Skip to main content

Extracellular Purines in Endothelial Cell Barrier Regulation

  • 540 Accesses

Abstract

The vascular endothelium is a semi-selective diffusion barrier that regulates a variety of functions including controlling of the passage of macromolecules and fluid between the blood and interstitial fluid. It is well known that loss of this barrier (permeability increase) results in tissue inflammation, the hall mark of inflammatory diseases such as acute lung injury (ALI) and a severe form of it, acute respiratory distress syndrome (ARDS). Apart from ventilation strategies, no standard treatment exists for ALI and ARDS, making the search for novel regulators of endothelial hyperpermeability and dysfunction important. Accumulating data suggest that extracellular purines are promising and physiologically relevant barrier-protective agents. Purines decrease transendothelial permeability by interacting with cell surface P1 and P2Y purinoceptors belonging to the superfamily of G-protein-coupled receptors (GPCR). Selective activation of endothelial purinoreceptors responsible for barrier protection might form a basis for the treatment of various disorders. The therapeutic potential of purinoreceptors is rapidly expanding field in pharmacology and some selective agonists became recently available. In this review, we demonstrate the comprehensive overview of the purinoceptors expression in the endothelium, their interaction with G-proteins and activation of various signal transduction pathways, which lead to an endothelial barrier enhancement and protection.

Keywords

  • Purinoceptor
  • Vascular endothelium
  • G-Protein
  • Permeability
  • ATP
  • Barrier enhancement
  • VE-cadherin
  • MLC-phosphatase
  • GPCR
  • P2Y
  • Purines
  • Adenosine
  • Protein kinase A
  • LPS

Nagavedi S. Umapathy and Evgeny A. Zemskov are equally contributed.

Conflict of Interest: The authors declare no conflicts of interest.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-90-481-3435-9_3
  • Chapter length: 17 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-90-481-3435-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)
Fig. 3.1
Fig. 3.2
Fig. 3.3
Fig. 3.4

References

  1. Ahmad S, Ahmad A, Ghosh M, Leslie CC, White CW. (2004) Extracellular ATP-mediated signaling for survival in hyperoxia-induced oxidative stress. J Biol Chem 279:16317–25.

    CAS  PubMed  CrossRef  Google Scholar 

  2. Ahmad S, Ahmad A, White CW. (2006) Purinergic signaling and kinase activation for survival in pulmonary oxidative stress and disease. Free Radic Biol Med 41:29–40.

    CAS  PubMed  CrossRef  Google Scholar 

  3. Anastasiadis PZ, Reynolds AB. (2000) The p120 catenin family: complex roles in adhesion, signaling and cancer. J Cell Sci 113 (Pt 8):1319–34.

    CAS  PubMed  Google Scholar 

  4. Angiolillo DJ. (2007) ADP receptor antagonism: what’s in the pipeline? Am J Cardiovasc Drugs 7:423–32.

    CAS  PubMed  CrossRef  Google Scholar 

  5. Antonov A, Snead C, Gorshkov B, Antonova GN, Verin AD, Catravas JD. (2008) Heat shock protein 90 inhibitors protect and restore pulmonary endothelial barrier function. Am J Respir Cell Mol Biol 39:551–9.

    CAS  PubMed  CrossRef  Google Scholar 

  6. Beigi R, Kobatake E, Aizawa M, Dubyak GR. (1999) Detection of local ATP release from activated platelets using cell surface-attached firefly luciferase. Am J Physiol 276:C267–78.

    CAS  PubMed  Google Scholar 

  7. Bergfeld GR, Forrester T. (1992) Release of ATP from human erythrocytes in response to a brief period of hypoxia and hypercapnia. Cardiovasc Res 26:40–7.

    CAS  PubMed  CrossRef  Google Scholar 

  8. Birukova AA, Adyshev D, Gorshkov B, Bokoch GM, Birukov KG, Verin AD. (2006) GEF-H1 is involved in agonist-induced human pulmonary endothelial barrier dysfunction. Am J Physiol Lung Cell Mol Physiol 290:L540–8.

    CAS  PubMed  CrossRef  Google Scholar 

  9. Birukova AA, Birukov KG, Adyshev D, Usatyuk P, Natarajan V, Garcia JG, Verin AD. (2005) Involvement of microtubules and Rho pathway in TGF-beta1-induced lung vascular barrier dysfunction. J Cell Physiol 204:934–47.

    CAS  PubMed  CrossRef  Google Scholar 

  10. Birukova AA, Smurova K, Birukov KG, Usatyuk P, Liu F, Kaibuchi K, Ricks-Cord A, Natarajan V, Alieva I, Garcia JG, Verin AD. (2004) Microtubule disassembly induces cytoskeletal remodeling and lung vascular barrier dysfunction: role of Rho-dependent mechanisms. J Cell Physiol 201:55–70.

    CAS  PubMed  CrossRef  Google Scholar 

  11. Bodin P, Burnstock G. (1996) ATP-stimulated release of ATP by human endothelial cells. J Cardiovasc Pharmacol 27:872–5.

    CAS  PubMed  CrossRef  Google Scholar 

  12. Bodin P, Burnstock G. (1998) Increased release of ATP from endothelial cells during acute inflammation. Inflamm Res 47:351–4.

    CAS  PubMed  CrossRef  Google Scholar 

  13. Bogatcheva NV, Adyshev D, Mambetsariev B, Moldobaeva N, Verin AD. (2007) Involvement of microtubules, p38, and Rho kinases pathway in 2-methoxyestradiol-induced lung vascular barrier dysfunction. Am J Physiol Lung Cell Mol Physiol 292:L487–99.

    CAS  PubMed  CrossRef  Google Scholar 

  14. Burnstock G. (2008) Purinergic receptors as future targets for treatment of functional GI disorders. Gut 57:1193–4.

    PubMed  CrossRef  Google Scholar 

  15. Burnstock G, Williams M. (2000) P2 purinergic receptors: modulation of cell function and therapeutic potential. J Pharmacol Exp Ther 295:862–9.

    CAS  PubMed  Google Scholar 

  16. Carroll JS, Ku CJ, Karunarathne W, Spence DM. (2007) Red blood cell stimulation of platelet nitric oxide production indicated by quantitative monitoring of the communication between cells in the bloodstream. Anal Chem 79:5133–8.

    CAS  PubMed  CrossRef  Google Scholar 

  17. Chatterjee A, Snead C, Yetik-Anacak G, Antonova G, Zeng J, Catravas JD. (2008) Heat shock protein 90 inhibitors attenuate LPS-induced endothelial hyperpermeability. Am J Physiol Lung Cell Mol Physiol 294:L755–63.

    CAS  PubMed  CrossRef  Google Scholar 

  18. Chen Y, Harry A, Li J, Smit MJ, Bai X, Magnusson R, Pieroni JP, Weng G, Iyengar R. (1997) Adenylyl cyclase 6 is selectively regulated by protein kinase A phosphorylation in a region involved in Galphas stimulation. Proc Natl Acad Sci USA 94:14100–4.

    CAS  PubMed  CrossRef  Google Scholar 

  19. Coade SB, Pearson JD. (1989) Metabolism of adenine nucleotides in human blood. Circ Res 65:531–7.

    CAS  PubMed  Google Scholar 

  20. Comerford KM, Lawrence DW, Synnestvedt K, Levi BP, Colgan SP. (2002) Role of vasodilator-stimulated phosphoprotein in PKA-induced changes in endothelial junctional permeability. FASEB J 16:583–5.

    CAS  PubMed  Google Scholar 

  21. Communi D, Govaerts C, Parmentier M, Boeynaems JM. (1997) Cloning of a human purinergic P2Y receptor coupled to phospholipase C and adenylyl cyclase. J Biol Chem 272:31969–73.

    CAS  PubMed  CrossRef  Google Scholar 

  22. Communi D, Robaye B, Boeynaems JM. (1999) Pharmacological characterization of the human P2Y11 receptor. Br J Pharmacol 128:1199–206.

    CAS  PubMed  CrossRef  Google Scholar 

  23. Coughlin SR. (2000) Thrombin signalling and protease-activated receptors. Nature 407: 258–64.

    CAS  PubMed  CrossRef  Google Scholar 

  24. da Silva CG, Specht A, Wegiel B, Ferran C, Kaczmarek E. (2009) Mechanism of purinergic activation of endothelial nitric oxide synthase in endothelial cells. Circulation 119:871–9.

    PubMed  CrossRef  CAS  Google Scholar 

  25. Dedkova EN, Blatter LA. (2002) Nitric oxide inhibits capacitative Ca2+ entry and enhances endoplasmic reticulum Ca2+ uptake in bovine vascular endothelial cells. J Physiol 539:77–91.

    CAS  PubMed  CrossRef  Google Scholar 

  26. Di Benedetto G, Zoccarato A, Lissandron V, Terrin A, Li X, Houslay MD, Baillie GS, Zaccolo M. (2008) Protein kinase A type I and type II define distinct intracellular signaling compartments. Circ Res 103:836–44.

    PubMed  CrossRef  CAS  Google Scholar 

  27. Dudek SM, Camp SM, Chiang ET, Singleton PA, Usatyuk PV, Zhao Y, Natarajan V, Garcia JG. (2007) Pulmonary endothelial cell barrier enhancement by FTY720 does not require the S1P1 receptor. Cell Signal 19:1754–64.

    CAS  PubMed  CrossRef  Google Scholar 

  28. Dudek SM, Garcia JG. (2001) Cytoskeletal regulation of pulmonary vascular permeability. J Appl Physiol 91:1487–500.

    CAS  PubMed  Google Scholar 

  29. Duza T, Sarelius IH. (2003) Conducted dilations initiated by purines in arterioles are endothelium dependent and require endothelial Ca2+. Am J Physiol Heart Circ Physiol 285:H26–37.

    CAS  PubMed  Google Scholar 

  30. Ecke D, Hanck T, Tulapurkar ME, Schafer R, Kassack M, Stricker R, Reiser G. (2008) Hetero-oligomerization of the P2Y11 receptor with the P2Y1 receptor controls the internalization and ligand selectivity of the P2Y11 receptor. Biochem J 409:107–16.

    CAS  PubMed  CrossRef  Google Scholar 

  31. Eckle T, Faigle M, Grenz A, Laucher S, Thompson LF, Eltzschig HK. (2008) A2B adenosine receptor dampens hypoxia-induced vascular leak. Blood 111:2024–35.

    CAS  PubMed  CrossRef  Google Scholar 

  32. Eltzschig HK, Abdulla P, Hoffman E, Hamilton KE, Daniels D, Schonfeld C, Loffler M, Reyes G, Duszenko M, Karhausen J, Robinson A, Westerman KA, Coe IR, Colgan SP. (2005) HIF-1-dependent repression of equilibrative nucleoside transporter (ENT) in hypoxia. J Exp Med 202:1493–505.

    CAS  PubMed  CrossRef  Google Scholar 

  33. Eltzschig HK, Faigle M, Knapp S, Karhausen J, Ibla J, Rosenberger P, Odegard KC, Laussen PC, Thompson LF, Colgan SP. (2006) Endothelial catabolism of extracellular adenosine during hypoxia: the role of surface adenosine deaminase and CD26. Blood 108:1602–10.

    CAS  PubMed  CrossRef  Google Scholar 

  34. Erlinge D. (2004) Extracellular ATP: a central player in the regulation of vascular smooth muscle phenotype. Focus on “Dual role of PKA in phenotype modulation of vascular smooth muscle cells by extracellular ATP”. Am J Physiol Cell Physiol 287: C260–2.

    CAS  PubMed  CrossRef  Google Scholar 

  35. Fang Y, Olah ME. (2007) Cyclic AMP-dependent, protein kinase A-independent activation of extracellular signal-regulated kinase 1/2 following adenosine receptor stimulation in human umbilical vein endothelial cells: role of exchange protein activated by cAMP 1 (Epac1). J Pharmacol Exp Ther 322:1189–200.

    CAS  PubMed  CrossRef  Google Scholar 

  36. Filippov AK, Fernandez-Fernandez JM, Marsh SJ, Simon J, Barnard EA, Brown DA. (2004) Activation and inhibition of neuronal G protein-gated inwardly rectifying K(+) channels by P2Y nucleotide receptors. Mol Pharmacol 66:468–77.

    CAS  PubMed  Google Scholar 

  37. Filippov AK, Webb TE, Barnard EA, Brown DA. (1999) Dual coupling of heterologously-expressed rat P2Y6 nucleotide receptors to N-type Ca2+ and M-type K+ currents in rat sympathetic neurones. Br J Pharmacol 126:1009–17.

    CAS  PubMed  CrossRef  Google Scholar 

  38. Fleming I, Fisslthaler B, Dimmeler S, Kemp BE, Busse R. (2001) Phosphorylation of Thr(495) regulates Ca(2+)/calmodulin-dependent endothelial nitric oxide synthase activity. Circ Res 88:E68–75.

    CAS  PubMed  CrossRef  Google Scholar 

  39. Fukuhara S, Sakurai A, Sano H, Yamagishi A, Somekawa S, Takakura N, Saito Y, Kangawa K, Mochizuki N. (2005) Cyclic AMP potentiates vascular endothelial cadherin-mediated cell-cell contact to enhance endothelial barrier function through an Epac-Rap1 signaling pathway. Mol Cell Biol 25:136–46.

    CAS  PubMed  CrossRef  Google Scholar 

  40. Garcia JG, Davis HW, Patterson CE. (1995) Regulation of endothelial cell gap formation and barrier dysfunction: role of myosin light chain phosphorylation. J Cell Physiol 163: 510–22.

    CAS  PubMed  CrossRef  Google Scholar 

  41. Gavard J, Gutkind JS. (2008) Protein kinase C-related kinase and ROCK are required for thrombin-induced endothelial cell permeability downstream from Galpha12/13 and Galpha11/q. J Biol Chem 283:29888–96.

    CAS  PubMed  CrossRef  Google Scholar 

  42. Germack R, Griffin M, Dickenson JM. (2004) Activation of protein kinase B by adenosine A1 and A3 receptors in newborn rat cardiomyocytes. J Mol Cell Cardiol 37:989–99.

    CAS  PubMed  CrossRef  Google Scholar 

  43. Govers R, Rabelink TJ. (2001) Cellular regulation of endothelial nitric oxide synthase. Am J Physiol Renal Physiol 280:F193–206.

    CAS  PubMed  Google Scholar 

  44. Hammarberg C, Fredholm BB, Schulte G. (2004) Adenosine A3 receptor-mediated regulation of p38 and extracellular-regulated kinase ERK1/2 via phosphatidylinositol-3'-kinase. Biochem Pharmacol 67:129–34.

    CAS  PubMed  CrossRef  Google Scholar 

  45. Hirano S, Rees RS, Yancy SL, Welsh MJ, Remick DG, Yamada T, Hata J, Gilmont RR. (2004) Endothelial barrier dysfunction caused by LPS correlates with phosphorylation of HSP27 in vivo. Cell Biol Toxicol 20:1–14.

    CAS  PubMed  CrossRef  Google Scholar 

  46. Hoffmann C, Ziegler N, Reiner S, Krasel C, Lohse MJ. (2008) Agonist-selective, receptor-specific interaction of human P2Y receptors with beta-arrestin-1 and -2. J Biol Chem 283:30933–41.

    CAS  PubMed  CrossRef  Google Scholar 

  47. Holinstat M, Mehta D, Kozasa T, Minshall RD, Malik AB. (2003) Protein kinase Calpha-induced p115RhoGEF phosphorylation signals endothelial cytoskeletal rearrangement. J Biol Chem 278:28793–8.

    CAS  PubMed  CrossRef  Google Scholar 

  48. Houslay MD, Baillie GS. (2003) The role of ERK2 docking and phosphorylation of PDE4 cAMP phosphodiesterase isoforms in mediating cross-talk between the cAMP and ERK signalling pathways. Biochem Soc Trans 31:1186–90.

    CAS  PubMed  CrossRef  Google Scholar 

  49. Iwami G, Kawabe J, Ebina T, Cannon PJ, Homcy CJ, Ishikawa Y. (1995) Regulation of adenylyl cyclase by protein kinase A. J Biol Chem 270:12481–4.

    CAS  PubMed  CrossRef  Google Scholar 

  50. Iyer S, Ferreri DM, DeCocco NC, Minnear FL, Vincent PA. (2004) VE-cadherin-p120 interaction is required for maintenance of endothelial barrier function. Am J Physiol Lung Cell Mol Physiol 286:L1143–53.

    CAS  PubMed  CrossRef  Google Scholar 

  51. Klinger M, Freissmuth M, Nanoff C. (2002) Adenosine receptors: G protein-mediated signalling and the role of accessory proteins. Cell Signal 14:99–108.

    CAS  PubMed  CrossRef  Google Scholar 

  52. Knezevic N, Roy A, Timblin B, Konstantoulaki M, Sharma T, Malik AB, Mehta D. (2007) GDI-1 phosphorylation switch at serine 96 induces RhoA activation and increased endothelial permeability. Mol Cell Biol 27:6323–33.

    CAS  PubMed  CrossRef  Google Scholar 

  53. Koesling D, Mullershausen F, Lange A, Friebe A, Mergia E, Wagner C, Russwurm M. (2005) Negative feedback in NO/cGMP signalling. Biochem Soc Trans 33:1119–22.

    CAS  PubMed  CrossRef  Google Scholar 

  54. Kolosova IA, Mirzapoiazova T, Adyshev D, Usatyuk P, Romer LH, Jacobson JR, Natarajan V, Pearse DB, Garcia JG, Verin AD. (2005) Signaling pathways involved in adenosine triphosphate-induced endothelial cell barrier enhancement. Circ Res 97: 115–24.

    CAS  PubMed  CrossRef  Google Scholar 

  55. Kolosova IA, Mirzapoiazova T, Moreno-Vinasco L, Sammani S, Garcia JG, Verin AD. (2008) Protective effect of purinergic agonist ATPgammaS against acute lung injury. Am J Physiol Lung Cell Mol Physiol 294:L319–24.

    CAS  PubMed  CrossRef  Google Scholar 

  56. Kozasa T, Jiang X, Hart MJ, Sternweis PM, Singer WD, Gilman AG, Bollag G, Sternweis PC. (1998) p115 RhoGEF, a GTPase activating protein for Galpha12 and Galpha13. Science 280:2109–11.

    CAS  PubMed  CrossRef  Google Scholar 

  57. Krause M, Dent EW, Bear JE, Loureiro JJ, Gertler FB. (2003) Ena/VASP proteins: regulators of the actin cytoskeleton and cell migration. Annu Rev Cell Dev Biol 19:541–64.

    CAS  PubMed  CrossRef  Google Scholar 

  58. Liao Z, Seye CI, Weisman GA, Erb L. (2007) The P2Y2 nucleotide receptor requires interaction with alpha v integrins to access and activate G12. J Cell Sci 120:1654–62.

    CAS  PubMed  CrossRef  Google Scholar 

  59. Loffler M, Morote-Garcia JC, Eltzschig SA, Coe IR, Eltzschig HK. (2007) Physiological roles of vascular nucleoside transporters. Arterioscler Thromb Vasc Biol 27:1004–13.

    PubMed  CrossRef  CAS  Google Scholar 

  60. Lynge J, Schulte G, Nordsborg N, Fredholm BB, Hellsten Y. (2003) Adenosine A 2B receptors modulate cAMP levels and induce CREB but not ERK1/2 and p38 phosphorylation in rat skeletal muscle cells. Biochem Biophys Res Commun 307:180–7.

    CAS  PubMed  CrossRef  Google Scholar 

  61. Ma YC, Huang J, Ali S, Lowry W, Huang XY. (2000) Src tyrosine kinase is a novel direct effector of G proteins. Cell 102:635–46.

    CAS  PubMed  CrossRef  Google Scholar 

  62. Marinissen MJ, Chiariello M, Tanos T, Bernard O, Narumiya S, Gutkind JS. (2004) The small GTP-binding protein RhoA regulates c-jun by a ROCK-JNK signaling axis. Mol Cell 14:29–41.

    CAS  PubMed  CrossRef  Google Scholar 

  63. Minshall RD, Tiruppathi C, Vogel SM, Malik AB. (2002) Vesicle formation and trafficking in endothelial cells and regulation of endothelial barrier function. Histochem Cell Biol 117:105–12.

    CAS  PubMed  CrossRef  Google Scholar 

  64. Mong PY, Wang Q. (2009) Activation of Rho kinase isoforms in lung endothelial cells during inflammation. J Immunol 182:2385–94.

    CAS  PubMed  CrossRef  Google Scholar 

  65. Murthy KS, Makhlouf GM. (1998) Coexpression of ligand-gated P2X and G protein-coupled P2Y receptors in smooth muscle. Preferential activation of P2Y receptors coupled to phospholipase C (PLC)-beta1 via Galphaq/11 and to PLC-beta3 via Gbetagammai3. J Biol Chem 273:4695–704.

    CAS  PubMed  CrossRef  Google Scholar 

  66. Newton R, Stevens DA, Hart LA, Lindsay M, Adcock IM, Barnes PJ. (1997) Superinduction of COX-2 mRNA by cycloheximide and interleukin-1beta involves increased transcription and correlates with increased NF-kappaB and JNK activation. FEBS Lett 418:135–8.

    CAS  PubMed  CrossRef  Google Scholar 

  67. Noll T, Holschermann H, Koprek K, Gunduz D, Haberbosch W, Tillmanns H, Piper HM. (1999) ATP reduces macromolecule permeability of endothelial monolayers despite increasing [Ca2+]i. Am J Physiol 276:H1892–901.

    CAS  PubMed  Google Scholar 

  68. Olanrewaju HA, Mustafa SJ. (2000) Adenosine A(2A) and A(2B) receptors mediated nitric oxide production in coronary artery endothelial cells. Gen Pharmacol 35:171–7.

    CAS  PubMed  Google Scholar 

  69. Oldham WM, Hamm HE. (2008) Heterotrimeric G protein activation by G-protein-coupled receptors. Nat Rev Mol Cell Biol 9:60–71.

    CAS  PubMed  CrossRef  Google Scholar 

  70. Palmer TM, Gettys TW, Stiles GL. (1995) Differential interaction with and regulation of multiple G-proteins by the rat A3 adenosine receptor. J Biol Chem 270:16895–902.

    CAS  PubMed  CrossRef  Google Scholar 

  71. Pearson JD, Gordon JL. (1979) Vascular endothelial and smooth muscle cells in culture selectively release adenine nucleotides. Nature 281:384–6.

    CAS  PubMed  CrossRef  Google Scholar 

  72. Pitcher JA, Hall RA, Daaka Y, Zhang J, Ferguson SS, Hester S, Miller S, Caron MG, Lefkowitz RJ, Barak LS. (1998) The G protein-coupled receptor kinase 2 is a microtubule-associated protein kinase that phosphorylates tubulin. J Biol Chem 273:12316–24.

    CAS  PubMed  CrossRef  Google Scholar 

  73. Qi AD, Kennedy C, Harden TK, Nicholas RA. (2001) Differential coupling of the human P2Y(11) receptor to phospholipase C and adenylyl cyclase. Br J Pharmacol 132:318–26.

    CAS  PubMed  CrossRef  Google Scholar 

  74. Qiao J, Holian O, Lee BS, Huang F, Zhang J, Lum H. (2008) Phosphorylation of GTP dissociation inhibitor by PKA negatively regulates RhoA. Am J Physiol Cell Physiol 295:C1161–8.

    CAS  PubMed  CrossRef  Google Scholar 

  75. Raju NC, Eikelboom JW, Hirsh J. (2008) Platelet ADP-receptor antagonists for cardiovascular disease: past, present and future. Nat Clin Pract Cardiovasc Med 5:766–80.

    CAS  PubMed  CrossRef  Google Scholar 

  76. Ralevic V. (2009) Purines as neurotransmitters and neuromodulators in blood vessels. Curr Vasc Pharmacol 7:3–14.

    CAS  PubMed  CrossRef  Google Scholar 

  77. Ray CJ, Marshall JM. (2006) The cellular mechanisms by which adenosine evokes release of nitric oxide from rat aortic endothelium. J Physiol 570:85–96.

    CAS  PubMed  CrossRef  Google Scholar 

  78. Rebecchi MJ, Pentyala SN. (2000) Structure, function, and control of phosphoinositide-specific phospholipase C. Physiol Rev 80:1291–335.

    CAS  PubMed  Google Scholar 

  79. Reinhard M, Jarchau T, Walter U. (2001) Actin-based motility: stop and go with Ena/VASP proteins. Trends Biochem Sci 26:243–9.

    CAS  PubMed  CrossRef  Google Scholar 

  80. Robson SC, Wu Y, Sun X, Knosalla C, Dwyer K, Enjyoji K. (2005) Ectonucleotidases of CD39 family modulate vascular inflammation and thrombosis in transplantation. Semin Thromb Hemost 31:217–33.

    CAS  PubMed  CrossRef  Google Scholar 

  81. Ryzhov S, Zaynagetdinov R, Goldstein AE, Matafonov A, Biaggioni I, Feoktistov I. (2009) Differential role of the carboxy-terminus of the A(2B) adenosine receptor in stimulation of adenylate cyclase, phospholipase Cbeta, and interleukin-8. Purinergic Signal 5: 289–98.

    CAS  PubMed  CrossRef  Google Scholar 

  82. Sandoval R, Malik AB, Minshall RD, Kouklis P, Ellis CA, Tiruppathi C. (2001) Ca(2+) signalling and PKCalpha activate increased endothelial permeability by disassembly of VE-cadherin junctions. J Physiol 533:433–45.

    CAS  PubMed  CrossRef  Google Scholar 

  83. Satpathy M, Gallagher P, Jin Y, Srinivas SP. (2005) Extracellular ATP opposes thrombin-induced myosin light chain phosphorylation and loss of barrier integrity in corneal endothelial cells. Exp Eye Res 81:183–92.

    CAS  PubMed  CrossRef  Google Scholar 

  84. Satpathy M, Gallagher P, Lizotte-Waniewski M, Srinivas SP. (2004) Thrombin-induced phosphorylation of the regulatory light chain of myosin II in cultured bovine corneal endothelial cells. Exp Eye Res 79:477–86.

    CAS  PubMed  CrossRef  Google Scholar 

  85. Schaddelee MP, Voorwinden HL, van Tilburg EW, Pateman TJ, Ijzerman AP, Danhof M, de Boer AG. (2003) Functional role of adenosine receptor subtypes in the regulation of blood-brain barrier permeability: possible implications for the design of synthetic adenosine derivatives. Eur J Pharm Sci 19:13–22.

    CAS  PubMed  CrossRef  Google Scholar 

  86. Schneider GB, Hamano H, Cooper LF. (1998) In vivo evaluation of hsp27 as an inhibitor of actin polymerization: hsp27 limits actin stress fiber and focal adhesion formation after heat shock. J Cell Physiol 177:575–84.

    CAS  PubMed  CrossRef  Google Scholar 

  87. Schneider JC, El Kebir D, Chereau C, Lanone S, Huang XL, De Buys Roessingh AS, Mercier JC, Dall’Ava-Santucci J, Dinh-Xuan AT. (2003) Involvement of Ca2+/calmodulin-dependent protein kinase II in endothelial NO production and endothelium-dependent relaxation. Am J Physiol Heart Circ Physiol 284:H2311–9.

    CAS  PubMed  Google Scholar 

  88. Schulte G, Fredholm BB. (2000) Human adenosine A(1), A(2A), A(2B), and A(3) receptors expressed in Chinese hamster ovary cells all mediate the phosphorylation of extracellular-regulated kinase 1/2. Mol Pharmacol 58:477–82.

    CAS  PubMed  Google Scholar 

  89. Schulte G, Fredholm BB. (2002) Signaling pathway from the human adenosine A(3) receptor expressed in Chinese hamster ovary cells to the extracellular signal-regulated kinase 1/2. Mol Pharmacol 62:1137–46.

    CAS  PubMed  CrossRef  Google Scholar 

  90. Schulte G, Fredholm BB. (2003) Signalling from adenosine receptors to mitogen-activated protein kinases. Cell Signal 15:813–27.

    CAS  PubMed  CrossRef  Google Scholar 

  91. Schwiebert LM, Rice WC, Kudlow BA, Taylor AL, Schwiebert EM. (2002) Extracellular ATP signaling and P2X nucleotide receptors in monolayers of primary human vascular endothelial cells. Am J Physiol Cell Physiol 282:C289–301.

    CAS  PubMed  Google Scholar 

  92. Shajahan AN, Timblin BK, Sandoval R, Tiruppathi C, Malik AB, Minshall RD. (2004) Role of Src-induced dynamin-2 phosphorylation in caveolae-mediated endocytosis in endothelial cells. J Biol Chem 279:20392–400.

    CAS  PubMed  CrossRef  Google Scholar 

  93. Shajahan AN, Tiruppathi C, Smrcka AV, Malik AB, Minshall RD. (2004) Gbetagamma activation of Src induces caveolae-mediated endocytosis in endothelial cells. J Biol Chem 279:48055–62.

    CAS  PubMed  CrossRef  Google Scholar 

  94. Singh I, Knezevic N, Ahmmed GU, Kini V, Malik AB, Mehta D. (2007) Galphaq-TRPC6-mediated Ca2+ entry induces RhoA activation and resultant endothelial cell shape change in response to thrombin. J Biol Chem 282:7833–43.

    CAS  PubMed  CrossRef  Google Scholar 

  95. Thompson LF, Eltzschig HK, Ibla JC, Van De Wiele CJ, Resta R, Morote-Garcia JC, Colgan SP. (2004) Crucial role for ecto-5'-nucleotidase (CD73) in vascular leakage during hypoxia. J Exp Med 200:1395–405.

    CAS  PubMed  CrossRef  Google Scholar 

  96. Tiruppathi C, Song W, Bergenfeldt M, Sass P, Malik AB. (1997) Gp60 activation mediates albumin transcytosis in endothelial cells by tyrosine kinase-dependent pathway. J Biol Chem 272:25968–75.

    CAS  PubMed  CrossRef  Google Scholar 

  97. Trevethick MA, Mantell SJ, Stuart EF, Barnard A, Wright KN, Yeadon M. (2008) Treating lung inflammation with agonists of the adenosine A2A receptor: promises, problems and potential solutions. Br J Pharmacol 155:463–74.

    CAS  PubMed  CrossRef  Google Scholar 

  98. Trincavelli ML, Tuscano D, Marroni M, Klotz KN, Lucacchini A, Martini C. (2002) Involvement of mitogen protein kinase cascade in agonist-mediated human A(3) adenosine receptor regulation. Biochim Biophys Acta 1591:55–62.

    CAS  PubMed  CrossRef  Google Scholar 

  99. Ukropec JA, Hollinger MK, Salva SM, Woolkalis MJ. (2000) SHP2 association with VE-cadherin complexes in human endothelial cells is regulated by thrombin. J Biol Chem 275:5983–6.

    CAS  PubMed  CrossRef  Google Scholar 

  100. Verin AD, Birukova A, Wang P, Liu F, Becker P, Birukov K, Garcia JG. (2001) Microtubule disassembly increases endothelial cell barrier dysfunction: role of MLC phosphorylation. Am J Physiol Lung Cell Mol Physiol 281:L565–74.

    CAS  PubMed  Google Scholar 

  101. Verin AD, Patterson CE, Day MA, Garcia JG. (1995) Regulation of endothelial cell gap formation and barrier function by myosin-associated phosphatase activities. Am J Physiol 269:L99–108.

    CAS  PubMed  Google Scholar 

  102. Verkhrasky A, Krishtal OA, Burnstock G. (2009) Purinoceptors on neuroglia. Mol Neurobiol 39:190–208.

    PubMed  CrossRef  CAS  Google Scholar 

  103. Volonte C, Amadio S, D’Ambrosi N, Colpi M, Burnstock G. (2006) P2 receptor web: complexity and fine-tuning. Pharmacol Ther 112:264–80.

    CAS  PubMed  CrossRef  Google Scholar 

  104. Vu TK, Hung DT, Wheaton VI, Coughlin SR. (1991) Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell 64:1057–68.

    CAS  PubMed  CrossRef  Google Scholar 

  105. Waldo GL, Harden TK. (2004) Agonist binding and Gq-stimulating activities of the purified human P2Y1 receptor. Mol Pharmacol 65:426–36.

    CAS  PubMed  CrossRef  Google Scholar 

  106. Wang L, Karlsson L, Moses S, Hultgardh-Nilsson A, Andersson M, Borna C, Gudbjartsson T, Jern S, Erlinge D. (2002) P2 receptor expression profiles in human vascular smooth muscle and endothelial cells. J Cardiovasc Pharmacol 40:841–53.

    CAS  PubMed  CrossRef  Google Scholar 

  107. Weissmuller T, Eltzschig HK, Colgan SP. (2005) Dynamic purine signaling and metabolism during neutrophil-endothelial interactions. Purinergic Signal 1:229–39.

    CAS  PubMed  CrossRef  Google Scholar 

  108. Wilson HL, Varcoe RW, Stokes L, Holland KL, Francis SE, Dower SK, Surprenant A, Crossman DC. (2007) P2X receptor characterization and IL-1/IL-1Ra release from human endothelial cells. Br J Pharmacol 151:115–27.

    CAS  PubMed  CrossRef  Google Scholar 

  109. Wong AM, Chow AW, Au SC, Wong CC, Ko WH. (2008) Apical vs. Basolateral P2Y6 Receptor-mediated Cl- Secretion in Immortalized Bronchial Epithelia. Am J Respir Cell Mol Biol.

    Google Scholar 

  110. Wyatt AW, Steinert JR, Wheeler-Jones CP, Morgan AJ, Sugden D, Pearson JD, Sobrevia L, Mann GE. (2002) Early activation of the p42/p44MAPK pathway mediates adenosine-induced nitric oxide production in human endothelial cells: a novel calcium-insensitive mechanism. FASEB J 16:1584–94.

    CAS  PubMed  CrossRef  Google Scholar 

  111. Yaar R, Jones MR, Chen JF, Ravid K. (2005) Animal models for the study of adenosine receptor function. J Cell Physiol 202:9–20.

    CAS  PubMed  CrossRef  Google Scholar 

  112. Yamamoto K, Korenaga R, Kamiya A, Qi Z, Sokabe M, Ando J. (2000) P2X(4) receptors mediate ATP-induced calcium influx in human vascular endothelial cells. Am J Physiol Heart Circ Physiol 279:H285–92.

    CAS  PubMed  Google Scholar 

  113. Yao X, Huang Y. (2003) From nitric oxide to endothelial cytosolic Ca2+: a negative feedback control. Trends Pharmacol Sci 24:263–6.

    CAS  PubMed  CrossRef  Google Scholar 

  114. Zhu B, Kelly J, Vemavarapu L, Thompson WJ, Strada SJ. (2004) Activation and induction of cyclic AMP phosphodiesterase (PDE4) in rat pulmonary microvascular endothelial cells. Biochem Pharmacol 68:479–91.

    CAS  PubMed  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander D. Verin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Umapathy, N.S. et al. (2010). Extracellular Purines in Endothelial Cell Barrier Regulation. In: Gerasimovskaya, E., Kaczmarek, E. (eds) Extracellular ATP and Adenosine as Regulators of Endothelial Cell Function. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3435-9_3

Download citation