Skip to main content

Probing the Mechanism of the Double C—H (De)Activation Route of a Ru-Based Olefin Metathesis Catalyst

  • Conference paper
Green Metathesis Chemistry

Abstract

A theoretical study of a double C—H activation mechanism that deactivates a family of second generation Ru-based catalysts is presented. DFT calculations are used to rationalize the complex mechanistic pathway from the starting precatalyst to the experimentally characterized decomposition products. In particular, we show that all the intermediates proposed by Grubbs and coworkers are indeed possible intermediates in the deactivation pathway, although the sequence of steps is somewhat different

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Grubbs RH (ed.) (2003). Handbook of metathesis. Wiley-VCH, Weinheim, Germany

    Google Scholar 

  2. Nguyen ST, Grubbs RH, Ziller JW (1993) J Am Chem Soc 115:9858–9859

    Article  CAS  Google Scholar 

  3. Scholl M, Ding S, Lee CW, Grubbs RH (1999) Org Lett 1:953–956;

    Article  CAS  Google Scholar 

  4. Huang J, Stevens ED, Nolan SP, Peterson JL (1999) J Am Chem Soc 121:2674–2678;

    Article  CAS  Google Scholar 

  5. Weskamp T, Kohl FJ, Hieringer W, Gleich D, Herrmann WA (1999) Angew Chem Int Ed 38:2416– 2419;

    Article  CAS  Google Scholar 

  6. Bielawski CW, Grubbs RH (2000) Angew Chem Int Ed 39:2903–2906

    Article  CAS  Google Scholar 

  7. Hoveyda AH, Schrock RR (2001) Chem-Eur J 7:945–950;

    Article  CAS  Google Scholar 

  8. Schrock RR, Hoveyda AH (2003) Angew Chem Int Ed 42:4592–4633;

    Article  CAS  Google Scholar 

  9. Fürstner A (2000) Angew Chem Int Ed 39:3012–3043;

    Article  Google Scholar 

  10. Trnka TM, Grubbs RH (2001) Acc Chem Res 34:18–29

    Article  CAS  Google Scholar 

  11. Dias EL, Nguyen ST, Grubbs RH (1997) J Am Chem Soc 119:3887–3897;

    Article  CAS  Google Scholar 

  12. Ulman M, Grubbs RH (1998) Organometallics 17:2484–2489;

    Article  CAS  Google Scholar 

  13. Adlhart C, Hinderling C, Baumann H, Chen P (2000) J Am Chem Soc 122:8204–8214;

    Article  CAS  Google Scholar 

  14. Michrowska A, Bujok R, Harutyunyan S, Sashuk V, Dolgonos G, Grela K (2004) J Am Chem Soc 126:9318–9325;

    Article  CAS  Google Scholar 

  15. Getty K, Delgado-Jaime MU, Kennepohl P (2007) J Am Chem Soc 129:15774–15776;

    Article  CAS  Google Scholar 

  16. van der Eide EF Romero PE, Piers WE (2008) J Am Chem Soc ASAP;

    Google Scholar 

  17. Cavallo L (2002) J Am Chem Soc 124:8965–8973;

    Article  CAS  Google Scholar 

  18. Correa A, Cavallo L (2006) J Am Chem Soc 128:13352–13353

    Article  CAS  Google Scholar 

  19. Jazzar RFR, Macgregor SA, Mahon MF, Richards SP, Whittlesey MK (2002) J Am Chem Soc 124:4944–4945;

    Article  CAS  Google Scholar 

  20. Giunta D, Hölscher M, Lehmann CW, Mynott R., Wirtz C, Leitner W (2003) Adv Synth Catal 345:1139–1145;

    Article  CAS  Google Scholar 

  21. Abdur-Rashid K, Fedorkiw T, Lough AJ Morris RH (2004) Organometallics 23:86–94;

    Article  CAS  Google Scholar 

  22. Dorta R, Stevens ED, Nolan SP (2004) J Am Chem Soc 126:5054–5055;

    Article  CAS  Google Scholar 

  23. Scott NM, Dorta R, Stevens ED, Correa A, Cavallo L, Nolan SP (2005) J Am Chem Soc 127:3516–3526;

    Article  CAS  Google Scholar 

  24. Hong SH, Chlenov A, Day MW, Grubbs RH (2007) Angew Chem Int Ed 46:5148–5151;

    Article  CAS  Google Scholar 

  25. Berlin JM, Campbell K, Ritter T, Funk TW, Chlenov A, Grubbs RH (2007) Org Lett 9:1339–1342;

    Article  CAS  Google Scholar 

  26. Hong SH, Day MW Grubbs RH (2004) J Am Chem Soc 126:7414–7415;

    Article  CAS  Google Scholar 

  27. Ulman M, Grubbs RH (1999) J Org Chem 64:7202–7207;

    Article  CAS  Google Scholar 

  28. Hong SH, Wenzel AG, Salguero TT, Day MW, Grubbs RH (2007) J Am Chem Soc 129:7961–7968

    Article  CAS  Google Scholar 

  29. Gaussian 03 (2003) Gaussian Inc. Pittsburgh, PA

    Google Scholar 

  30. Becke AD (1988) Phys Rev A 38:3098–3100;

    Article  CAS  Google Scholar 

  31. Perdew JP (1986) Phys Rev B 33:8822–8824;

    Article  Google Scholar 

  32. Perdew JP (1986) Phys Rev B 34:7406

    Article  Google Scholar 

  33. Schaefer A, Horn H, Ahlrichs R (1992) J Chem Phys 97:2571–2577;

    Article  CAS  Google Scholar 

  34. Schaefer A, Huber C, Ahlrichs R (1994) J Chem Phys 100:5829–5835

    Article  CAS  Google Scholar 

  35. Haeusermann U, Dolg M, Stoll H, Preuss H (1993) Mol Phys 78:1211–1224;

    Article  Google Scholar 

  36. Kuechle W, Dolg M, Stoll H, Preuss H (1994) J Chem Phys 100:7535–7542;

    Article  CAS  Google Scholar 

  37. Leininger T, Nicklass A, Stoll H, Dolg M, Schwerdtfeger P (1996) J Chem Phys 105:1052–1059

    Article  CAS  Google Scholar 

  38. Cossi M, Barone V, Cammi R, Tomasi J (1996) Chem Phys Lett 255:327–335;

    Article  CAS  Google Scholar 

  39. Cancès MT, Mennucci B, Tomasi J (1997) J Chem Phys 107:3032–3041;

    Article  Google Scholar 

  40. Cossi M, Barone V, Mennucci B, Tomasi J (1998) Chem Phys Lett 286:253–260

    Article  CAS  Google Scholar 

  41. For examples of η2-coordinated benzyl groups see: (a) Cotton FA, Murillo CA, Petrukhinaa MA (1999) J Organomet Chem 573:78–86;

    Article  CAS  Google Scholar 

  42. Clegg W, Elsegood MRJ, Dyer PW, Gibson VC, Marshall EL (1999) Acta Cryst C 55:916–918

    Article  Google Scholar 

  43. Attempts to find a transition state in which PCy3 assists H-extraction from 5 were unsuccessful

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi Cavallo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Poater, A., Cavallo, L. (2010). Probing the Mechanism of the Double C—H (De)Activation Route of a Ru-Based Olefin Metathesis Catalyst. In: Dragutan, V., Demonceau, A., Dragutan, I., Finkelshtein, E.S. (eds) Green Metathesis Chemistry. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3433-5_16

Download citation

Publish with us

Policies and ethics