Advertisement

Medical Geology in Europe

  • Olle Selinus
  • Mark Cave
  • Anne Kousa
  • Eiliv Steinnes
  • Jaques Varet
  • Eduardo Ferreira da Silva
Chapter
Part of the International Year of Planet Earth book series (IYPE)

Abstract

Medical geology or earth and health has a long history in Europe. Also the newer development of medical geology has a firm base in Europe. Health problems associated with geologic material and geologic processes occur quite frequently in Europe. The problems associated with the geologic environment in Europe are generally chronic, caused by long-term, low-level exposures. Examples are exposure to trace elements such as fluorine, arsenic, radon, mineral dust and naturally occurring organic compounds in drinking water. The chapter provides the history of medical geology in Europe, many examples of these environmental health problems and a look into the future.

Keywords

Europe Portugal France UK Sweden Finland Norway Arsenic Asbestos Dusts BEN Iodine Fluorine Radon Cardiovascular diseases 

References

  1. Alfthan G, Wang D, Aro A, Soveri J (1995) The geochemistry of selenium in groundwaters in Finland. The Sci Total Environ 162:93–103.CrossRefGoogle Scholar
  2. Adlercreutz E (1928) Orientierende Untersuchung über die Verbreitung des Kropfes in Finnland und über deren Zusammenhang mit dem Jodvorkommen im Wasser. Acta Med Scand 69:1–45.CrossRefGoogle Scholar
  3. Amaral AFS, Arruda M, Cabral S, Rodrigues AS, (2008) Essential and non-essential trace metals in scalp hair of men chronically exposed to volcanogenic metals in the Azores, Portugal. Environ Internat 34:1104–1108.CrossRefGoogle Scholar
  4. Amaral AFS, Rodrigues AS (2007) Chronic exposure to volcanic environments and chronic bronchitis incidence in the Azores, Portugal. Environmen Res 103:419–423.CrossRefGoogle Scholar
  5. Amaral A, Rodrigues V, Oliveira J, Pinto C, Carneiro V, Sanbento R, Cunha R, Rodrigues A (2006) Chronic exposure to volcanic environments and cancer incidence in the Azores, Portugal. Sci Total Environ 367:123–128.CrossRefGoogle Scholar
  6. AMBIO (2007) Special issue on medical geology. 36(1).Google Scholar
  7. Appleton JD, Rawlins B, Thornton I (2008) National-scale estimation of potentially harmful element ambient background concentrations in topsoil using parent material classified soil:stream-sediment relationships. Appl Geochem 23: 2596–2611.CrossRefGoogle Scholar
  8. Atteia O, Saada A, (2007) Etude des risques sur les sites pollués: le rôle des processus naturels. Géosciences 5:52 à 57.Google Scholar
  9. Auvinen A, Mäkeläinen I, Hakama M, Castrén O, Pukkala E, Reisbacka H et al. (1996) Indoor radon exposure and risk of lung cancer: a nested case-control study in Finland. J Natl Cancer Inst 88:966–972.CrossRefGoogle Scholar
  10. Backman B, Luoma S, Ruskeeniemi T, Karttunen V, Talikka M, Kaija J (2006) Natural Occurrence of Arsenic in the Pirkanmaa region in Finland. Espoo: Geological Survey of Finland, Miscellaneous Publications. Geological Survey of FinlandGoogle Scholar
  11. Baxter PJ, Baubron JC (1999) Health hazards and disaster potential of ground gas emissions at Furnas Volcano, São Miguel, the Azores. J Volcanol Geotherm Res 92(1–2):219.Google Scholar
  12. Baxter PJ, Baubron JC, Coutinho R (1999) Health hazards and disaster potential of ground gas emissions at Furnas volcano, São Miguel, Azores. J Volcanol Geotherm Res 92: 95–106.CrossRefGoogle Scholar
  13. Blum L, Chery L, Legrand H (2007) L’eau souterraine est-elle toujours potable à l’état naturel? Géosciences 5:58 à 67.Google Scholar
  14. Billon-Galland MA, Daniau C, Martinon L, Pascal M, (2007) L’amiante dans l’environnement en France: de l’exposition au risque. Géosciences 5:30 à 39.Google Scholar
  15. Bølviken B, Nilsen R, Ukkelberg Å (1997a) A new method for spatially moving correlation analysis in geomedicine. Environ Geochem Health 19:143–153.CrossRefGoogle Scholar
  16. Bølviken B, Flaten TP, Zheng C, (1997b) Relations between nasopharyngeal carcinoma and magnesium and other alkaline earth elements in soils in China. Med Hypotheses 48:21–25.CrossRefGoogle Scholar
  17. Bølviken B, Celius EG, Nilsen R, Strand T (2003) Radon: A possible risk factor in multiple sclerosis. Neuroepidemiology 22:87–94.CrossRefGoogle Scholar
  18. Bowman C, Bobrowski PT, Selinus O (2003) Medical Geology: New relevance in the Earth Sciences. Episodes 26(4):270–278.Google Scholar
  19. Carvalho FP, Madruga MJ, Reis MC, Alves JG, Oliveira JM, Gouveia J, Silva L, (2005a) Radioactive survey in former uranium mining areas in Portugal. In International Workshop on Environmental Contamination from Uranium Production Facilities and Remediation Measures, 11e13 February 2004, Lisbon. International Atomic Energy Agency, Vienna, pp. 29–40.Google Scholar
  20. Carvalho T, Vala H, Pinto C, Pinho M, Peleteiro MC (2005b) Immunohistochemical Studies of Epithelial Cell Proliferation and p53 Mutation in Bovine Ocular Squamous Cell Carcinoma. Vet Pathol 42:66–73.CrossRefGoogle Scholar
  21. Carvalho T, Pinto C, Peleteiro MC (2006) Urinary bladder lesions in bovine enzootic haematuria. J Comp Pathol 134:336–346T. doi:10.1016/j.jcpa.2006.01.001CrossRefGoogle Scholar
  22. Carvalho FP, Oliveira JM (2007). Alpha emitters from uranium mining in the environment. J Radioanal Nucl Chem 274:167–174.Google Scholar
  23. Carvalho FP, Oliveira JM, Lopes I, Batista A, (2007) Radionuclides from past uranium mining in rivers of Portugal. J Environ Radioact 98:298–314.CrossRefGoogle Scholar
  24. Cave M, Taylor H, Wragg J (2007) Estimation of the bioaccessible arsenic fraction in soils using near infrared spectroscopy. J Environ Sci Health, Part A 42:1293–1301.Google Scholar
  25. Cave MR, Wragg J, Palumbo B, Klinck, BA (2003) Measurement of the Bioaccessibility of Arsenic in UK soils. Environment Agency P5-062/TRI.Google Scholar
  26. Centeno JA, Mullick FG, Martinez L, Gibb H, Longfellow D, Thompson C (2002) Chronic arsenic toxicity: An introduction and overview. Histopathology 41(2):324–326.Google Scholar
  27. Centeno JA, Tseng CH, van der Voet GB, Finkelman RB (2007) Global Impacts of Geogenic Arsenic – A Medical Geology Research Case. Ambio 36(1):78–81.CrossRefGoogle Scholar
  28. Cooke, TD, Bruland KW (1987) Aquatic chemistry of selenium: Evidence of biomethylation. Environ Sci Technol 21:1214–1219.CrossRefGoogle Scholar
  29. Darby S, Hill D, Auvinen A, Barros-Dios JM, Baysson H, Bochicchio F, Deo H, Falk R, Forastiere F, Hakama M, Heid I, Kreienbrock L, Kreutzer M, Lagarde F, Mäkeläinen I, Muirhead C, Obereigner W, Pershagen G, Ruano-Ravina A, Ruosteenoja E, Schaffrath-Rosario A, Tirmarche M, Tomasek L, Whitley E, Wichmann H-E, Doll R (2005) Radon in homes and lung cancer risk: Collaborative analysis of individual data from 13 European case-control studies. Br Med J 330:223–226.CrossRefGoogle Scholar
  30. Department for the Environment Food and Rural Affairs and the Environment Agency (2002) Assessment of risks to human health from land contamination: An overview of the soil guideline values and related research, CLR7.Google Scholar
  31. Derbyshire E (2005) Natural aerosolic mineral dusts and human health: Potential effects. In O Selinus, B Alloway, JA Centeno, RB Finkelman, R Fuge, U Lindh, P Smedley (eds) Essentials of Medical Geology (820 p). Elsevier: Amsterdam.Google Scholar
  32. De Vos, W, Tarvainen, T, (Chief eds) (2006) Geochemical Atlas of Europe. Part 2: Interpretation of Geochemical maps, additional tables, figures, maps and related publications. 690 p.Google Scholar
  33. Dogan AU, Doga M, Hoskins JA (2008) Erionite series minerals: Mineralogical and carcinogenic properties. En Geochem Health 30(4):367–381.CrossRefGoogle Scholar
  34. Dor F, Guyonnet D (2007) L’évaluation des risques sanitaires: Application au stockage des déchets ménagers. Géosciences 5:100 à 105.Google Scholar
  35. Earthwise (2001) Geology and health. British Geological Survey. Issue 17.Google Scholar
  36. Medical Geology in Developing Countries (2007) Two special issues of Environmental Geochemistry and HealthVol 29, No 2 and Vol 30 No 4 2008.Google Scholar
  37. Ender F (1946) The significance of cobalt deficiency as a cause of disease in cattle and sheep elucidated by therapeutic experiments. Norsk Vet Tidskr 58:313 (In Norwegian, English summary).Google Scholar
  38. Faísca MC, Teixeira MMGR, Bettencourt AO, (1992) Indoor radon concentrations in Portugal – a national survey. Radiation Protection Dosimetry 45:465–467.Google Scholar
  39. Falcão JM, Carvalho FP, Leite MM, Alarcão M, Cordeiro E, Ribeiro J (2005). MINURAR project d’uranium mines and their residues: Health effects in a Portuguese population. Scientific Report I (in Portuguese), Report Published by INSA, INETI, ITN. Available from: <http://www.itn.pt>.and <http://www.insa.pt>.
  40. Fátima Reis M, Segurado S, Brantes A, Simões HT, Melim JM, GeraldesV Miguel JP (2008) Ethics issues experienced in HBM within Portuguese health surveillance and research projects. Environmen Health 7(Suppl 1):S5 doi:10.1186/1476-069X-7-S1-S5.CrossRefGoogle Scholar
  41. Feder GL, Radovanovic Z, Finkelman RB (1991) Relationship between weathered coal deposits and the etiology of Balkan endemic nephropathy. Kidney International 40(Suppl. 34):s-9–s-11.Google Scholar
  42. Figueira R, Sérgio C, Leal Lopes J, Sousa AJ (2007) Detection of exposition risk to arsenic in Portugal assessed by air deposition in biomonitors and water contamination. Int J Hyg Environ-Health 210:393–397.CrossRefGoogle Scholar
  43. Flaten TP, Bølviken T, (1991) Geographical associations between drinking water chemistry and morbidity of cancer and some other diseases in Norway. Sci Total Environ 102:75–100.CrossRefGoogle Scholar
  44. Fordyce F (2005) Selenium deficiency and toxicity in the environment. In O Selinus, B Alloway, JA Centeno, RB Finkelman, R Fuge, U Lindh, P Smedley (eds) Essentials of Medical Geology–Impacts of the Natural Environment on Public Health (pp. 373–415). Elsevier – Academic Press, London.Google Scholar
  45. Frank A, Galgan V, Petersson L (1994) Secondary copper deficiency, chromium deficiency and trace element imbalance in the moose (Alces alces L.): Effect of anthropogenic activity. Ambio 23(4–5).Google Scholar
  46. Frøslie A (1977) Copper status in sheep in Norway. Norsk Vet Tidskr 89:71–79 (In Norwegian, English summary).Google Scholar
  47. Frøslie A (1990) Problems on deficiency and excess of minerals in animal nutrition. In Låg J(ed) Geomedicine (pp. 37–59). Boca Raton: CRC Press.Google Scholar
  48. Frøslie A, Norheim G (1977) Concentrations of molybdenum and zinc in liver in relation to copper accumulation in normal and copper poisoned sheep. Acta Vet Scand 17:307–315.Google Scholar
  49. Frøslie A, Karlsen JT, Rygge J (1980) Selenium in animal nutrition in Norway. Acta Agric Scand 30:17–25.CrossRefGoogle Scholar
  50. Frøslie A, Norheim G, Søli NE (1983) Levels of copper, molybdenum, zinc and sulphur in concentrates and mineral feeding stuffs in relation to chronic copper poisoning in sheep in Norway. Acta Agric Scand 33:261–267.CrossRefGoogle Scholar
  51. Geosciences et sante (2007). Special issue of Geosciences No 5, March 2007. BRGM. 118 pp.Google Scholar
  52. Glorennec P, Guyonnet D, Laperche V (2007) Plomb et santé. Géosciences n5:40 à 45.Google Scholar
  53. Gomes CSF, Silva JBP (2006) Minerals and Human Health: Benefits and Risks/ Os Minerais e a Saúde Humana: Benefícios e Riscos/ (published a bilingual Portuguese and English). In C Gomes, J Silva (eds) Litografia da Maia. Maia. 300 p.Google Scholar
  54. Gomes CSF Silva JBP (2007) Minerals and clay minerals in medical geology. Appl Clay Sci 36:4–21.CrossRefGoogle Scholar
  55. Gomes CSF Silva JBP (2006) Published a bilingual (Portuguese and English) book entitled “Os Minerais e a Saúde Humana: Benefícios e Riscos/Minerals and Human Health: Benefits and Risks that presents a fair balance of both positive and negative effects of minerals on human health. Gomes CSF Silva JBP (eds) 316 p.Google Scholar
  56. Govasmark E, Steen A, Bakken AK, Strøm T, Hansen S, Bernhoft A (2005) Copper, molybdenum and cobalt in herbage and ruminants from organic farms in Norway. Acta Agr Scand Section A:21–30.Google Scholar
  57. Haglund B, Ryckenberg K, Selinus O, Dahlqvist G (1996) Evidence of a relationship between childhood-onset type 1 diabetes and low groundwater concentration of Zinc. Diab Care 19(8) August 1996.Google Scholar
  58. Havulinna AS, Tienari PJ, Marttila RJ, Martikainen KK, Eriksson JG, Taskinen O, Moltchanova E, Karvonen M (2008) Geographical variation of medicated parkinsonism in Finland during 1995 to 2000. Mov Disord 23(7):1024–1031.CrossRefGoogle Scholar
  59. Hillborg PO (1978) Gauchers disease in Sweden and its hypothetical dependance on metal anomalies in the soil. Geomedical Aspects in Present and Future Research. Symposium at the Norwegian Academy of Science and Letters, pp. 173–181.Google Scholar
  60. Inácio M, Pereira V, Pinto M, (2008) The soil geochemical atlas of Portugal: Overview and applications. J Geochem Explor 98:22–33.CrossRefGoogle Scholar
  61. Johnson CC, Breward N, Ander EL, Allt L (2005) G-BASE: Baseline geochemical mapping of Great Britain and Northern Ireland. Geochem ExplorEnviron Anal 5:1–13.Google Scholar
  62. Kaipio J, Näyhä S, Valtonen V (2004) Fluoride in the drinking water and the geographical variation of coronary heart disease in Finland. Eur J Cardiovasc Prev Rehabil 11(1):56–62.CrossRefGoogle Scholar
  63. Kannisto V (1947) The causes of death as demographical factors in Finland. [In Finnish, English summary]. Helsinki. Kansantaloudellisia tutkimuksia-Economic studies XV.Google Scholar
  64. Karvonen M, Moltchanova E, Viik-Kajander M, Moltchanov V, Rytkönen M, Kousa A, Tuomilehto J (2002) Regional inequality in the risk of acute myocardial infarction in Finland: A Case Study of 35- to 74-Year-Old Men. Heart Drug 2:51–60.CrossRefGoogle Scholar
  65. Kasan-Allen L (2006) Asbestos – The Human cost of corporate greed. GUE/NGL European United Left/Nordic green Left. European Parliamentary Group, Brussels: 43p.Google Scholar
  66. Kavanagh P, Farago M, Thornton I, Elliott P, Goessler W Irgolic KJ (1997) Urinary arsenic concentrations in a high arsenic area of south west England. Occup Environ Med 54:840.CrossRefGoogle Scholar
  67. Kawahara S (1971) Odontological observations of Mt. Aso-volcano disease. Fluoride 4:172–175.Google Scholar
  68. Kokki E, Ranta J, Penttinen A, Pukkala E, Pekkanen J (2001) Small area estimation of incidence of cancer around a known source of exposure with fine resolution data. Occup Environ Med 58(5):315–320.CrossRefGoogle Scholar
  69. Koljonen T (1975) The behavior of selenium in Finnish soils. Annales Agriculturae Fenniae 14: 240–247.Google Scholar
  70. Kousa A, Nikkarinen M (1997) Geochemical environment in areas of low and high coronary heart disease mortality. Geological Survey of Finland. Special Paper 23:137–148.Google Scholar
  71. Kousa A, Moltchanova E, Viik-Kajander M, Rytkönen M, Tuomilehto J, Tarvainen T, Karvonen M (2004a) Geochemistry of ground water and the incidence of acute myocardial infarction in Finland. J Epidemiol Community Health 58(2):136–139.CrossRefGoogle Scholar
  72. Kousa A, Moltchanova E, Taskinen O, Nikkarinen M, Tuomilehto J, Karvonen M, (2004b) Geographical variation of Acute Myocardial Infarction (AMI) and geochemistry of local groundwater: Application of medical geology. GFF, Vol 126, part 1.Google Scholar
  73. Kousa A, Havulinna AS, Moltchanova E, Taskinen O, Nikkarinen M, Eriksson J, Karvonen M (2006) Calcium:magnesium ratio in local groundwater and incidence of acute myocardial infarction among males in rural Finland. Environ Health Perspect 114(5):730–734.CrossRefGoogle Scholar
  74. Kousa A, Havulinna AS, Moltchanova E, Taskinen O, Nikkarinen M, Salomaa V, Karvonen M (2008) Magnesium in well water and the spatial variation of AMI incidence in rural Finland. Appl Geochem 23:632–640.CrossRefGoogle Scholar
  75. Kurttio P, Komulainen H, Hakala E, Kahelin H, Pekkanen J (1998) Urinary excretion of arsenic species after exposure to arsenic present in drinking water. Arch Environ Contam Toxicol 34(3):297–305.CrossRefGoogle Scholar
  76. Kurttio P, Pukkala E, Kahelin H, Auvinen A, Pekkanen J (1999) Arsenic concentrations in well water and risk of bladder and kidney cancer in Finland. Environ Health Perspect 107(9):705–710.CrossRefGoogle Scholar
  77. Kurttio P, Salonen L, Ilus T, Pekkanen J, Pukkala E, Auvinen A (2006) Well water radioactivity and risk of cancers of the urinary organs. Environ Res 102(3):333–338.CrossRefGoogle Scholar
  78. Kurttio P, Salonen L, Ilus T, Pekkanen J, Pukkala E, Auvinen A (2006) Well water radioactivity and risk of cancers of the urinary organs. Environ Res 102(3):333–338.CrossRefGoogle Scholar
  79. Lahermo P, Alfthan G, Wang D (1998) Selenium and arsenic in the environment in Finland. J Environ Pathol Toxicol Oncol 17(3–4):205–216.Google Scholar
  80. Lahermo P, Ilmasti M, Juntunen R, Taka M (1990) The geochemical atlas of Finland, Part 1. The hydrogeochemical mapping of Finnish groundwater. Geological Survey of Finland, Espoo.Google Scholar
  81. Lahermo P, Backman B (2000) The occurrence and geochemistry of fluorides with special reference to natural waters in Finland. Geological Survey of Finland. Report of Investigation 149. 40p.Google Scholar
  82. Lamberg BA (1986) Endemic goitre in Finland and changes during 30 years of iodine prophylaxis. Endocrinol Exp 20(1):35–47.Google Scholar
  83. Luoma H, Aromaa A, Helminen S, Murtomaa H, Kiviluoto L, Punsar S, Knekt P (1983) Risk of myocardial infarction in Finnish men in relation to fluoride, magnesium and calcium concentration in drinking water. Acta Med Scand 213:171–176.CrossRefGoogle Scholar
  84. Løken, A (1912) Goiter. Norsk Vet Tidskr 24:178 (In Norwegian).Google Scholar
  85. Låg J (1968) Relationships between the chemical composition of the precipitation and the contents of exchangeable ions in the humus layer of natural soils. Acta Agric Scand 18:148–152.CrossRefGoogle Scholar
  86. Låg J (ed) (1990) Geomedicine (278 p.). Boca Raton, USA: CRC Press.Google Scholar
  87. Låg J (ed) (1992) Chemical climatology and geomedical problems (226 p.). Oslo: The Norwegian Academy of Science and Letters.Google Scholar
  88. Låg J, Steinnes E (1974) Soil selenium in relation to precipitation. Ambio 3:237–238.Google Scholar
  89. Låg J, Steinnes E, (1976) Regional distribution of halogens in humus layers of Norwegian forest soils. Geoderma 16:317–325.CrossRefGoogle Scholar
  90. Låg J, Steinnes E (1978) Regional distribution of selenium and arsenic in humus layers of Norwegian forest soils. Geoderma 20: 3–14.CrossRefGoogle Scholar
  91. Låg J, Hvatum OØ, Bølviken B (1974) Some naturally heavy-metal poisoned areas of interest in prospecting, soil science, and geomedicine. Norges Geol Unders 304:73–96.Google Scholar
  92. Mills CF, Davis GK (1987) Molybdenum. In W Mertz (ed) Trace Elements in Human and Animal Nutrition (Vol. 1, pp. 429–457). New York: Academic Press, Inc.Google Scholar
  93. Ministry of Agriculture and Forestry (1984) Proposal for amounts of selenium to be added into fertilizers. Working Group Report. No. 7, Helsinki (in Finnish).Google Scholar
  94. Moltchanova E, Rytkönen M, Kousa A, Viik-Kajander M, Karvonen M (2004) Zinc and nitrate in the ground water and the incidence of type 1 diabetes in Finland. Diabet Med 21:256–261.CrossRefGoogle Scholar
  95. Nerbrand CH, Svärdsudd K, Ek J, Tibblin G (1992) Cardiovascular mortality and morbidity in seven counties in Sweden in relation to water hardness and geological settings. Europ heart j 13:721–727.Google Scholar
  96. Neves O, Abreu MM (2009) Are uranium-contaminated soil and irrigation water a risk for human vegetables consumers? A study case with Solanum tuberosum L., Phaseolus vulgaris L. and Lactuca sativa L. Ecotoxicology DOI 10.1007/s10646-009-0376-4.Google Scholar
  97. Nikkarinen M, Aatos S, Teräsvuori E (2001) Asbestin esiintyminen ja sen vaikutus ympäristöön Tuusniemellä, Outokummussa, Kaavilla ja Heinävedellä. In Finnish. Summary: Occurrences of asbestos minerals and their environmental impact in the area of municipalities of Tuusniemi, Outokumpu, Kaavi and Heinävesi, eastern Finland. Report of Investigation 152. Espoo:Geological Survey of Finland. 41 p.Google Scholar
  98. Nikkarinen M, Kollanus V, Ahtoniemi P, Kauppila T, Holma A, Räisänen ML, Makkonen S, Tuomisto JT (eds) (2008) Metallien yhdennetty kohdekohtainen riskinarviointi. In Finnish. Abstract: Integrated site-specific risk assessment of metals. University of Kuopio, Department of Environmental Science: Seminar Publications 3/2008. 401 p.Google Scholar
  99. Notcutt G, Davies F (1999) Biomonitoring of volcanogenic fluoride, Furnas Caldera, São Miguel, Azores. J Volcanol Geotherm Res 92:209–214.CrossRefGoogle Scholar
  100. Orem WH, Feder GL, Finkelman RB (1999) A possible link between Balkan endemic nephropathy and the leaching of toxic organic compounds from Pliocene lignite by groundwater: preliminary investigation. Int Jour Coal Geol 40(2–3):237–252.CrossRefGoogle Scholar
  101. Orem W, Tatu C, Pavlovic N, Bunnell J, Lerch H, Paunescu V, Ordodi V, Flores D, Corum M, Bates A (2007, February) Health effects of toxic organic substances from coal: Toward “panendemic” nephropathy. Ambio 36(1):98–102.Google Scholar
  102. Palumbo-Roe B, Cave MR, Klinck BA, Wragg J, Taylor H, O’Donnell K, Shaw RA (2005) Bioaccessibility of arsenic in soils developed over Jurassic ironstones in eastern England. Environ Geochem Health 27:121–130.CrossRefGoogle Scholar
  103. Pavão ML, Figueiredo T, Santos V, Lopes PA, Ferin R, Santos MC, Nève J, Viegas-Crespo AM (2006) Whole blood glutathione peroxidase and erythrocyte superoxide dismutase activities, serum trace elements (Se, Cu, Zn) and cardiovascular risk factors in subjects from the city of Ponta Delgada (Island of San Miguel, The Azores' Archipelago, Portugal). Biomarkers 11(5):460–471. (doi: 10.1080/13547500600625828).CrossRefGoogle Scholar
  104. Pereira AJSC, e Neves, LJPF, Gonçalves CVM (2007) Radon in groundwater from the Hesperian massif (Central Portugal). XXXV IAH Congress, International Association of Hydrologists, Lisbon, Abstract book, Ribeiro L, Chambel A, Condesso de Melo MT (eds) p.190.Google Scholar
  105. Pereira AJSC, Neves LJPF, Godinho MM, Dias JMM (2003) Natural radioactivity in Portugal: influencing geological factors and implications for land use planning. Radioprotecção 2(2–3):109–120.Google Scholar
  106. Pereira AJSC, e Neves LJPF (2005) – Radon risk maps: the Portuguese experience. Annual Meeting of the Geological Society, Salt Lake City, Abstracts with Programs, vol. 37 (7), p. 354.Google Scholar
  107. Perrin J (2007) La géologie du radon. Géosciences 5:22 à 23.Google Scholar
  108. Piispanen R (1993) Water hardness and cardiovascular mortality in Finland. Environ Geochem Health 15:201–208.CrossRefGoogle Scholar
  109. Piispanen R (2000) Radon and lung cancer in Finland: Are there signs of radiation hormesis? Environ Geochem Health 22(2):113–130.CrossRefGoogle Scholar
  110. Pinto CA, Lima R, Louza AC, Almeida V, Melo M, Vaz Y, Neto Fonseca I, Lauren DR, Smith BL (2000) Bracken fern-induced bovine enzootic haematuria in São Miguel Island, Azores Bracken-fern: Toxicity, Biology and Control: Proceedings of IV International Bracken 99. Conference. pp. 136–140.Google Scholar
  111. Purdey M (2004). The Pathogenesis of Machado Joseph Disease: A High Manganese/Low Magnesium Initiated CAG Expansion Mutation in Susceptible Genotypes? J Am Coll Nutr 23(6):715S–729S.Google Scholar
  112. Plant JA, Baldock W, Smith B (1996) The role of geochemistry in environmental and epidemiological studies in developing countries. In JD Appleton et al. (ed) Environmental Geochemistry and Health with special reference to developing countries. A review. Geological Society Special Publication 113: 7–22 London.Google Scholar
  113. Pocock SJ, Shaper AG, Cook DG, Packham RF, Lacey RF, Powell P, Russell PF (1980) British regional heart study: Geographic variations in cardiovascular mortality, and the role of water quality. Br Med J 24;280(6226):1243–1249.Google Scholar
  114. Pukkala E, Patama T (2008) Small-area based map animations of cancer incidence in the Finland, 1957–2006. Finnish Cancer Registry http://astra.cancer.fi/cancermaps/suomi19572006/en/.
  115. Pukkala E, Patama T, Engholm G, Ólafsdóttir GH, Bray F, Talbäck M, Pasanen K (2007) Small-area based map animations of cancer incidence in the Nordic countries, 1971–2003. Nordic Cancer Union http://astra.cancer.fi/cancermaps/Nordic.
  116. Punsar S, Erämetsä O, Karvonen MJ, Ryhänen A, Hilska P, Vornamo H (1975) Coronary heart disease and drinking water. A search in two Finnish male cohorts for epidemiologic evidence of a water factor. J Chron Dis 28:259–287.CrossRefGoogle Scholar
  117. Punsar S, Karvonen MJ (1979) Drinking water quality and sudden death: Observations from West and East Finland. Cardiology 64(1):24–34.CrossRefGoogle Scholar
  118. Pärkö A (1990) Longitudinal study of dental caries prevalence and incidence in the rapakivi (high fluoride) and olivine diabase (low fluoride) areas of Laitila, Finland. Proc Finn Dent Soc 86(2):103–106.Google Scholar
  119. Rapant S, Krcmova K, (2008) Environmental and health risk estimation for potentially toxic elements in groundwater in Slovakia. European Geologist 25. June 2008. pp. 13–16.Google Scholar
  120. Rapant S, Salminen R, Tarvainen T, Krcmová1 K, Cvecˇková1 V (2008) Application of a risk assessment method to Europe-wide geochemical baseline data. Geochem Explor Environ Anal 8(3–4):291–299.Google Scholar
  121. Rawlins BG, O’Donnell K, Ingham M (2003) Geochemical survey of the Tamar catchment (south-west England). British Geological Survey, CR/03/027.Google Scholar
  122. Reimann C, Ääräs M, Chekushin V et al. (1998) Environmental Geochemical Atlas of the Central Barents Region. Special Publication, NGU-GTK-CKE. Geological Survey of Norway, Trondheim.Google Scholar
  123. Reimann C, Siewers U, Tarvainen T et al. (2003) Agricultural Soils in Northern Europe: A Geochemical Atlas. Geologisches Jahrbuch, Sonderhefte, Reihe D, Heft SD 5. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart.Google Scholar
  124. Roques CF (2007) Le thermalisme, la médecine que la Terre nous a donnée. Géosciences 5:74 à 79.Google Scholar
  125. Reis AP, Sousa AJ, Ferreira da Silva E, Cardoso Fonseca E, (2005) Application of geostatistical methods to arsenic data from soil samples of the Cova dos Mouros mine (Vila Verde-Portugal). Environ Geochem Health 27:259–270.CrossRefGoogle Scholar
  126. Rubenowitz E, Axelsson G, Rylander R (1996) Magnesium in drinking water and death from acute myocardial infarction. Am J Epidemiol 143:456–462.CrossRefGoogle Scholar
  127. Rubenowitz E, Axelsson G, Rylander R (1999) Magnesium and calcium in drinking water and death from acute myocardial infarction in women. Epidemiology 10:31–36.CrossRefGoogle Scholar
  128. Rubenowitz E, Molin I, Axelsson G, Rylander R (2000) Magnesium in drinking water in relation to morbidity and mortality from acute myocardial infarction. Epidemiology 11:416–421.CrossRefGoogle Scholar
  129. Rytkönen M, Ranta J, Tuomilehto J, Karvonen M (2001) Bayesian analysis of geographical variation in the incidence of Type I diabetes in Finland. Diabetologia 44(Suppl 3):B37–B44.CrossRefGoogle Scholar
  130. Salminen R (Chief ed), Batista MJ, Bidovec M, Demetriades A, De Vivo B, De Vos W, Duris M,Gilucis A, Gregorauskiene V, Halamic J, Heitzmann P, Lima A, Jordan G, Klaver G, Klein P, Lis J, Locutura J, Marsina K, Mazreku A, O’Connor PJ, Olsson SÅ, Ottesen R-T, Petersell V, Plant JA, Reeder S, Salpeteur I, Sandström H, Siewers U, Steenfelt A, Tarvainen T (2005) Geochemical Atlas of Europe. Part 1 – Background Information, Methodology and Maps. Geological Survey of Finland, Espoo.Google Scholar
  131. Salonen JT, Alfthan G, Huttunen JK, Pikkarainen J, Puska P (1982) Association between cardiovascular death and myocardial infarction and serum selenium in a matched-pair longitudinal study. Lancet 24;2(8291):175–179.Google Scholar
  132. Salonen JT, Salonen R, Lappetelainen R et al. (1985) Risk of cancer in relation to serum concentrations of selenium and vitamins A and E: Matched case-control analysis of prospective data. Br Med J 290:417–490.CrossRefGoogle Scholar
  133. Salonen JT, Salonen R, Seppänen K, Kantola M, Suntioinen S, Korpela H (1991) Interactions of serum copper, selenium, and low density lipoprotein cholesterol in atherogenesis. Br Med J 302:756–760.CrossRefGoogle Scholar
  134. Selinus O, Frank A, (1999) Medical geology. In L Möller (ed): Environmental medicine (pp. 164–183). Stockholm: Joint Industrial Safety Council.Google Scholar
  135. Selinus OC, Frank A, Galgan V (1996) Biogeochemistry and metal biology – an integrated Swedish approach for metal related health effects. In D Appleton, R Fuge, J McCall (ed) Environmental Geochemistry and Health in Developing Countries Special Publication (Vol. 113, pp. 81–89). London: Geological Society. , Chapman and Hall.Google Scholar
  136. Selinus O, Alloway B, Centeno JA, Finkelman RB, Fuge R, Lindh U, Smedley P (eds) (2005) Essentials of Medical Geology (820 p). Amsterdam: Elsevier.Google Scholar
  137. Selinus O, Alloway B, Centeno JA, Finkelman (2008) The medical geology revolution – the evolution of an IUGS initiative. Episodes 30(4).Google Scholar
  138. Sivertsen T, Plassen C (2004) Hepatic cobalt and copper levels in lambs in Norway. Acta Vet Scand 45:69–77.CrossRefGoogle Scholar
  139. Sivertsen T, Øvernes G, Østerås O, Nymoen U, Lunder N (2005) Plasma vitamin E and blood selenium concentrations in Norwegian dairy cows: Reginal differences and relations to feeding and health. Acta vet Scand 46:177–191.CrossRefGoogle Scholar
  140. Skinner C, Berger A (eds) (2003) Geology and Public Health – Closing the Gap. Oxford: Oxford Press.Google Scholar
  141. Smedley P, Kinniburgh DG (2005) Arsenic in groundwater and the environment. In O Selinus, B Alloway, JA Centeno, RB Finkelman, R Fuge, U Lindh, P Smedley (eds), Essentials of Medical Geology (820 p). Amsterdam: Elsevier.Google Scholar
  142. Steinnes E (ed) (2004) Geomedical aspects of organic farming (138 p.). Oslo: The Norwegian Academy of Science and Letters.Google Scholar
  143. Steinnes E, Frontasyeva MV (2002) Marine gradients of halogens in soil studied by epithermal neutron activation analysis. J Radioanal Nucl Chem 253:173–177.CrossRefGoogle Scholar
  144. Søli NE (1980) Chronic copper poisoning in sheep. Nord Vet Med 32:75–89.Google Scholar
  145. Sumelahti M-L, Tienari PJ, Wikström J, Palo J, Hakama M (2000) Regional and temporal variation in the incidence of multiple sclerosis in Finland 1979–1993. Neuroepidemiology 19:67–75.CrossRefGoogle Scholar
  146. Tarvainen T, Lahermo P, Hatakka T, Huikuri P, Ilmasti M, Juntunen R, Karhu J, Kortelainen N, Nikkarinen M, Väisänen U (2001) Chemical composition of well water in Finland – main results of the “One thousand wells” project. In S Autio (ed) Geological Survey of Finland, Current Reseasrch 1999–2000. Special Paper 31: 57–76.Google Scholar
  147. Tatu CA, Orem WH, Finkelman RB, Feder GL, (1998) The etiology of Balkan Endemic Nephropathy: Still more questions than answers. Environ Health Pers 106(11):689–700.CrossRefGoogle Scholar
  148. Ulvund MJ (1995) Cobalt/vitamin B-12 deficiency in sheep. Norsk Veterinærtidskr. 107, 489–501 (In Norwegian, English summary).Google Scholar
  149. Ulvund MJ Øverås J (1980) Chronic hepatitis in lambs in Norway, a condition resembling ovine white liver disease in New Zealand. N Z Vet J 28:19.CrossRefGoogle Scholar
  150. Varet J (2007) Tribune – Volcanisme et santé. Géosciences 5:110 à 111.Google Scholar
  151. Viegas-Crespo AM, Pavfio ML, Paulo O, Santos V, Santos MC, Nève J (2000) Trace element status (Se, Cu, Zn) and serum lipid profile in Portuguese subjects of San Miguel Island from Azores’archipelago. J Trace Elements Med Biol 14:1–5.CrossRefGoogle Scholar
  152. WHO (1993) Guidelines of drinking-water quality. Volume 1: Recommendations. – 2nd ed. Geneva: World Health Organization.Google Scholar
  153. Wragg J (2005) A study of the relationship between arsenic bioaccessibility and its solid phase distribution in Wellingborough soils. Nottingham.Google Scholar
  154. Wragg J, Cave M, Nathanail P (2007) A Study of the relationship between arsenic bioaccessibility and its solid-phase distribution in soils from Wellingborough, UK. J Environ Sci Health, Part A, Vol. 42, 1303–1315.Google Scholar
  155. Wu X, Låg J (1988) Selenium in Norwegian farmland soils. Acta argic Scand 38:271–276.CrossRefGoogle Scholar
  156. Yoshida S, Muramatsu Y (1995) Determination of organic, inorganic, and particulate iodine in the coastal atmosphere of Japan. J Radioanal Nucl Chem – Articles 196, 295–302.CrossRefGoogle Scholar
  157. Ytrehus B, Skagemo H, Stuve G, Siversen T, Handeland K, Vikøren T (1999) Osteoporesis, bone mineralization, and status of selected trace elements in two populations of moose calves in Norway. J Wildlife Diseases 35, 204–211.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Olle Selinus
    • 1
  • Mark Cave
    • 2
  • Anne Kousa
    • 3
  • Eiliv Steinnes
    • 4
  • Jaques Varet
    • 5
  • Eduardo Ferreira da Silva
    • 6
  1. 1.Geological Survey of SwedenUppsalaSweden
  2. 2.British Geological SurveyKeyworthUK
  3. 3.Geological Survey of Finland, GTKKuopioFinland
  4. 4.Department of ChemistryNorwegian University of Science and TechnologyTrondheimNorway
  5. 5.Geological Survey of France, BRGMOrléans cedex 02France
  6. 6.Universidade de AveiroAveiroPortugal

Personalised recommendations