Advertisement

Medical Geology in Mexico, Central America and the Caribbean

  • M. Aurora ArmientaEmail author
  • Ramiro Rodríguez
  • Nuria Segovia
  • Michele Monteil
Chapter
Part of the International Year of Planet Earth book series (IYPE)

Abstract

An overview of the occurrence, concentrations, and possible sources of toxic elements released by geogenic processes that may threat the health of millions of people of Mexico, Central America, and the Caribbean is presented. The geology and tectonic characteristics of Mexico and Central America constitute an appropriate environment for the presence of arsenic and fluoride in groundwater of many zones of the area. Health problems linked with As-tainted water consumption have been documented in Mexico and Nicaragua where epidemiological and toxicological studies have been developed. Fluorosis has been recognized mainly in the central and northern part of Mexico and also in Antigua, Puerto Rico, and Trinidad. Specific health effects resulting from exposure to natural dust transported from Africa have been identified in the Caribbean. Radon exposure may also affect the population living in volcanic and active tectonic environments. However, this problem has only been studied by some researchers, mainly in Mexico and Nicaragua. Collaboration among research groups and authorities has been scarce. The review presented here, although not exhaustive, shows the urgency for increasing that collaboration specially to identify polluted areas, sources, and health effects, of the routine collection and analysis of arsenic and fluoride in all potable water sources of the area, and of developing short-term measures to decrease their concentrations to safe levels.

Keywords

Mexico Central America Nicaragua El Salvador Cuba Caribbean Arsenic Fluorine Radon 

References

  1. Agostini S, Corti G, Doglioni C, Carminati E, Innocenti F, Tonarini S, Manetti P, Di Vincenzo G, Montanari D (2006) Tectonic and magmatic evolution of the active volcanic front in El Salvador: Insight into the Berlín and Ahuachapán geothermal areas. Geothermics 35:368–408.Google Scholar
  2. Alarcón-Herrera MT, Martín-Domínguez IR, Trejo-Vázquez R, Rodríguez-Dosal S (2001a) Well water fluoride, dental fluorosis, bone fractures in the Guadiana Valley of Mexico. Fluoride 34:139–149.Google Scholar
  3. Alarcón-Herrera MT, Flores-Montenegro I, Romero-Navar P et al. (2001b) Contenido de arsénico en el agua potable del valle del Guadiana, Mexico. Ing Hidraul Mex XVI:63–70.Google Scholar
  4. Altamirano M (2005) Distribution of arsenic pollution in the groundwater of the South West basin of Sebaco valley-Matagalpa, Nicaragua. Proceedings Hydrogeology and Water Resources Management: Working together for the Future. March 2005, Managua.Google Scholar
  5. Altamirano-Espinoza M, Bundschuh J (2009) Natural arsenic groundwater contamination of the sedimentary aquifers of southwestern Sébaco valley, Nicaragua. In J Bundschuh, MA Armienta, P Birkle, P Bhattacharya, J Matschullat, AB Mukherjee (eds) Natural arsenic in groundwaters of Latin America – Occurrence, health impact and remediation. London: Taylor and Francis Group.Google Scholar
  6. A. M. (2008) Consumen dos colonias agua con flúor y arsénico. A. M., Regional newspaper. Feb 23, 2008, Guanajuato.Google Scholar
  7. Angerville R, Emmanuel E, Nelson J, Saint-Hilaire P (2000) Assessment of the fluoride concentration in the water resources in the hydrographic region of central south Haiti. Case Studies on Water and Envrionment Issues in Haiti.UNESCO Regional Office for Science & Technology for Latin America and the Caribbean (Uruguay) Document Code, UY/2000/SC/PHI/PI/1.Google Scholar
  8. Armienta MA, Rodríguez R (1996) Arsénico en el Valle de Zimapán, Mexico: Problemática Ambiental. Revista MAPFRE Segur 63:33–43.Google Scholar
  9. Armienta MA, Rodríguez R, Aguayo A, Ceniceros N, Villaseñor G, Cruz O (1997a) Arsenic contamination of groundwater at Zimapán, Mexico. Hydrogeol J 5:39–46.Google Scholar
  10. Armienta MA, Rodríguez R, Cruz O (1997b) Arsenic content in hair of people exposed to natural arsenic polluted groundwater at Zimapán, Mexico. Bull Environ Contam Toxicol 59:583–589.Google Scholar
  11. Armienta MA, Villaseñor G, Rodríguez R et al. (2001) The role of arsenic bearing rocks in groundwater pollution at Zimapán Valley, Mexico. Environ Geol 40:571–581Google Scholar
  12. Armienta MA, Varley N, Ramos E (2002) Radon and hydrogeochemical monitoring at Popocatepetl volcano, Mexico. Geofis Int 41:271–276.Google Scholar
  13. Armienta MA, Amat PD, Larios T, López DL (2008) América Central y Mexico. In J Bundschuh, M Litter, A Pérez-Carrera (eds) IBEROARSEN, Distribución del arsénico en las regiones Ibérica e Iberoamericana. CYTED, Buenos Aires.Google Scholar
  14. Armienta MA, Segovia, N (2008) Arsenic and fluoride in the groundwater of Mexico. Environ Geochem Health 30:345–353.Google Scholar
  15. Astudillo LR, Yen IC, Bekele I (2005) Heavy metals in sediments, mussels and oysters from Trinidad and Venezuela. Rev Biol Trop 53:41–53.Google Scholar
  16. Barragne P (2002) Evaluación rápida de la contaminación por arsénico y metales pesados de las aguas subterráneas de Nicaragua. PIDMA-UNICEF Managua.Google Scholar
  17. Barragne P (2004) Contribución al estudio de cinco zonas contaminadas naturalmente por arsénico en Nicaragua. Managua, Nicaragua: UNICEF.Google Scholar
  18. Barquero J, Fernandez E, Monnin M et al. (2005) Water chemistry and radon survey at the Poas volcano (Costa Rica). An Geophys 48:33–42.Google Scholar
  19. Baxter P (2005) Human impacts of volcanoes. In J Marti, GGJ Ernst (eds) Volcanoes and the Environment. Cambridge: Cambridge University Press.Google Scholar
  20. Beck MA, Levander OA, Handy J (2003) Selenium deficiency and viral infection. J Nutr 138:1643S–1467S.Google Scholar
  21. Bennett FI, Golden MH, Golden BE (1983) Red cell gluthathione peroxidase concentration in Jamaican children with malnutrition. Proceedings 28th Scientific meeting of the Commonwealth Caribbean Medical Research Council, April 20–23 Kingston.Google Scholar
  22. Birkle P, Bundschuh J (2009) The abundance of natural arsenic in deep thermal fluids of geothermal and petroleum reservoirs in Mexico. In J Bundschuh, MA Armienta, P Birkle, P Bhattacharya, J Matschullat, AB Mukherjee (eds) Natural Arsenic in Groundwaters of Latin America – Occurrence, Health Impact and Remediation. London: Taylor and Francis Group.Google Scholar
  23. Bundschuh J, Perez-Carrera A, Litter M (2008) Introducción: Distribución del arsénico en las regions Ibérica e Iberoamericana. In Bundschuh J, Litter M, Pérez-Carrera A (eds) IBEROARSEN, Distribución del arsénico en las regiones Ibérica e Iberoamericana. Buenos Aires: CYTED.Google Scholar
  24. Calderón J, Machado B, Navarro M et al. (2000) Influence of fluoride exposure on reaction time and visuospatial organization in children. Epidemiol 11 (4) Supplement S153.Google Scholar
  25. Calderón-Fernández ML (2006) Alternativas de depuración de agua para consumo humano en el estado de Chihuahua. Junta Central de Agua y Saneamiento de Chihuahua. Documentos Foro Mundial del Agua. Mexico, DF.Google Scholar
  26. Canoba A, Lopez FO, Arnaud MI et al. (2002) Indoor radon measurements in six Latin American countries. Geofis Int 41:453–457.Google Scholar
  27. Cardona BA, Carrillo RJJ, Armienta HMA (1993) Elemento traza: Contaminación y valores de fondo en aguas subterráneas de San Luis Potosí, SLP, Mexico. Geofis Int 32:277–286.Google Scholar
  28. Carrillo-Rivera JJ, Cardona A, Moss D (1996) Importance of the vertical component of groundwater flow: a hydrogeochemical approach in the valley of San Luis Potosí, Mexico. J Hydrol 23:23–44.Google Scholar
  29. Carrillo-Rivera JJ, Cardona A, Edmundo WM (2002) Use of abstraction regime and knowledge of hydrogeological conditions to control high-fluoride concentration in abstracted groundwater: San Luis Potosí Basin, Mexico. J Hydrol 261:24–47.Google Scholar
  30. Cartagena R, Olmos R, Lopez D et al. (2004) Diffuse soil degassing of carbon dioxide, radon and mercury at San Miguel volcano, El Salvador. In W Rose, J Bommer, D Lopez, M Carr, J Major (eds) Natural Hazards in El Salvador. Boulder: Geological Survey of America.Google Scholar
  31. Castro-Larragoitia J, Kramar U, Puchelt H (1997) 200 years of mining activities at La Paz/San Luis Potosi/Mexico – Consequences for environment and geochemical exploration. J Geochem Explor 58:81–91.Google Scholar
  32. Cebrián ME, Albores A, García-Vargas G, Del Razo LM (1994) Chronic arsenic poisoning in humans: The case of Mexico. In JO Nriagu (ed) Arsenic in the Environment, Part II. New York: John Wiley & Sons Inc.Google Scholar
  33. CEP website (2009) Caribbean Environmental Programme website, http://www.cep.unep.org/publications-and-resources/marine-and-coastal-issues-links/heavy-metals. Accesed 20 March 2009.
  34. CODEREG (2000) Acuífero de la Independencia, municipios de San José Iturbide, Doctor Mora, San Luis de la Paz, Dolores Hidalgo, San Felipe, San Diego de la Unión y San Miguel de Allende, Guanajuato. Technical Report inedit. Consejo para el Desarrollo Regional Noreste y Norte, Guanajuato.Google Scholar
  35. Colmenero SL, Montero CME, Villalba L et al. (2004) Uranium-238 and thorium-232 series concentrations in soil, radon-222 indoor and drinking water concentrations and dose assessment in the city of Aldama, Chihuahua, Mexico. J Environ Radioact 77:205–219.Google Scholar
  36. Connor CB, Hill BE, La Femina PC et al. (1996) Soil radon pulse during the 1995 phreatic eruption of Cerro Negro, Nicaragua. J Volcanol Geotherm Res 73:119–127.Google Scholar
  37. Coronado-González JA, Del Razo LM, García-Vargas G et al. (2007) Inorganic arsenic exposure and type 2 diabetes mellitus in Mexico. Environ Res 104:383–389.Google Scholar
  38. Crenshaw WB, William SN, Stoiber RE (1982) Fault location by radon and mercury at an active volcano in Nicaragua. Nat 300:345–346.Google Scholar
  39. Cuellar-Luna L, Garcia-Melian M (2003) Fluoride in drinking water in Cuba and its association with geological and geographical variables. Pan Am J Public Health 14:341–349.Google Scholar
  40. Del Razo LM, Arellano MA, Cebrián ME (1990) The oxidation states of arsenic in well-water from a chronic arsenicism area of northern Mexico. Environ Pollut 64:143–153.Google Scholar
  41. Del Razo LM, Corona JC, García-Vargas G et al. (1993) Fluoride levels in well-water from a chronic arsenicism area of northern Mexico. Environ Pollut 80:91–94.Google Scholar
  42. Del Razo LM, Garcia-Vargas GG, Vargas H et al. (1997) Altered profile of urinary arsenic metabolites in adults with chronic arsenicism. A pilot study. Arch Toxicol 71:211–217.Google Scholar
  43. Elias-Boneta AR, Psoter W, Elias-Viera AE et al. (2006) Relationship between dental caries experience (DMFS) and dental fluorosis in 12-year-old Puerto Ricans. Community Dent Health 23:244–250.Google Scholar
  44. ESF (2006) Well water quality in San Miguel de Allende. Phase I: Results and Conclusions. Ecosystem Sciences Foundation, ESF, San Miguel de Allende Municipality. Technical Report inedit, Guanuajuato.Google Scholar
  45. Espinosa G, Gammage RB (2003) A representative survey of indoor radon in the sixteen regions in Mexico City. Radiat Prot Dosim 103:73–76.Google Scholar
  46. Espinosa G, Golzarri JI, Bogard J et al.(2008) Indoor radon measurements in Mexico City. Radiat Meas 43:S431–S434.Google Scholar
  47. Espinosa G, Golzarri JI, Ponciano RG et al. (2009) Population vulnerability due to the exposure to radon and airborne particulate matter (PM10), in Mexico City. Submitted to Radiat Meas.Google Scholar
  48. Estrada F (2003) Estudio preliminar de la incidencia del arsénico en aguas subterráneas con relación al medio físico natural en la región noroeste y sureste de Nicaragua: Periodo 2001–2002. Universidad Nacional de Ingeniería UNI. Programa de Investigación y Docencia en Medio Ambiente, Managua.Google Scholar
  49. Estupiñán-Day S, Vera H, Duchon K et al. (2005) Final Report “Task-Force Meeting” Defluoridation systems in Latin America and the Caribbean, Washington DC, 22–24 October, 2004. Comisión Nacional del Agua, Secretaría de Salud de Mexico, Pan American Health Organization, WHO, Washington DC.Google Scholar
  50. Folleti C, Paz G (2001) Diagnóstico de fluorosis dental en 39 comunidades del valle de Sula, Honduras. En Superación sanitaria y ambiental: el reto. AIDIS, Tegucigalpa.Google Scholar
  51. Fragoso R, Jackson G, Cuairan V, Gaitan L (1997) Efectividad del acido clorhídrico como blanqueador dental en piezas con fluorosis dental. Rev ADM LIV:219–222.Google Scholar
  52. Gamiño SP, Monroy M (2009) Evaluation of children exposition and effect biomarkers in a mining site with high concentration of arsenic and lead bioaccesibility as a case study for abandoned sites associated to Pb-Zn-Cu-Ag skarn deposits in Central Mexico. Geological Society of America Abstracts with Programs, 16–17 March Dallas, TX 41(2):13, Dallas.Google Scholar
  53. Garcia S, Ovalle J (1994) Grado de fluorosis dental en pacientes de la Univ. Del Bajío. Rev ADM 51:162–168.Google Scholar
  54. Garcia Vindas JR, Mora P (2004) Radon concentration and dose assessment in a tunnel under construction in Costa Rica. Radioisot53:517–522.Google Scholar
  55. Garrison VH, Foreman WT, Genualdi S et al. (2006) Saharan dust- a carrier of the persistent organic pollutants, metals and microbes to the Caribbean? Rev Biol Trop 54(supl.3):9–21.Google Scholar
  56. Gela A, Solo J, Diaz, Simon MJ et al. (2001) Radiological evaluation of sediments from the Havana Bay. VII Workshop on Nuclear Physics, La Habana.Google Scholar
  57. Gómez A (2002) Monitoreo y atención de intoxicados con arsénico en El Zapote-San Isidro, Departamento de Matagalpa. Nicaragua. Reporte Técnico. Estudio realizado con apoyo financiero de UNICEF por MINSA, Managua.Google Scholar
  58. Gómez-Arroyo S, Armienta MA, Cortés-Eslava J, Villalobos-Pietrini R (1997) Sister chromatid exchanges in Vicia faba induced by arsenic-contaminated drinking water from Zimapan, Hidalgo, Mexico. Mutat Res 394:1–7.Google Scholar
  59. González-Hita L, Sánchez L, Mata I (1991) Estudio hidrogeoquímico e isotópico del acuífero granular de la Comarca Lagunera. Instituto Mexicano de Tecnología del Agua. Technical Report inedit, Jiutepec.Google Scholar
  60. Gonsebatt ME, Vega L, Salazar AM et al. (1997) Cytogenetic effects in human exposure to arsenic. Mutat Res 386:219–228.Google Scholar
  61. González M (1998) Exposición al arsénico en comunidades rurales de San Isidro, Matagalpa. OPS/OMS, Managua.Google Scholar
  62. Goudie AS, Middleton NJ (2001) Saharan dust storms: Nature and consequences. Earth Sci Rev 56:179–204.Google Scholar
  63. Grimaldo M, Borja-Aburto VH, Ramírez AL et al. (1995) Endemic fluorosis in San Luis Potosí, Mexico. Environ Res 68:25–30.Google Scholar
  64. Gutiérrez-Ojeda C (2009) Determining the origin of arsenic in the Lagunera region aquifer, Mexico using geochemical modeling. In J Bundschuh, MA Armienta, P Birkle, P Bhattacharya, J Matschullat, AB Mukherjee (eds) Natural arsenic in groundwaters of Latin America – Occurrence, health impact and remediation. London: Taylor and Francis group.Google Scholar
  65. GVP (2009) Mexico, Volcanoes of Mexico and Central America, Global Volcanism Program, Smithsonian Institution, Washington DC, http://www.volcano.si.edu/world/region.cfm?rnum=1401, Accessed 16 April 2009.
  66. Gyan K, Henry W, Lacaille S et al. (2005) African dust clouds are associated with increased paediatric asthma accident and emergency admissions on the Caribbean island of Trinidad. Int J Biometeorol 49:371–376.Google Scholar
  67. Hernández-Montoya V, Bueno-López JI, Sánchez-Ruelas AM et al. (2003) Fluorosis y caries dental en niños de 9 a 11 años del estado de Aguascalientes, Mexico. Rev Int Contam Ambient 19:197–204.Google Scholar
  68. Horst A (2006) Use of Stable and Radioactive Isotopes and Gaseous Tracers for Estimating Groundwater Recharge, Time of Residence, Mixing of the Different Types of Groundwater and Origin in the Silao Romita Aquifer, Guanajuato, Central Mexico. FOG, Freiberg Online Geol 17, Freiberg.Google Scholar
  69. Howe A, Fung LH, Lalor G et al. (2005) Elemental composition of Jamaican foods 1: A survey of five food crop categories. Environ Geochem Health 27:19–30.Google Scholar
  70. Hurtado-Jiménez R, Gardea-Torresdey J (2005) Estimación de la exposición a fluoruros en Los Altos de Jalisco, Mexico. Rev Panam Salud Publica 20:236–247.Google Scholar
  71. Hurtado-Jiménez R, Gardea-Torresdey J (2009) Contamination of drinking water supply with geothermal arsenic. In J Bundschuh, MA Armienta, P Birkle, P Bhattacharya, J Matschullat, AB Mukherjee (eds) Natural arsenic in groundwaters of Latin America – Occurrence, health impact and remediation. London: Taylor and Francis Group.Google Scholar
  72. Irigoyen ME, Molina N, Luengas I (1995) Prevalence and severity of dental fluorosis in a Mexican community with above optimal fluoride concentrations in drinking water. Community Dent Oral Epidemiol 23(4):243–245.Google Scholar
  73. Kaufman YJ, Koren I, Remer LA et al. (2005) Dust transport and deposition observed from the Terra-Moderate Resolution Imaging Spectroradiometer (MODIS) spacecraft over the Atlantic Ocean. J Geophys Res 110:D10S12.Google Scholar
  74. Kaul B, Mukerjee H (1999) Elevated blood lead and erythrocyte protopophyrin levels of children near a battery-recycling plant in Haina, Dominican Republic. Int J Occup Environ Health 5:307–312.Google Scholar
  75. Koplan JP, Wells AV, Diggory HJ et al. (1997) Lead absorption in a community of potters in Barbados. Int J Epidemiol 6:225–229.Google Scholar
  76. Lalor GC, Rattray R, Simpson P, Vutchkov M (1999) Geochemistry of an arsenic anomaly in St. Elizabeth Jamaica. Environ Geochem Health 21:3–11.Google Scholar
  77. Lalor GC, Vutchkov MK, Bryan ST et al. (2006) Acute lead poisoning associated with backyard lead smelting in Jamaica. West Indian Med J 55:394–398.Google Scholar
  78. Lalor GC, Vutchkov MK, Bryan ST (2007) Blood lead levels of Jamaican children island-wide. Sci Total Environ 374:235–241.Google Scholar
  79. Leal-Ascencio MT, Gelover-Santiago S (2006) Evaluación de acuíferos de la mesa del norte, V Congreso Internacional y XI Congreso Nacional de Ciencias Ambientales, Memorias Oaxtepec, Morelos, 7–9 de junio, 2006, Oaxtepec.Google Scholar
  80. Levy DB, Schramke JA, Esposito KJ et al. (1998) The shallow ground water chemistry of arsenic, fluorine, and major elements: Eastern Owens Lake, California. Appl Geochem 14:53–65.Google Scholar
  81. López DL, Ransom L, Monterrosa J et al. (2009) Volcanic arsenic and boron pollution of Ilopango lake, El Salvador. In J Bundschuh, MA Armienta, P Birkle, P Bhattacharya, J Matschullat, AB Mukherjee (eds) Natural arsenic in groundwaters of Latin America – Occurrence, health impact and remediation. London: Taylor and Francis Group.Google Scholar
  82. Loyola-Rodríguez JP, Pozos-Guillén, CD, Hernández-Guerrero JC et al. (2000) Fluorosis en dentición temporal en un área con hidrofluorosis endémica. Salud Publ Mex 42:194–200.Google Scholar
  83. Manchado A, Cervantes P, Lantigua L (2005) Evidencias sobre la hormesis por 222Rn en el balneario Elguea, Cuba. Proceedings of the First Convention on Earth Sciences, La Habana.Google Scholar
  84. Mahlknecht J, Steinich B, Navarro I (2004) Groundwater chemistry and mass transfers in the Independence aquifer, Central Mexico, by using multivariate statics and mass-balance models. Environ Geol 45:781–795.Google Scholar
  85. Mahlknecht J, Horst A, Hernández-Limón G, Aravena R (2008) Groundwater geochemistry of the Chihuahua City region in the Rio Conchos Basin (Northern Mexico) and implications for water resources Management. Hydrol Proces 22:4736–4751.Google Scholar
  86. Martínez P, García M (2007) Distribución de iones mayores y metales en el agua subterránea de la subcuenca del Río Turbio, estados de Guanajuato y Jalisco. Rev Geocienc 1:37–54.Google Scholar
  87. Mattheß G (1994) Groundwater Properties. Hydrogeologie, Band 2. Berlin, Stuttgart: Gebriider Borntraeger.Google Scholar
  88. Megaw PK, Ruiz JR, Titley SR (1988) High temperature, carbonate.hosted Ag-Pb-Zn(Cu) deposits of northern Mexico. Econ Geol 83:131–140.Google Scholar
  89. Mejía JA, Rodriguez R, Armienta A et al. (2007) Aquifer vulnerability zoning, an indicator of atmospheric pollutants input? Vanadium in the Salamanca aquifer, Mexico. Water, Air, Soil Pollut 185:95–100.Google Scholar
  90. Mérida R, Reyes A, Hernández I (1998) Texto Guía Carta Magnética Guanajuato. Consejo Recursos Minerales, SECOFI, Mexico, Mexico DF.Google Scholar
  91. Meza MM, Kopplin M, Burges JL, Gandolfi J (2004) Arsenic drinking water exposure and urinary excretion among adults in the Yaqui Valley, Sonora, Mexico. Environ Res 96:119–126.Google Scholar
  92. Molina MA (2004) Estudio hidrogeoquímico en la Comarca Lagunera, Mexico. M.Sc. Thesis, Posgrado en Ciencias de la Tierra. Universidad Nacional Autónoma de Mexico, Mexico DF.Google Scholar
  93. Morales L, Puigdomènech C, Puntí A et al. (2009) Arsenic and water quality of rural community wells in San Juan de Limay, Nicaragua. In J Bundschuh, MA Armienta, P Birkle, P Bhattacharya, J Matschullat, AB Mukherjee (eds) Natural arsenic in groundwaters of Latin America – Occurrence, health impact and remediation. London: Taylor and Francis group.Google Scholar
  94. Naidu R, Prevatt I, Simeon D (2006) The oral health and treatment needs of schoolchildren in Trinidad and Tobago: Findings of a national survey. Int J Paediatr Dent 16:412–418.Google Scholar
  95. Nelson C (2000) Volcanic domes and gold mineralization in the Pueblo Viejo district Dominican Republic. Miner Depos 35:511–525.Google Scholar
  96. Ortega-Guerrero A (2003) Origin and geochemical evolution of groundwater in a closed-basin clayey aquitard, Northern Mexico. J Hydrol 284:26–44.Google Scholar
  97. Ortiz D, Castro L, Turrubiartes F et al. (1998) Assessment of the exposure to fluoride from drinking water in Durango, Mexico, using a geographic information system. Fluoride 31:183–187.Google Scholar
  98. Ovalle J (1996) Fluorosis dental de la población escolar de Salamanca Guanajuato. Rev ADM 53:289–294.Google Scholar
  99. Pazos L (1991) Salt Fluoridation in Mexico. National Coordination of the Salt Fluoridation Program in Mexico. On May 27, 1991. Mexico City.Google Scholar
  100. Peña M (2005) Reto del milenio en los asentamientos precarios de America Latina y el Caribe. Invited Conference. Regional Symposium on Healthy Houses, San Jose.Google Scholar
  101. Planer-Friedrich B, Armienta MA, Merkel BJ (2001) Origin of arsenic in the groundwater of the Rioverde Basin, Mexico. Environ Geol 40:1290–1298.Google Scholar
  102. Prospero JM, Blades E, Mathison G, Naidu, R (2005) Interhemispheric transport of viable fungi and bacteria from Africa to the Caribbean with soil dust. Aerobiol 21:1–19.Google Scholar
  103. Prospero JM, Blades E, Naidu et al. (2008) Relationship between African dust carried in the Atlantic trade winds and surges in paediatric asthma attendances in the Caribbean. Int J Biometeorol 52:823–832.Google Scholar
  104. Rajkumar WS, Manohar J, Doon R et al. (2006) Blood lead levels in primary school children in Trinidad and Tobago. Sci Total Environ 361:81–87.Google Scholar
  105. Ravishankar S (1987) Status of Geothermal Exploration in Maharashtra and Madhya Pradesh (C.R.). GSI Rec 115(6):7–29.Google Scholar
  106. Razo I, Carrizales L, Díaz-Barriga F, Monroy M (2004) Arsenic and heavy metal pollution of soil, water and sediments in a semi-arid climate mining area in Mexico. Water, Air, Soil Pollut 152:129–152.Google Scholar
  107. Reséndiz MRI, Zúñiga LJC (2003) Evaluación de la Exposición al arsénico en pobladores del municipio de Zimapán, Hidalgo, Bachelor´s Thesis Eng. Chem., Universidad Tecnológica de Mexico, Mexico, DF.Google Scholar
  108. Reyes-Cortés IA, Reyes-Cortés M, Villalba L et al. (2006a) Origen del As en las cuencas endorreicas, Chihuahua, Mexico. Geos 26:39.Google Scholar
  109. Reyes-Cortés IA, Vázquez-Balderas JF, Ledesma-Ruiz R (2006b) As en el sistema hidrogeológico del valle de Delicias, Chihuahua, Mexico. Geos 26:40.Google Scholar
  110. Reyna-Carranza MA, López-Badilla G (2002) Estudio del efecto del radón en los casos de muerte por cáncer pulmonar en la población de Mexicali, Baja California, Mexico. Rev Mex Ing Biomed XXIII:68–73.Google Scholar
  111. Rocha-Amador D, Navarro ME, Carrizales L, Morales R, Calderón J (2007) Decreased intelligence in children and exposure to fluoride and arsenic in drinking water. Cad Saúde Pública Rio de Janeiro 23suppl. 4:5579–5587.Google Scholar
  112. Rodrigu A, Ren M, Goodell P (2007) Potential bedrock source of groundwater arsenic anomaly in northeastern Chihuahua City, Chihuahua, Mexico. American Geophysical Union, Fall Meeting 2007, San Francisco Ca, 10–14 Dec, 2007, abstract #H11E-0824.Google Scholar
  113. Rodriguez-Ojea A, Menendez R, Terry B et al. (1998) Low levels of urinary iodine excretion in schoolchildren of rural areas in Cuba. Eur J Clin Nutr 52(5):372–375.Google Scholar
  114. Rodríguez R, Hernández G, González T, Cortes A (1997) Definición del flujo regional de agua subterránea, su potencialidad y uso en la zona de la Cd. De Aguascalientes, Ags. Technical Report inedit, IGF-UNAM, Mexico, DF.Google Scholar
  115. Rodríguez R, Mejía JA, Berlín J, Armienta A, González T (2000) Estudio para la determinación del grado de alteración de la calidad del agua subterránea por compuestos orgánicos en Salamanca, Gto.. Technical Report inedit, CEASG, IGF-UNAM, Mexico, DF.Google Scholar
  116. Rodríguez R, Ramos JA, Armienta MA (2004) Groundwater arsenic variations: The role of local geology and rainfall. Appl Geochem 19:245–250.Google Scholar
  117. Rodríguez R, Armienta MA, Morales P, Silva T, Hernández H (2006) Evaluación de Vulnerabilidad Acuífera del valle de Irapuato Gto. Technical Report inedit, JAPAMI, CONCyTEG, IGF UNAM. Mexico, DF.Google Scholar
  118. Romieu I, Lacasana M, McConnell R (1997) Lead exposure in Latin America and the Caribbean. Lead research group of the Pan-American health organization. Environ Health Perspect 105:398–405.Google Scholar
  119. Rosas I, Belmont R, Armienta A, Baez A (1999) Arsenic concentrations in water, soil, milk and forage in Comarca Lagunera, Mexico. Water, Air, Soil Pollut 112:133–149.Google Scholar
  120. Ruiz J, Kesler S, Jones L (1985) Strontium isotope geochemistry of fluorite mineralization associated with fluorine-rich igneous rocks from The Sierra Occidental, Mexico; possible exploration significance. Econo Geol 80:33–42.Google Scholar
  121. Salas-Pereira MT, Beltrán-Aguilar ED, Chavarría P et al. (2008) Enamel fluorosis in 12- and 15-year-old school children in Costa Rica. Results of a national survey, 1999. Commun Dent Health 25:178–184.Google Scholar
  122. Sanchez-Garcia S, Pontigo-Loyola A, Heredia-Ponce E, Ugalde-Arellano J (2004) Fluorosis dental en adolescentes de tres comunidades del estado de Querétaro. Rev Mex Pediatr 17:5–9.Google Scholar
  123. Sanchez-Nazario EE, Mansilla-Rivera I, Derieux-Cortes JC et al. (2003) The association of lead-contaminated house dust and blood lead levels of children living on a former landfill in Puerto Rico. P R Health Sci 22:153–159.Google Scholar
  124. Segovia N, Armienta MA, Valdes C et al. (2003) Volcanic monitoring for radon and chemical species in the soil and in spring water samples. Radiat Meas 36:379–383.Google Scholar
  125. Segovia N, Gaso MI, Armienta MA (2007) Environmental radon studies in Mexico. Environ Geochem Health 29:143–153.Google Scholar
  126. Segovia N, Mena M, Peña P, et al. (1999) Soil radon time series: Surveys in seismic and volcanic areas. Radiat Meas 31:307–312.Google Scholar
  127. Segovia N, Peña P, Valdes C, et al. (2005) Radon, water chemistry and pollution check by volatile organic compounds in springs around Popocatepetl volcano, Mexico. Ann Geophys 48:85–91.Google Scholar
  128. Simons SF, Mapes-Vazquez VE (1956) Geology and ore deposits of the Zimapán mining district, State of Hidalgo, Mexico. US Geological Survey Professional Paper 284, Washington, DC.Google Scholar
  129. Singh SK, Mortera F (1991) Source time functions of large Mexican subduction earthquakes, morphology of the Benioff Zone, age of the plate, and their tectonic implications. J Geophys Res 96:21487–21502.Google Scholar
  130. Soto-Rojas AE, Ureña-Cirett JL, Martínez-Mier EA (2004) A review of the prevalence of dental fluorosis in Mexico. Rev Panam Salud Publ 15:9–18.Google Scholar
  131. SSA (2003) Mortalidad observada por cáncer pulmonar según sexo y entidad federativa. Reporte Interno. Dirección General de Epidemiología. Secretaría de Salud. Mexico. Mexico, DF.Google Scholar
  132. Strock C, Songer A, Fiori Ch (2008) Appropriate technologies for sustainable access to safe drinking water: A case study in Belize. Proceedings Construction in Developing Countries International Symposium, Trinidad & Tobago, WI, Trinidad and Tobago.Google Scholar
  133. Toujague RT, Leonarte A, Reyes Verdecia BL, Miravet RM (2003) Arsénico y metales pesados en aguas del área Delita, Isla de la Juventud. Ciencias de la Tierra y el Espacio, Cuba 4:5–8.Google Scholar
  134. Trejo-Vázquez R, Bonilla-Petriciolet A (2002) Cuantificación de arsénico en el agua subterránea de la ciudad de Aguascalientes, Mexico, y evaluación de riesgos entre la población. Rev Ing Hidraul Mex 17:79–88.Google Scholar
  135. UNSCEAR (2000) United Nations Scientific Committee on the Effects of Atomic Radiation, Sources and effects of ionizing radiation. Annex A and B, United Nations, E.00.IX.3, New York.Google Scholar
  136. USACE (2004) Water resources assessment of Dominica, Antigua, Barbuda, St. Kitts and Nevis. US Army Corps of Engineers Report.Google Scholar
  137. USFDA (2003) Oral health care drug products for over the counter human use. 21 CFR Part 356. Department of Health and Human Services, Food and Drug Administration.Google Scholar
  138. Valenzuela OL, Germolec DR, Borja-Aburto VH et al. (2007) Chronic arsenic exposure increases TGFalpha concentration in bladder urothelial cells of Mexican populations environmentally exposed to inorganic arsenic. Toxicol Appl Pharmacol 222:264–270.Google Scholar
  139. Vallejo-Sanchez A, Perez-Olivares S, Casanova-Rosales A, Gutierrez Salazar M (1998) Prevalencia, severidad de fluorosis y caries dental en una población escolar de 6 a 12 años de edad en la Cd. De Campeche, 1997–98. Rev ADM 55:266–271.Google Scholar
  140. Vignarajah S (1993) Dental caries experience and enamel opacities in children residing in urban and rural areas of Antigua with different levels of natural fluoride in drinking water. Commun Dent Health 10:159–166.Google Scholar
  141. Wyatt, CJ, Fimbres C, Romo L et al. (1998a) Incidence of heavy metal contamination in water supplies in Northern Mexico. Environ Res A 76:114–119.Google Scholar
  142. Wyatt CJ, Lopez Quiroga V, Olivas-Acosta RT, Méndez RO (1998b) Excretion of arsenic (As) in urine of children, 7–11 years, exposed to elevated levels of as in the city water supply in Hermosillo, Sonora, Mexico. Environ Res A 78:19–24.Google Scholar
  143. Yáñez L, García-Nieto E, Rojas E et al. (2003) DNA damage in blood cells from children exposed to arsenic and lead in a mining area. Environ Res 93:231–240.Google Scholar
  144. Zhu XR, Prospero JM, Millero FJ (1997) Diel variability of soluble Fe (II) and soluble total Fe in North African dust in the trade winds at Barbados. J Geophys Res 102(D17):21297–21305.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • M. Aurora Armienta
    • 1
    Email author
  • Ramiro Rodríguez
    • 1
  • Nuria Segovia
    • 1
  • Michele Monteil
    • 2
  1. 1.Universidad Nacional Autónoma de Mexico, Instituto de GeofísicaMéxicoMéxico
  2. 2.University of West IndiesSt. AugustineJamaica

Personalised recommendations