 248–255.

    CAS  Google Scholar 

  55. Rowan MJ, Klyubin I, Wang Q, and Anwyl R (2004). Mechanisms of the inhibitory effects of amyloid beta-protein on synaptic plasticity. Exp Gerontol 39: 1661–1667.

    CAS  PubMed  Google Scholar 

  56. Calon F, Lim GP, Yang F, Morihara T, Teter B, Ubeda O, Rostaing P, Triller A, Salem N, Jr., Ashe KH, Frautschy SA, and Cole GM (2004). Docosahexaenoic acid protects from dendritic pathology in an Alzheimer’s disease mouse model. Neuron 43: 633–645.

    CAS  PubMed  Google Scholar 

  57. Eckles-Smith K, Clayton D, Bickford P, and Browning MD (2000). Caloric restriction prevents age-related deficits in LTP and in NMDA receptor expression. Brain Res Mol Brain Res 78: 154–162.

    CAS  PubMed  Google Scholar 

  58. Fontan-Lozano A, Saez-Cassanelli JL, Inda MC, de los Santos-Arteaga M, Sierra-Dominguez SA, Lopez-Lluch G, Delgado-Garcia JM, and Carrion AM (2007). Caloric restriction increases learning consolidation and facilitates synaptic plasticity through mechanisms dependent on NR2B subunits of the NMDA receptor. J Neurosci 27: 10185–10195.

    CAS  PubMed  Google Scholar 

  59. Halagappa VK, Guo Z, Pearson M, Matsuoka Y, Cutler RG, Laferla FM, and Mattson MP (2007). Intermittent fasting and caloric restriction ameliorate age-related behavioral deficits in the triple-transgenic mouse model of Alzheimer’s disease. Neurobiol Dis 26: 212–220.

    CAS  PubMed  Google Scholar 

  60. Martin B, Pearson M, Kebejian L, Golden E, Keselman A, Bender M, Carlson O, Egan J, Ladenheim B, Cadet JL, Becker KG, Wood W, Duffy K, Vinayakumar P, Maudsley S, and Mattson MP (2007). Sex-dependent metabolic, neuroendocrine, and cognitive responses to dietary energy restriction and excess. Endocrinology 148: 4318–4333.

    CAS  PubMed  Google Scholar 

  61. Swerdlow RH (2007). Treating neurodegeneration by modifying mitochondria : potential solutions to a “complex” problem. Antioxid Redox Signal 9: 1591–1603.

    CAS  PubMed  Google Scholar 

  62. Toescu EC (2005). Normal brain ageing: models and mechanisms. Philos Trans R Soc Lond B Biol Sci 360: 2347–2354.

    CAS  PubMed  Google Scholar 

  63. Patel MS (1977). Age-dependent changes in the oxidative metabolism in rat brain. J Gerontol 32: 643–646.

    CAS  PubMed  Google Scholar 

  64. Fattoretti P, Bertoni-Freddari C, Caselli U, Paoloni R, and Meier-Ruge W (1998). Impaired succinic dehydrogenase activity of rat Purkinje cell mitochondria during aging. Mech Ageing Dev 101: 175–182.

    CAS  PubMed  Google Scholar 

  65. Sanz A, Caro P, Ibanez J, Gomez J, Gredilla R, and Barja G (2005). Dietary restriction at old age lowers mitochondrial oxygen radical production and leak at complex I and oxidative DNA damage in rat brain. J Bioenerg Biomembr 37: 83–90.

    CAS  PubMed  Google Scholar 

  66. Gabbita SP, Butterfield DA, Hensley K, Shaw W, and Carney JM (1997). Aging and caloric restriction affect mitochondrial respiration and lipid membrane status: an electron paramagnetic resonance investigation. Free Radic Biol Med 23: 191–201.

    CAS  PubMed  Google Scholar 

  67. Curtis C, Landis GN, Folk D, Wehr NB, Hoe N, Waskar M, Abdueva D, Skvortsov D, Ford D, Luu A, Badrinath A, Levine RL, Bradley TJ, Tavare S, and Tower J (2007). Transcriptional profiling of MnSOD-mediated lifespan extension in Drosophila reveals a species-general network of aging and metabolic genes. Genome Biol 8: R262.

    PubMed  Google Scholar 

  68. Smeyne RJ and Jackson-Lewis V (2005). The MPTP model of Parkinson’s disease. Brain Res Mol Brain Res 134: 57–66.

    CAS  PubMed  Google Scholar 

  69. Duan W and Mattson MP (1999). Dietary restriction and 2-deoxyglucose administration improve behavioral outcome and reduce degeneration of dopaminergic neurons in models of Parkinson’s disease. J Neurosci Res 57: 195–206.

    CAS  PubMed  Google Scholar 

  70. Maswood N, Young J, Tilmont E, Zhang Z, Gash DM, Gerhardt GA, Grondin R, Roth GS, Mattison J, Lane MA, Carson RE, Cohen RM, Mouton PR, Quigley C, Mattson MP, and Ingram DK (2004). Caloric restriction increases neurotrophic factor levels and attenuates neurochemical and behavioral deficits in a primate model of Parkinson’s disease. Proc Natl Acad Sci U S A 101: 18171–18176.

    CAS  PubMed  Google Scholar 

  71. Brouillet E, Jacquard C, Bizat N, and Blum D (2005). 3-Nitropropionic acid: a mitochondrial toxin to uncover physiopathological mechanisms underlying striatal degeneration in Huntington’s disease. J Neurochem 95: 1521–1540.

    CAS  PubMed  Google Scholar 

  72. Bruce-Keller AJ, Umberger G, McFall R, and Mattson MP (1999). Food restriction reduces brain damage and improves behavioral outcome following excitotoxic and metabolic insults. Ann Neurol 45: 8–15.

    CAS  PubMed  Google Scholar 

  73. Melov S, Schneider JA, Day BJ, Hinerfeld D, Coskun P, Mirra SS, Crapo JD, and Wallace DC (1998). A novel neurological phenotype in mice lacking mitochondrial manganese superoxide dismutase. Nat Genet 18: 159–163.

    CAS  PubMed  Google Scholar 

  74. Hyun DH, Emerson SS, Jo DG, Mattson MP, and de Cabo R (2006). Calorie restriction up-regulates the plasma membrane redox system in brain cells and suppresses oxidative stress during aging. Proc Natl Acad Sci U S A 103: 19908–19912.

    CAS  PubMed  Google Scholar 

  75. Hoyer S (1985). The effect of age on glucose and energy metabolism in brain cortex of rats. Arch Gerontol Geriatr 4: 193–203.

    CAS  PubMed  Google Scholar 

  76. Vernace VA, Schmidt-Glenewinkel T, and Figueiredo-Pereira ME (2007). Aging and regulated protein degradation: who has the UPPer hand? Aging Cell 6: 599–606.

    CAS  PubMed  Google Scholar 

  77. Fan XM, Wong BC, Wang WP, Zhou XM, Cho CH, Yuen ST, Leung SY, Lin MC, Kung HF, and Lam SK (2001). Inhibition of proteasome function induced apoptosis in gastric cancer. Int J Cancer 93: 481–488.

    CAS  PubMed  Google Scholar 

  78. Vernace VA, Arnaud L, Schmidt-Glenewinkel T, and Figueiredo-Pereira ME (2007). Aging perturbs 26S proteasome assembly in Drosophila melanogaster. Faseb J 21: 2672–2682.

    CAS  PubMed  Google Scholar 

  79. Terman A, Dalen H, and Brunk UT (1999). Ceroid/lipofuscin-loaded human fibroblasts show decreased survival time and diminished autophagocytosis during amino acid starvation. Exp Gerontol 34: 943–957.

    CAS  PubMed  Google Scholar 

  80. Cuervo AM, Bergamini E, Brunk UT, Droge W, Ffrench M, and Terman A (2005). Autophagy and aging: the importance of maintaining “clean” cells. Autophagy 1: 131–140.

    PubMed  Google Scholar 

  81. Melendez A, Talloczy Z, Seaman M, Eskelinen EL, Hall DH, and Levine B (2003). Autophagy genes are essential for dauer development and life-span extension in C. elegans. Science 301: 1387–1391.

    CAS  PubMed  Google Scholar 

  82. Florez-McClure ML, Hohsfield LA, Fonte G, Bealor MT, and Link CD (2007). Decreased insulin-receptor signaling promotes the autophagic degradation of beta-amyloid peptide in C. elegans. Autophagy 3: 569–580.

    CAS  PubMed  Google Scholar 

  83. Jia K and Levine B (2007). Autophagy is required for dietary restriction-mediated life span extension in C. elegans. Autophagy 3: 597–599.

    PubMed  Google Scholar 

  84. Morck C and Pilon M (2006). C. elegans feeding defective mutants have shorter body lengths and increased autophagy. BMC Dev Biol 6: 39.

    PubMed  Google Scholar 

  85. Hansen M, Taubert S, Crawford D, Libina N, Lee SJ, and Kenyon C (2007). Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans. Aging Cell 6: 95–110.

    CAS  PubMed  Google Scholar 

  86. Pan KZ, Palter JE, Rogers AN, Olsen A, Chen D, Lithgow GJ, and Kapahi P (2007). Inhibition of mRNA translation extends lifespan in Caenorhabditis elegans. Aging Cell 6: 111–119.

    CAS  PubMed  Google Scholar 

  87. Hipkiss AR (2007). On why decreasing protein synthesis can increase lifespan. Mech Ageing Dev 128: 412–414.

    CAS  PubMed  Google Scholar 

  88. Chapouton P, Jagasia R, and Bally-Cuif L (2007). Adult neurogenesis in non-mammalian vertebrates. Bioessays 29: 745–757.

    CAS  PubMed  Google Scholar 

  89. Gould E (2007). How widespread is adult neurogenesis in mammals? Nat Rev Neurosci 8: 481–488.

    CAS  PubMed  Google Scholar 

  90. Carlen M, Cassidy RM, Brismar H, Smith GA, Enquist LW, and Frisen J (2002). Functional integration of adult-born neurons. Curr Biol 12: 606–608.

    CAS  PubMed  Google Scholar 

  91. Ge S, Goh EL, Sailor KA, Kitabatake Y, Ming GL, and Song H (2006). GABA regulates synaptic integration of newly generated neurons in the adult brain. Nature 439: 589–593.

    CAS  PubMed  Google Scholar 

  92. van Praag H, Schinder AF, Christie BR, Toni N, Palmer TD, and Gage FH (2002). Functional neurogenesis in the adult hippocampus. Nature 415: 1030–1034.

    PubMed  Google Scholar 

  93. Klempin F and Kempermann G (2007). Adult hippocampal neurogenesis and aging. Eur Arch Psychiatry Clin Neurosci 257: 271–280.

    PubMed  Google Scholar 

  94. Lee J, Auyeung WW, and Mattson MP (2003). Interactive effects of excitotoxic injury and dietary restriction on microgliosis and neurogenesis in the hippocampus of adult mice. Neuromolecular Med 4: 179–196.

    CAS  PubMed  Google Scholar 

  95. van Praag H, Shubert T, Zhao C, and Gage FH (2005). Exercise enhances learning and hippocampal neurogenesis in aged mice. J Neurosci 25: 8680–8685.

    PubMed  Google Scholar 

  96. Kempermann G, Gast D, and Gage FH (2002). Neuroplasticity in old age: sustained fivefold induction of hippocampal neurogenesis by long-term environmental enrichment. Ann Neurol 52: 135–143.

    PubMed  Google Scholar 

  97. Haughey NJ, Nath A, Chan SL, Borchard AC, Rao MS, and Mattson MP (2002). Disruption of neurogenesis by amyloid beta-peptide, and perturbed neural progenitor cell homeostasis, in models of Alzheimer’s disease. J Neurochem 83: 1509–1524.

    CAS  PubMed  Google Scholar 

  98. Pignataro G, Studer FE, Wilz A, Simon RP, and Boison D (2007). Neuroprotection in ischemic mouse brain induced by stem cell-derived brain implants. J Cereb Blood Flow Metab 27: 919–927.

    CAS  PubMed  Google Scholar 

  99. Goya RL, Kuan WL, and Barker RA (2007). The future of cell therapies in the treatment of Parkinson’s disease. Expert Opin Biol Ther 7: 1487–1498.

    CAS  Google Scholar 

  100. Yamasaki TR, Blurton-Jones M, Morrissette DA, Kitazawa M, Oddo S, and LaFerla FM (2007). Neural stem cells improve memory in an inducible mouse model of neuronal loss. J Neurosci 27: 11925–11933.

    CAS  PubMed  Google Scholar 

  101. Mattson MP (2004). Pathways towards and away from Alzheimer’s disease. Nature 430: 631–639.

    CAS  PubMed  Google Scholar 

  102. Ramer MS, Priestley JV, and McMahon SB (2000). Functional regeneration of sensory axons into the adult spinal cord. Nature 403: 312–316.

    CAS  PubMed  Google Scholar 

  103. Tanaka K and Webster HD (1991). Myelinated fiber regeneration after crush injury is retarded in sciatic nerves of aging mice. J Comp Neurol 308: 180–187.

    CAS  PubMed  Google Scholar 

  104. Vaughan DW (1992). Effects of advancing age on peripheral nerve regeneration. J Comp Neurol 323: 219–237.

    CAS  PubMed  Google Scholar 

  105. Verdu E, Ceballos D, Vilches JJ, and Navarro X (2000). Influence of aging on peripheral nerve function and regeneration. J Peripher Nerv Syst 5: 191–208.

    CAS  PubMed  Google Scholar 

  106. Rawson NE (2006). Olfactory loss in aging. Sci Aging Knowledge Environ 2006: pe6.

    Google Scholar 

  107. Wallhagen MI, Pettengill E, and Whiteside M (2006). Sensory impairment in older adults: Part 1: Hearing loss. Am J Nurs 106: 40–48, quiz 48–49.

    PubMed  Google Scholar 

  108. Whiteside MM, Wallhagen MI, and Pettengill E (2006). Sensory impairment in older adults: Part 2: Vision loss. Am J Nurs 106: 52–61, quiz 61–52.

    PubMed  Google Scholar 

  109. Liu XZ and Yan D (2007). Ageing and hearing loss. J Pathol 211: 188–197.

    CAS  PubMed  Google Scholar 

  110. Johnson KR and Zheng QY (2002). Ahl2, a second locus affecting age-related hearing loss in mice. Genomics 80: 461–464.

    CAS  PubMed  Google Scholar 

  111. Mashimo T, Erven AE, Spiden SL, Guenet JL, and Steel KP (2006). Two quantitative trait loci affecting progressive hearing loss in 101/H mice. Mamm Genome 17: 841–850.

    CAS  PubMed  Google Scholar 

  112. Zheng QY, Yan D, Ouyang XM, Du LL, Yu H, Chang B, Johnson KR, and Liu XZ (2005). Digenic inheritance of deafness caused by mutations in genes encoding cadherin 23 and protocadherin 15 in mice and humans. Hum Mol Genet 14: 103–111.

    CAS  PubMed  Google Scholar 

  113. Street VA, McKee-Johnson JW, Fonseca RC, Tempel BL, and Noben-Trauth K (1998). Mutations in a plasma membrane Ca2+-ATPase gene cause deafness in deafwaddler mice. Nat Genet 19: 390–394.

    CAS  PubMed  Google Scholar 

  114. Burke SN and Barnes CA (2006). Neural plasticity in the ageing brain. Nat Rev Neurosci 7: 30–40.

    CAS  PubMed  Google Scholar 

  115. Tully T, Bourtchouladze R, Scott R, and Tallman J (2003). Targeting the CREB pathway for memory enhancers. Nat Rev Drug Discov 2: 267–277.

    CAS  PubMed  Google Scholar 

  116. Sekuler R, McLaughlin C, Kahana MJ, Wingfield A, and Yotsumoto Y (2006). Short-term visual recognition and temporal order memory are both well-preserved in aging. Psychol Aging 21: 632–637.

    PubMed  Google Scholar 

  117. Wingfield A and Kahana MJ (2002). The dynamics of memory retrieval in older adulthood. Can J Exp Psychol 56: 187–199.

    PubMed  Google Scholar 

  118. McKinney M and Jacksonville MC (2005). Brain cholinergic vulnerability: relevance to behavior and disease. Biochem Pharmacol 70: 1115–1124.

    CAS  PubMed  Google Scholar 

  119. Murchison D and Griffith WH (2007). Calcium buffering systems and calcium signaling in aged rat basal forebrain neurons. Aging Cell 6: 297–305.

    CAS  PubMed  Google Scholar 

  120. Tamura T, Chiang AS, Ito N, Liu HP, Horiuchi J, Tully T, and Saitoe M (2003). Aging specifically impairs amnesiac-dependent memory in Drosophila. Neuron 40: 1003–1011.

    CAS  PubMed  Google Scholar 

  121. Yamazaki D, Horiuchi J, Nakagami Y, Nagano S, Tamura T, and Saitoe M (2007). The Drosophila DCO mutation suppresses age-related memory impairment without affecting lifespan. Nat Neurosci 10: 478–484.

    CAS  PubMed  Google Scholar 

  122. Morgante L, Salemi G, Meneghini F, Di Rosa AE, Epifanio A, Grigoletto F, Ragonese P, Patti F, Reggio A, Di Perri R, and Savettieri G (2000). Parkinson disease survival: a population-based study. Arch Neurol 57: 507–512.

    CAS  PubMed  Google Scholar 

  123. Guarente L (2005). Calorie restriction and SIR2 genes – towards a mechanism. Mech Ageing Dev 126: 923–928.

    CAS  PubMed  Google Scholar 

  124. Kenyon C (2005). The plasticity of aging: insights from long-lived mutants. Cell 120: 449–460.

    CAS  PubMed  Google Scholar 

  125. Partridge L, Piper MD, and Mair W (2005). Dietary restriction in Drosophila. Mech Ageing Dev 126: 938–950.

    CAS  PubMed  Google Scholar 

  126. Sinclair DA (2005). Toward a unified theory of caloric restriction and longevity regulation. Mech Ageing Dev 126: 987–1002.

    CAS  PubMed  Google Scholar 

  127. Apfeld J and Kenyon C (1998). Cell nonautonomy of C. elegans daf-2 function in the regulation of diapause and life span. Cell 95: 199–210.

    CAS  PubMed  Google Scholar 

  128. Wolkow CA, Kimura KD, Lee MS, and Ruvkun G (2000). Regulation of C. elegans life-span by insulinlike signaling in the nervous system. Science 290: 147–150.

    CAS  PubMed  Google Scholar 

  129. Kenyon C, Chang J, Gensch E, Rudner A, and Tabtiang R (1993). A C. elegans mutant that lives twice as long as wild type. Nature 366: 461–464.

    CAS  PubMed  Google Scholar 

  130. Kimura KD, Tissenbaum HA, Liu Y, and Ruvkun G (1997). daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 277: 942–946.

    CAS  PubMed  Google Scholar 

  131. Brogiolo W, Stocker H, Ikeya T, Rintelen F, Fernandez R, and Hafen E (2001). An evolutionarily conserved function of the Drosophila insulin receptor and insulin-like peptides in growth control. Curr Biol 11: 213–221.

    CAS  PubMed  Google Scholar 

  132. Rulifson EJ, Kim SK, and Nusse R (2002). Ablation of insulin-producing neurons in flies: growth and diabetic phenotypes. Science 296: 1118–1120.

    CAS  PubMed  Google Scholar 

  133. Broughton SJ, Piper MD, Ikeya T, Bass TM, Jacobson J, Driege Y, Martinez P, Hafen E, Withers DJ, Leevers SJ, and Partridge L (2005). Longer lifespan, altered metabolism, and stress resistance in Drosophila from ablation of cells making insulin-like ligands. Proc Natl Acad Sci U S A 102: 3105–3110.

    CAS  PubMed  Google Scholar 

  134. Bauer JH, Poon PC, Glatt-Deeley H, Abrams JM, and Helfand SL (2005). Neuronal expression of p53 dominant-negative proteins in adult Drosophila melanogaster extends life span. Curr Biol 15: 2063–2068.

    CAS  PubMed  Google Scholar 

  135. Bauer JH, Chang C, Morris SN, Hozier S, Andersen S, Waitzman JS, and Helfand SL (2007). Expression of dominant-negative Dmp53 in the adult fly brain inhibits insulin signaling. Proc Natl Acad Sci U S A 104: 13355–13360.

    CAS  PubMed  Google Scholar 

  136. Wang MC, Bohmann D, and Jasper H (2003). JNK signaling confers tolerance to oxidative stress and extends lifespan in Drosophila. Dev Cell 5: 811–816.

    CAS  PubMed  Google Scholar 

  137. Wang MC, Bohmann D, and Jasper H (2005). JNK extends life span and limits growth by antagonizing cellular and organism-wide responses to insulin signaling. Cell 121: 115–125.

    CAS  PubMed  Google Scholar 

  138. Alcedo J and Kenyon C (2004). Regulation of C. elegans longevity by specific gustatory and olfactory neurons. Neuron 41: 45–55.

    CAS  PubMed  Google Scholar 

  139. Libert S, Zwiener J, Chu X, Vanvoorhies W, Roman G, and Pletcher SD (2007). Regulation of Drosophila life span by olfaction and food-derived odors. Science 315: 1133–1137.

    CAS  PubMed  Google Scholar 

  140. Evason K, Huang C, Yamben I, Covey DF, and Kornfeld K (2005). Anticonvulsant medications extend worm life-span. Science 307: 258–262.

    CAS  PubMed  Google Scholar 

  141. Taguchi A, Wartschow LM, and White MF (2007). Brain IRS2 signaling coordinates life span and nutrient homeostasis. Science 317: 369–372.

    CAS  PubMed  Google Scholar 

  142. Zheng J, Edelman SW, Tharmarajah G, Walker DW, Pletcher SD, and Seroude L (2005). Differential patterns of apoptosis in response to aging in Drosophila. Proc Natl Acad Sci U S A 102: 12083–12088.

    CAS  PubMed  Google Scholar 

  143. Yaari R and Corey-Bloom J (2007). Alzheimer’s disease. Semin Neurol 27: 32–41.

    PubMed  Google Scholar 

  144. Petersen RC (2007). Mild cognitive impairment: current research and clinical implications. Semin Neurol 27: 22–31.

    PubMed  Google Scholar 

  145. Rogaeva E (2002). The solved and unsolved mysteries of the genetics of early-onset Alzheimer’s disease. Neuromolecular Med 2: 1–10.

    CAS  PubMed  Google Scholar 

  146. Guo Q, Fu W, Sopher BL, Miller MW, Ware CB, Martin GM, and Mattson MP (1999). Increased vulnerability of hippocampal neurons to excitotoxic necrosis in presenilin-1 mutant knock-in mice. Nat Med 5: 101–106.

    CAS  PubMed  Google Scholar 

  147. Mayeux R (2003). Epidemiology of neurodegeneration. Annu Rev Neurosci 26: 81–104.

    CAS  PubMed  Google Scholar 

  148. Larson EB, Wang L, Bowen JD, McCormick WC, Teri L, Crane P, and Kukull W (2006). Exercise is associated with reduced risk for incident dementia among persons 65 years of age and older. Ann Intern Med 144: 73–81.

    PubMed  Google Scholar 

  149. Adlard PA, Perreau VM, Pop V, and Cotman CW (2005). Voluntary exercise decreases amyloid load in a transgenic model of Alzheimer’s disease. J Neurosci 25: 4217–4221.

    CAS  PubMed  Google Scholar 

  150. Scarmeas N and Stern Y (2003). Cognitive reserve and lifestyle. J Clin Exp Neuropsychol 25: 625–633.

    PubMed  Google Scholar 

  151. Luchsinger JA, Tang MX, Shea S, and Mayeux R (2002). Caloric intake and the risk of Alzheimer disease. Arch Neurol 59: 1258–1263.

    PubMed  Google Scholar 

  152. Patel NV, Gordon MN, Connor KE, Good RA, Engelman RW, Mason J, Morgan DG, Morgan TE, and Finch CE (2005). Caloric restriction attenuates Abeta-deposition in Alzheimer transgenic models. Neurobiol Aging 26: 995–1000.

    CAS  PubMed  Google Scholar 

  153. Wang J, Ho L, Qin W, Rocher AB, Seror I, Humala N, Maniar K, Dolios G, Wang R, Hof PR, and Pasinetti GM (2005). Caloric restriction attenuates beta-amyloid neuropathology in a mouse model of Alzheimer’s disease. Faseb J 19: 659–661.

    PubMed  Google Scholar 

  154. Mattson MP and Cheng A (2006). Neurohormetic phytochemicals: low-dose toxins that induce adaptive neuronal stress responses. Trends Neurosci 29: 632–639.

    CAS  PubMed  Google Scholar 

  155. Cole GM, Lim GP, Yang F, Teter B, Begum A, Ma Q, Harris-White ME, and Frautschy SA (2005). Prevention of Alzheimer’s disease: Omega-3 fatty acid and phenolic anti-oxidant interventions. Neurobiol Aging 26(Suppl 1): 133–136.

    PubMed  Google Scholar 

  156. Cooper JL (2003). Dietary lipids in the aetiology of Alzheimer’s disease: implications for therapy. Drugs Aging 20: 399–418.

    CAS  PubMed  Google Scholar 

  157. Friedland RP and Armon C (2007). Tales of Pacific tangles: Cycad exposure and Guamanian neurodegenerative diseases. Neurology 68: 1759–1761.

    PubMed  Google Scholar 

  158. Cummings BJ, Head E, Ruehl W, Milgram NW, and Cotman CW (1996). The canine as an animal model of human aging and dementia. Neurobiol Aging 17: 259–268.

    CAS  PubMed  Google Scholar 

  159. Head E, Callahan H, Muggenburg BA, Cotman CW, and Milgram NW (1998). Visual-discrimination learning ability and beta-amyloid accumulation in the dog. Neurobiol Aging 19: 415–425.

    CAS  PubMed  Google Scholar 

  160. Price DL, Martin LJ, Sisodia SS, Wagster MV, Koo EH, Walker LC, Koliatsos VE, and Cork LC (1991). Aged non-human primates: an animal model of age-associated neurodegenerative disease. Brain Pathol 1: 287–296.

    CAS  PubMed  Google Scholar 

  161. Pugliese M, Gangitano C, Ceccariglia S, Carrasco JL, Del Fa A, Rodriguez MJ, Michetti F, Mascort J, and Mahy N (2007). Canine cognitive dysfunction and the cerebellum: acetylcholinesterase reduction, neuronal and glial changes. Brain Res 1139: 85–94.

    CAS  PubMed  Google Scholar 

  162. German DC and Eisch AJ (2004). Mouse models of Alzheimer’s disease: insight into treatment. Rev Neurosci 15: 353–369.

    PubMed  Google Scholar 

  163. Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, Metherate R, Mattson MP, Akbari Y, and LaFerla FM (2003). Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron 39: 409–421.

    CAS  PubMed  Google Scholar 

  164. Fonte V, Kipp DR, Yerg J, 3rd, Merin D, Forrestal M, Wagner E, Roberts CM, and Link CD (2008). Suppression of in vivo beta-amyloid peptide toxicity by overexpression of the HSP-16.2 small chaperone protein. J Biol Chem 283: 784–791.

    CAS  PubMed  Google Scholar 

  165. Link CD (2005). Invertebrate models of Alzheimer’s disease. Genes Brain Behav 4: 147–156.

    CAS  PubMed  Google Scholar 

  166. Chade AR, Kasten M, and Tanner CM (2007). Epidemiology of Parkinson’s disease. In Parkinson’s Disease: Genetics and Pathogenesis (Dawson TM (ed)). New York: Informa Healthcare.

    Google Scholar 

  167. Dickson D (2007). Neuropathology and staging of Parkinson’s disease. In Parkinson’s Disease: Genetics and Pathogenesis (Dawson TM (ed)). New York: Informa Healthcare.

    Google Scholar 

  168. Shimura H, Schlossmacher MG, Hattori N, Frosch MP, Trockenbacher A, Schneider R, Mizuno Y, Kosik KS, and Selkoe DJ (2001). Ubiquitination of a new form of alpha-synuclein by parkin from human brain: implications for Parkinson’s disease. Science 293: 263–269.

    CAS  PubMed  Google Scholar 

  169. Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, and Goedert M (1997). Alpha-synuclein in Lewy bodies. Nature 388: 839–840.

    CAS  PubMed  Google Scholar 

  170. Wakabayashi K, Matsumoto K, Takayama K, Yoshimoto M, and Takahashi H (1997). NACP, a presynaptic protein, immunoreactivity in Lewy bodies in Parkinson’s disease. Neurosci Lett 239: 45–48.

    CAS  PubMed  Google Scholar 

  171. Elbaz A, Grigoletto F, Baldereschi M, Breteler MM, Manubens-Bertran JM, Lopez-Pousa S, Dartigues JF, Alperovitch A, Tzourio C, and Rocca WA (1999). Familial aggregation of Parkinson’s disease: a population-based case-control study in Europe. EUROPARKINSON Study Group. Neurology 52: 1876–1882.

    CAS  PubMed  Google Scholar 

  172. Chade AR, Kasten M, and Tanner CM (2006). Nongenetic causes of Parkinson’s disease. J Neural Transm Suppl 70: 147–151.

    CAS  PubMed  Google Scholar 

  173. Powers KM, Kay DM, Factor SA, Zabetian CP, Higgins DS, Samii A, Nutt JG, Griffith A, Leis B, Roberts JW, Martinez ED, Montimurro JS, Checkoway H, and Payami H (2008). Combined effects of smoking, coffee, and NSAIDs on Parkinson’s disease risk. Mov Disord 23: 88–95.

    PubMed  Google Scholar 

  174. Tan EK, Chua E, Fook-Chong SM, Teo YY, Yuen Y, Tan L, and Zhao Y (2007). Association between caffeine intake and risk of Parkinson’s disease among fast and slow metabolizers. Pharmacogenet Genomics 17: 1001–1005.

    CAS  PubMed  Google Scholar 

  175. Thomas B and Beal MF (2007). Parkinson’s disease. Hum Mol Genet 16(Spec No. 2): R183–R194.

    CAS  PubMed  Google Scholar 

  176. Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, Stenroos ES, Chandrasekharappa S, Athanassiadou A, Papapetropoulos T, Johnson WG, Lazzarini AM, Duvoisin RC, Di Iorio G, Golbe LI, and Nussbaum RL (1997). Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276: 2045–2047.

    CAS  PubMed  Google Scholar 

  177. da Costa CA (2007). DJ-1: a new comer in Parkinson’s disease pathology. Curr Mol Med 7: 650–657.

    PubMed  Google Scholar 

  178. Dodson MW and Guo M (2007). Pink1, Parkin, DJ-1 and mitochondrial dysfunction in Parkinson’s disease. Curr Opin Neurobiol 17: 331–337.

    CAS  PubMed  Google Scholar 

  179. Hattori N and Sato S (2007). Animal models of Parkinson’s disease: similarities and differences between the disease and models. Neuropathology 27: 479–483.

    PubMed  Google Scholar 

  180. Schmidt E, Seifert M, and Baumeister R (2007). Caenorhabditis elegans as a model system for Parkinson’s disease. Neurodegener Dis 4: 199–217.

    PubMed  Google Scholar 

  181. Lee MK (2007). Transgenic models of alpha-synucleinopathy. In Parkinson’s Disease: Genetics and Pathogenesis (Dawson TM (ed)). New York: Informa Healthcare.

    Google Scholar 

  182. Rubinsztein DC (2002). Lessons from animal models of Huntington’s disease. Trends Genet 18: 202–209.

    CAS  PubMed  Google Scholar 

  183. Brignull HR, Morley JF, Garcia SM, and Morimoto RI (2006). Modeling polyglutamine pathogenesis in C. elegans. Methods Enzymol 412: 256–282.

    CAS  PubMed  Google Scholar 

  184. Walling AD (1999). Amyotrophic lateral sclerosis: Lou Gehrig’s disease. Am Fam Physician 59: 1489–1496.

    CAS  PubMed  Google Scholar 

  185. Mitsumoto H, Hanson MR, and Chad DA (1988). Amyotrophic lateral sclerosis. Recent advances in pathogenesis and therapeutic trials. Arch Neurol 45: 189–202.

    CAS  PubMed  Google Scholar 

  186. Bruijn LI, Miller TM, and Cleveland DW (2004). Unraveling the mechanisms involved in motor neuron degeneration in ALS. Annu Rev Neurosci 27: 723–749.

    CAS  PubMed  Google Scholar 

  187. Pedersen WA, Fu W, Keller JN, Markesbery WR, Appel S, Smith RG, Kasarskis E, and Mattson MP (1998). Protein modification by the lipid peroxidation product 4-hydroxynonenal in the spinal cords of amyotrophic lateral sclerosis patients. Ann Neurol 44: 819–824.

    CAS  PubMed  Google Scholar 

  188. Appel SH, Beers D, Siklos L, Engelhardt JI, and Mosier DR (2001). Calcium: the Darth Vader of ALS. Amyotroph Lateral Scler Other Motor Neuron Disord 2(Suppl 1): S47–S54.

    CAS  PubMed  Google Scholar 

  189. Cleveland DW and Rothstein JD (2001). From Charcot to Lou Gehrig: deciphering selective motor neuron death in ALS. Nat Rev Neurosci 2: 806–819.

    CAS  PubMed  Google Scholar 

  190. Pasinelli P and Brown RH (2006). Molecular biology of amyotrophic lateral sclerosis: insights from genetics. Nat Rev Neurosci 7: 710–723.

    CAS  PubMed  Google Scholar 

  191. Martin LJ (2007). Transgenic mice with human mutant genes causing Parkinson’s disease and amyotrophic lateral sclerosis provide common insight into mechanisms of motor neuron selective vulnerability to degeneration. Rev Neurosci 18: 115–136.

    CAS  PubMed  Google Scholar 

  192. Yim MB, Kang JH, Yim HS, Kwak HS, Chock PB, and Stadtman ER (1996). A gain-of-function of an amyotrophic lateral sclerosis-associated Cu,Zn-superoxide dismutase mutant: An enhancement of free radical formation due to a decrease in Km for hydrogen peroxide. Proc Natl Acad Sci U S A 93: 5709–5714.

    CAS  PubMed  Google Scholar 

  193. Pedersen WA and Mattson MP (1999). No benefit of dietary restriction on disease onset or progression in amyotrophic lateral sclerosis Cu/Zn-superoxide dismutase mutant mice. Brain Res 833: 117–120.

    CAS  PubMed  Google Scholar 

  194. Mattson MP, Cutler RG, and Camandola S (2007). Energy intake and amyotrophic lateral sclerosis. Neuromolecular Med 9: 17–20.

    CAS  PubMed  Google Scholar 

  195. Plato CC, Galasko D, Garruto RM, Plato M, Gamst A, Craig UK, Torres JM, and Wiederholt W (2002). ALS and PDC of Guam: forty-year follow-up. Neurology 58: 765–773.

    CAS  PubMed  Google Scholar 

  196. Cox PA and Sacks OW (2002). Cycad neurotoxins, consumption of flying foxes, and ALS-PDC disease in Guam. Neurology 58: 956–959.

    PubMed  Google Scholar 

  197. Logroscino G, Marder K, Cote L, Tang MX, Shea S, and Mayeux R (1996). Dietary lipids and antioxidants in Parkinson’s disease: a population-based, case-control study. Ann Neurol 39: 89–94.

    CAS  PubMed  Google Scholar 

  198. Pasquier F, Boulogne A, Leys D, and Fontaine P (2006). Diabetes mellitus and dementia. Diabetes Metab 32: 403–414.

    CAS  PubMed  Google Scholar 

  199. Beauquis J, Roig P, Homo-Delarche F, De Nicola A, and Saravia F (2006). Reduced hippocampal neurogenesis and number of hilar neurones in streptozotocin-induced diabetic mice: reversion by antidepressant treatment. Eur J Neurosci 23: 1539–1546.

    PubMed  Google Scholar 

  200. Stranahan AM, Arumugam TV, Cutler RG, Lee K, Egan JM, and Mattson MP (2008). Diabetes impairs hippocampal function through glucocorticoid-mediated effects on new and mature neurons. Nat Neurosci 11(3): 309–317.

    CAS  PubMed  Google Scholar 

  201. Duan W, Guo Z, Jiang H, Ware M, Li XJ, and Mattson MP (2003). Dietary restriction normalizes glucose metabolism and BDNF levels, slows disease progression, and increases survival in huntingtin mutant mice. Proc Natl Acad Sci U S A 100: 2911–2916.

    CAS  PubMed  Google Scholar 

  202. Yu ZF and Mattson MP (1999). Dietary restriction and 2-deoxyglucose administration reduce focal ischemic brain damage and improve behavioral outcome: evidence for a preconditioning mechanism. J Neurosci Res 57: 830–839.

    CAS  PubMed  Google Scholar 

  203. Mattson MP (2008). Dietary factors, hormesis and health. Ageing Res Rev 7: 43–48.

    PubMed  Google Scholar 

  204. Bishop NA and Guarente L (2007). Two neurons mediate diet-restriction-induced longevity in C. elegans. Nature 447: 545–549.

    CAS  PubMed  Google Scholar 

  205. Chen H, Zhang SM, Schwarzschild MA, Hernan MA, and Ascherio A (2005). Physical activity and the risk of Parkinson disease. Neurology 64: 664–669.

    CAS  PubMed  Google Scholar 

  206. Cotman CW and Berchtold NC (2002). Exercise: a behavioral intervention to enhance brain health and plasticity. Trends Neurosci 25: 295–301.

    CAS  PubMed  Google Scholar 

  207. Gareri P, De Fazio P, and De Sarro G (2002). Neuropharmacology of depression in aging and age-related diseases. Ageing Res Rev 1: 113–134.

    CAS  PubMed  Google Scholar 

  208. McEwen BS (2007). Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol Rev 87: 873–904.

    PubMed  Google Scholar 

  209. Murakami S (2007). Caenorhabditis elegans as a model system to study aging of learning and memory. Mol Neurobiol 35: 85–94.

    CAS  PubMed  Google Scholar 

  210. Vermeulen CJ and Loeschcke V (2007). Longevity and the stress response in Drosophila. Exp Gerontol 42: 153–159.

    CAS  PubMed  Google Scholar 

  211. Kaplan RM and Kronick RG (2006). Marital status and longevity in the United States population. J Epidemiol Community Health 60: 760–765.

    PubMed  Google Scholar 

  212. Rodriguez-Laso A, Zunzunegui MV, and Otero A (2007). The effect of social relationships on survival in elderly residents of a Southern European community: a cohort study. BMC Geriatr 7: 19.

    PubMed  Google Scholar 

  213. Bennett DA, Schneider JA, Tang Y, Arnold SE, and Wilson RS (2006). The effect of social networks on the relation between Alzheimer’s disease pathology and level of cognitive function in old people: a longitudinal cohort study. Lancet Neurol 5: 406–412.

    PubMed  Google Scholar 

  214. Bianchi M, Fone KF, Azmi N, Heidbreder CA, Hagan JJ, and Marsden CA (2006). Isolation rearing induces recognition memory deficits accompanied by cytoskeletal alterations in rat hippocampus. Eur J Neurosci 24: 2894–2902.

    CAS  PubMed  Google Scholar 

  215. Stranahan AM, Khalil D, and Gould E (2006). Social isolation delays the positive effects of running on adult neurogenesis. Nat Neurosci 9: 526–533.

    CAS  PubMed  Google Scholar 

  216. Dong H, Goico B, Martin M, Csernansky CA, Bertchume A, and Csernansky JG (2004). Modulation of hippocampal cell proliferation, memory, and amyloid plaque deposition in APPsw (Tg2576) mutant mice by isolation stress. Neuroscience 127: 601–609.

    CAS  PubMed  Google Scholar 

  217. Brenes JC, Rodriguez O, and Fornaguera J (2008). Differential effect of environment enrichment and social isolation on depressive-like behavior, spontaneous activity and serotonin and norepinephrine concentration in prefrontal cortex and ventral striatum. Pharmacol Biochem Behav 89: 85–93.

    CAS  PubMed  Google Scholar 

  218. Scaccianoce S, Del Bianco P, Paolone G, Caprioli D, Modafferi AM, Nencini P, and Badiani A (2006). Social isolation selectively reduces hippocampal brain-derived neurotrophic factor without altering plasma corticosterone. Behav Brain Res 168: 323–325.

    CAS  PubMed  Google Scholar 

  219. Amdam GV, Aase AL, Seehuus SC, Kim Fondrk M, Norberg K, and Hartfelder K (2005). Social reversal of immunosenescence in honey bee workers. Exp Gerontol 40: 939–947.

    CAS  PubMed  Google Scholar 

  220. Wolkow CA (2006). Identifying factors that promote functional aging in Caenorhabditis elegans. Exp Gerontol 41: 1001–1006.

    CAS  PubMed  Google Scholar 

  221. Link CD (2006). C. elegans models of age-associated neurodegenerative diseases: lessons from transgenic worm models of Alzheimer’s disease. Exp Gerontol 41: 1007–1013.

    CAS  PubMed  Google Scholar 

  222. Saitoe M, Horiuchi J, Tamura T, and Ito N (2005). Drosophila as a novel animal model for studying the genetics of age-related memory impairment. Rev Neurosci 16: 137–149.

    CAS  PubMed  Google Scholar 

  223. Bilen J and Bonini NM (2005). Drosophila as a model for human neurodegenerative disease. Annu Rev Genet 39: 153–171.

    CAS  PubMed  Google Scholar 

  224. Sang TK and Jackson GR (2005). Drosophila models of neurodegenerative disease. NeuroRx 2: 438–446.

    PubMed  Google Scholar 

  225. Erickson CA and Barnes CA (2003). The neurobiology of memory changes in normal aging. Exp Gerontol 38: 61–69.

    CAS  PubMed  Google Scholar 

  226. Kelly KM, Nadon NL, Morrison JH, Thibault O, Barnes CA, and Blalock EM (2006). The neurobiology of aging. Epilepsy Res 68(Suppl 1): S5–S20.

    CAS  PubMed  Google Scholar 

  227. Melrose HL, Lincoln SJ, Tyndall GM, and Farrer MJ (2006). Parkinson’s disease: a rethink of rodent models. Exp Brain Res 173: 196–204.

    PubMed  Google Scholar 

  228. Boillee S, Peschanski M, and Junier MP (2003). The wobbler mouse: a neurodegeneration jigsaw puzzle. Mol Neurobiol 28: 65–106.

    CAS  PubMed  Google Scholar 

  229. Hensley K, Mhatre M, Mou S, Pye QN, Stewart C, West M, and Williamson KS (2006). On the relation of oxidative stress to neuroinflammation: lessons learned from the G93A-SOD1 mouse model of amyotrophic lateral sclerosis. Antioxid Redox Signal 8: 2075–2087.

    CAS  PubMed  Google Scholar 

  230. Kuhn A, Goldstein DR, Hodges A, Strand AD, Sengstag T, Kooperberg C, Becanovic K, Pouladi MA, Sathasivam K, Cha JH, Hannan AJ, Hayden MR, Leavitt BR, Dunnett SB, Ferrante RJ, Albin R, Shelbourne P, Delorenzi M, Augood SJ, Faull RL, Olson JM, Bates GP, Jones L, and Luthi-Carter R (2007). Mutant huntingtin’s effects on striatal gene expression in mice recapitulate changes observed in human Huntington’s disease brain and do not differ with mutant huntingtin length or wild-type huntingtin dosage. Hum Mol Genet 16: 1845–1861.

    CAS  PubMed  Google Scholar 

  231. Menalled LB and Chesselet MF (2002). Mouse models of Huntington’s disease. Trends Pharmacol Sci 23: 32–39.

    CAS  PubMed  Google Scholar 

  232. Strand AD, Baquet ZC, Aragaki AK, Holmans P, Yang L, Cleren C, Beal MF, Jones L, Kooperberg C, Olson JM, and Jones KR (2007). Expression profiling of Huntington’s disease models suggests that brain-derived neurotrophic factor depletion plays a major role in striatal degeneration. J Neurosci 27: 11758–11768.

    CAS  PubMed  Google Scholar 

  233. Simola N, Morelli M, and Carta AR (2007). The 6-hydroxydopamine model of Parkinson’s disease. Neurotox Res 11: 151–167.

    CAS  PubMed  Google Scholar 

  234. DiBernardo AB and Cudkowicz ME (2006). Translating preclinical insights into effective human trials in ALS. Biochim Biophys Acta 1762: 1139–1149.

    CAS  PubMed  Google Scholar 

  235. von Horsten S, Schmitt I, Nguyen HP, Holzmann C, Schmidt T, Walther T, Bader M, Pabst R, Kobbe P, Krotova J, Stiller D, Kask A, Vaarmann A, Rathke-Hartlieb S, Schulz JB, Grasshoff U, Bauer I, Vieira-Saecker AM, Paul M, Jones L, Lindenberg KS, Landwehrmeyer B, Bauer A, Li XJ, and Riess O (2003). Transgenic rat model of Huntington’s disease. Hum Mol Genet 12: 617–624.

    Google Scholar 

  236. Chan AD, Nippak PM, Murphey H, Ikeda-Douglas CJ, Muggenburg B, Head E, Cotman CW, and Milgram NW (2002). Visuospatial impairments in aged canines (Canis familiaris): the role of cognitive-behavioral flexibility. Behav Neurosci 116: 443–454.

    PubMed  Google Scholar 

  237. Tapp PD, Siwak CT, Estrada J, Holowachuk D, and Milgram NW (2003). Effects of age on measures of complex working memory span in the beagle dog (Canis familiaris) using two versions of a spatial list learning paradigm. Learn Mem 10: 148–160.

    PubMed  Google Scholar 

  238. Dimakopoulos AC and Mayer RJ (2002). Aspects of neurodegeneration in the canine brain. J Nutr 132: 1579S–1582S.

    CAS  PubMed  Google Scholar 

  239. Cork LC (1991). Hereditary canine spinal muscular atrophy: an animal model of motor neuron disease. Can J Neurol Sci 18: 432–434.

    CAS  PubMed  Google Scholar 

  240. McFarlane D (2007). Advantages and limitations of the equine disease, pituitary pars intermedia dysfunction, as a model of spontaneous dopaminergic neurodegenerative disease. Ageing Res Rev 6: 54–63.

    CAS  PubMed  Google Scholar 

  241. Peters A (2002). Structural changes that occur during normal aging of primate cerebral hemispheres. Neurosci Biobehav Rev 26: 733–741.

    PubMed  Google Scholar 

  242. Emborg ME (2007). Nonhuman primate models of Parkinson’s disease. Ilar J 48: 339–355.

    CAS  PubMed  Google Scholar 

  243. Outeiro TF and Muchowski PJ (2004). Molecular genetics approaches in yeast to study amyloid diseases. J Mol Neurosci 23: 49–60.

    CAS  PubMed  Google Scholar 

  244. Sherman MY and Muchowski PJ (2003). Making yeast tremble: yeast models as tools to study neurodegenerative disorders. Neuromolecular Med 4: 133–146.

    CAS  PubMed  Google Scholar 

  245. Yeoman MS and Faragher RG (2001). Ageing and the nervous system: insights from studies on invertebrates. Biogerontology 2: 85–97.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine A. Wolkow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Wolkow, C.A., Zou, S., Mattson, M.P. (2010). Aging of the Nervous System. In: Wolf, N. (eds) The Comparative Biology of Aging. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3465-6_14

Download citation

Publish with us

Policies and ethics