Earth and Life pp 937-965 | Cite as

Cenozoic Environmental Shifts and Foraminiferal Evolution

  • Brian McGowranEmail author
Part of the International Year of Planet Earth book series (IYPE)


The dense record of Cenozoic foraminifera simultaneously supplies a mosaic of biostratigraphy, a rich field for evolutionary studies and the vehicles for geochemical environmental proxies. Four groups are discussed: the larger foraminifera on the warm-water shelves and platforms, the planktonics, the deep-sea faunas and the southern-extratropical benthics. The environmental trajectory from greenhouse in the later Cretaceous and earlier Paleogene to icehouse in the Neogene is not smooth but punctuated, and there are two particularly critical intervals, later Eocene and early-middle Miocene. The foraminiferal record is not smooth but chunky at 107 years’ scale. There are several good examples of two powerful synchroneities, one being between the faunas of the different realms and the other between the fossil record and the physical-environmental record.


Late Cretaceous Cenozoic Paleogene Neogene Biostratigraphy Environments Foraminifers Planktonics Benthics Paleoclimate 



I thank Qianyu Li and Paul Pearson for critically reading the manuscript and the editor, John Talent, for initiating the project, inviting the contribution, and steadfastly displaying patience and encouragement.


  1. Abels HA, Hilgen FJ, Krijgsman W, Kruk RW, Raffi I, Turco E, Zachariasse WJ (2005) Long-period orbital control on middle Miocene global cooling: integrated stratigraphy and astronomical tuning of the Blue Clay Formation on Malta. Paleoceanography 20:PA4012. doi:10.1029/2004PA001129Google Scholar
  2. Abreu VS, Hardenbol J, Haddad GA, Baum GR, Droxler AW, Vail PR (1998) Oxygen isotope synthesis: a Cretaceous ice-house? In:de Graciansky P-C, Hardenbol J, Jacquin T, Vail PR (eds) Mesozoic and Cenozoic sequence stratigraphy of European basins. SEPM (Soc Sedimentary Geol), Spec Pub No. 60, pp 75–80Google Scholar
  3. Adams CG (1970) A reconsideration of the East Indies Letter Classification of the Tertiary. Bull Br Mus (Nat Hist), London 19:87–137Google Scholar
  4. Adams CG (1983) Speciation, phylogenesis, tectonism, climate and eustasy: factors in the evolution of Cenozoic larger foraminiferal bioprovinces. In: Sims RW, Price JH, Whalley PES (eds) Evolution time and space: the emergence of the biosphere. Systematics Assoc Spec, vol 23. Academic, London, pp 255–289Google Scholar
  5. Adams, CG (1984) Neogene larger foraminifera, evolutionary and geological events in the context of datum planes. In: Ikebe N, Tsuchi R (eds) Pacific Neogene datum planes. University of Tokyo Press, Tokyo, pp 47–67Google Scholar
  6. Alroy J (1994) Appearance event ordination: a new biochronological method. Paleobiology 20:191–207Google Scholar
  7. Aubry M-P, Berggren WA, Van Couvering JA, McGowran B, Hilgen F, Steininger F, Lourens L (2009) The Neogene and Quaternary: chronostratigraphic compromise or non-overlapping magisteria? Stratigraphy 6:1–16Google Scholar
  8. Barbieri R, Benjamini C, Monechi S, Reale V (2003) Stratigraphy and benthic foraminiferal events across the Middle–Late Eocene transition in Western Negev, Israel. In: Prothero DR, Ivany LC, Nesbitt EA (eds) From greenhouse to icehouse: the marine Eocene–Oligocene transition. Ch 26. Columbia University Press, New York, pp 453–470Google Scholar
  9. Berger WH, Wefer G (1996) Expeditions into the past: paleoceanographic studies in the South Atlantic. In: Wefer G, Berger WH, Siedler G, Webb DJ (eds), The South Atlantic: present and past circulation. Springer-Verlag, Berlin, pp 363–410Google Scholar
  10. Berggren WA, Miller KG (1989) Cenozoic bathyal and abyssal calcareous benthic foraminiferal zonation. Micropaleontology 35:308–320Google Scholar
  11. Berggren WA, Pearson PN (2005) A revised tropical to subtropical Paleogene planktonic foraminiferal zonation. J Foraminiferal Res 35:279–298Google Scholar
  12. Blow WH (1959) Age, correlation and biostratigraphy of the Upper Tocuyo (San Lorenzo) and Pozón formations eastern Falcón, Venezuela. Bull Am Paleontol 39:1–251Google Scholar
  13. Bohaty SM, Zachos JC, Florindo F, Delaney ML (2009) Coupled greenhouse warming and deep-sea acidification in the middle Eocene. Paleoceanography 24:PA2207. doi:10.1029/2008PA001676Google Scholar
  14. Bolli HM (1957) The genera Globigerina and Globorotalia in the Paleocene–lower Eocene Lizard Springs Formation of Trinidad, B.W.I. United States. Nat Mus, Bull 215:51–81Google Scholar
  15. Boudagher-Fadel MK, Banner FT (1999) Revision of the stratigraphic significance of the Oligo-Miocene “letter-stages”. Revue de Micropaléontologie 42:93–97Google Scholar
  16. Boudagher-Fadel MK, Lokier SW (2005) Significant Miocene larger foraminifera from south central Java. Revue de Paléobiologie 24:291–309Google Scholar
  17. Buzas MA, Culver SJ (1999) Understanding regional species diversity through the log series distribution of occurrences. Diversity Distribution 8:187–195Google Scholar
  18. Buzas MA, Collins LS, Culver SJ (2002) Latitudinal difference in biodiversity caused by higher tropical rate of increase. Proc Natl Acad Sci USA 99:7841–7843Google Scholar
  19. Carpenter WB, Parker WK, Jones TR (1862) Introduction to the study of the foraminifera. The Ray Society, LondonGoogle Scholar
  20. Cifelli R (1990) A history of the classification of the foraminifera (1826–1933). Part I, Foraminiferal classification from d’Orbigny to Galloway. Cushman Foundation Foraminiferal Res, Spec Pub 27:1–88Google Scholar
  21. Corliss BH (1981) Deep-sea benthic foraminiferal faunal turnover near the Eocene/Oligocene boundary. Mar Micropaleontol 6:367–384. doi:10.1016/0377–8398(81)90007–4Google Scholar
  22. Culver SJ (2003 Benthic foraminifera across the Cretaceous–Tertiary (K–T) boundary: a review. Mar Micropaleontol 47:177–226Google Scholar
  23. Cushman JA (1940) Foraminifera, their classification and economic use. Harvard University Press, BostonGoogle Scholar
  24. Cushman JA, Stainforth RM (1945) The foraminifera of the Cipero Marl Formation of Trinidad, British West Indies. Cushman Lab Foraminiferal Res, Spec Pub 14:1–74Google Scholar
  25. Darling K, Wade CM (2008) The genetic diversity of planktic foraminifera and the global distribution of ribosomal RNA genotypes. Mar Micropaleontol 67:216–238Google Scholar
  26. Darling KF, Kucera M, Wade CM (2007) Global molecular phylogeography reveals persistent Arctic circumpolar isolation in a marine planktonic protist. PNAS 104:5003–5004Google Scholar
  27. Darling KF, Thomas E, Kasemann SA, Seears HA, Smart CW, Wade CM (2009) Surviving mass extinction by bridging the benthic/planktic divide. PNAS 106:12629–12633Google Scholar
  28. Darwin C (1859) On the origin of species [Facsimile of first edition, 1859, ed. E. Mayr (1964)]. Harvard University Press, Cambridge, MAGoogle Scholar
  29. Davies AM (1934) Tertiary faunas: a text-book for oilfield palaeontologists and students of geology. Thomas Murby, London, 1934–35 [v 1, 1935], v 2Google Scholar
  30. De Vargas C, Saez AG, Medlin LK, Thierstein HR (2004) Superspecies in the calcareous plankton. In: Thierstein HR, Young JR (eds) Coccolithophores: from molecular processes to global impact. Springer, Berlin, pp 271–298Google Scholar
  31. d’Hondt S (2005) Consequence of the Cretaceous/Paleogene mass extinction for marine ecosystems. Annu Rev Ecol Syst 36:295–317Google Scholar
  32. d’Hondt S, Zachos JC (1998) Cretaceous foraminifera and the evolutionary history of planktic photosymbiosis. Paleobiology 24:512–523Google Scholar
  33. Drooger CW (1993) Radial foraminifera: morphometrics and evolution. North-Holland, Amsterdam, New York, 242pGoogle Scholar
  34. Gignoux M (1955) Stratigraphic geology (English translation by GG Woodford of the 1950 French edition of “Géologie Stratigraphique”). WH Freeman, San Francisco, 682ppGoogle Scholar
  35. Glaessner MF (1937) Planktonforaminiferen aus der Kreide und dem Eozän und ihre stratigraphische Bedeutung. Studies in Micropaleontol 1 (Moscow, 1937):27–52Google Scholar
  36. Glaessner MF (1945) Principles of micropalaeontology. Melbourne University Press, Melbourne, 296pGoogle Scholar
  37. Guex, J (1991) Biochronological correlations. Springer-Verlag, BerlinGoogle Scholar
  38. Hallock P (1987) Fluctuations in the trophic resource continuum: a factor in global diversity cycles? Paleoceanography 2:457–471Google Scholar
  39. Hallock P (1999) Symbiont-bearing foraminifera. In: Sen Gupta BK (ed) Modern foraminifera. Kluwer Academic, Dordrecht, pp 123–139Google Scholar
  40. Hallock P, Premoli Silva I, Boersma A (1991) Similarities between planktonic and larger foraminiferal evolutionary trends through Paleogene paleoceanographic changes. Palaeogeogr Palaeoclimatol Palaeoecol 83:49–64Google Scholar
  41. Hardenbol J, Thierry J, Farley MB, Jacquin T, de Graciansky P-C, Vail PR (1998) Mesozoic and Cenozoic sequence chronostratigraphic framework of European basins. In: de Graciansky P-C, Hardenbol J, Jacquin T, Vail PR (eds), Mesozoic and Cenozoic sequence stratigraphy of European basins. SEPM (Society of Sedimentary Geology) Special Publication 60:3–13, TulsaGoogle Scholar
  42. Hayward BW (2001) Global deep-sea extinctions during the Pleistocene ice ages. Geology 29:599–602. doi:10.1130/00917613(2001)029<0599:GDSEDT>2.0.CO;2Google Scholar
  43. Hayward BW (2002) Late Pliocene to Middle Pleistocene extinctions of deep-sea benthic foraminifera (“Stilostomella extinction”) in the southwest Pacific. J Foraminiferal Res 32:274–307. doi:10.2113/32.3.274Google Scholar
  44. Hayward BW, Kawagata S, Grenfell HR, Sabaa AT, O’Neill T (2007) Last global extinction in the deep sea during the mid-Pleistocene climate transition. Paleoceanography 22:PA3103. doi:10.1029/2007PA001424Google Scholar
  45. Hohenegger J (2000) Coenoclines of larger foraminifera. Micropaleontology 46(Suppl 1):127–151Google Scholar
  46. Hok TS (1939) The results of phylomorphogenetic studies of some larger Foraminifera (a review). Mijnbouw en Geologie 6:93–97Google Scholar
  47. Hottinger L (1960) Recherches sur les Alvéolines du Paléocène et de l’Eocène. Mém. Suisses Paléontol 75/76:1–243Google Scholar
  48. Hottinger L (1981) The resolution power of the biostratigraphic clock based on evolution and its limits. International Symposium on Concepts and Methods in Palaeontology, Universidad Barcelona, Barcelona, pp 233–242Google Scholar
  49. Hottinger L (1982) Larger foraminifera, giant cells with a historical background. Naturwissenschaft 69:361–371Google Scholar
  50. Hottinger L (1983) Processes determining the distribution of larger foraminifera in space and time. Utrecht Micropaleontol Bull 30:239–253Google Scholar
  51. Hottinger L (1987) Conditions for generating carbonate platforms. Mem Soc Geol Italy 40:265–271Google Scholar
  52. Hottinger L (1988) Significance of diversity in shallow benthic foraminifera. Atti del Quarto Simposio Ecologia e Paleoecologia Communità Benthonice, Sorrento, 1–5 November 1988. Museo Regionale di Scienze Natural—Torino, pp 35–51Google Scholar
  53. Hottinger L (1996) Sels nutritifs et biosédimentation. Mémoir de la Societé géologique de France, n.s., 169:99–107Google Scholar
  54. Hottinger L (1997) Shallow benthic foraminiferal assemblages as signals for depth of their deposition and their limitations. Bull de la Societé géologique de France, t 168(4):491–505Google Scholar
  55. Hottinger L (1998) Shallow benthic foraminifera at the Paleocene–Eocene boundary. Strata 9:61–64Google Scholar
  56. Hottinger L (1999) “Odd partnership”, a particular size relationship between close species of larger foraminifera, with an emendation of an outstandingly odd partner, Glomalveolina delicatissima (Smout, 1954), Middle Eocene. Eclogae geologicae Helvetiiae 92:385–393Google Scholar
  57. Hottinger L (2000) Adaptations of the foraminiferal cell to life in shallow carbonate environments. Acad Naz Sci Lett Arti di Modena, Collana di Studi 21:135–140Google Scholar
  58. Hottinger L (2001) Learning from the past. In: Levi-Montalcini L (ed) Frontiers of life. Discovery and spoliation of the biosphere, vol 4(2). Academic, London and San Diego, pp 449–477Google Scholar
  59. Huber BT, Olsson RK, Pearson PN (2006) Chapter 16: Taxonomy, biostratigraphy and phylogeny of Eocene microperforate planktonic foraminifera (Jenkinsina, Cassigerinelloita, Chiloguembelina, Streptochilus, Zeauvigerina, Tenuitella, and Cassigerinella) and problematica (Dipsidripella). In: Pearson PN, Olsson RK, Huber BT, Hemleben C, Berggren WA (eds) Atlas of Eocene planktonic foraminifera. Cushman Foundation Special Publications, vol 41, Washington, DC, pp 461–508Google Scholar
  60. Hull D (1988) Science as a process: an evolutionary account of the social and conceptual development of science. University of Chicago Press, Chicago, 583ppGoogle Scholar
  61. Kelly DC, Bralower TJ, Zachos JC, Premoli Silva I, Thomas E (1996) Rapid diversification of planktonic foraminifera in the tropical Pacific (ODP Site 865) during the late Paleocene thermal maximum. Geology 24:423–426Google Scholar
  62. Langer MR, Hottinger L (2000) Biogeography of selected “larger” foraminifera. Micropaleontology 46(Suppl 1):105–126Google Scholar
  63. Leckie RM (2009) Seeking a better life in the plankton. PNAS 106:14183–14184. doi: 10.1073/pnas.0907091106Google Scholar
  64. Li Q, McGowran B (1996) Early Paleocene Parvularugoglobigerina and late Eocene Praetenuitella: evolutionary convergence implies similar habitat? J Micropalaeontol 14:119–134Google Scholar
  65. Li Q, McGowran B (1997) Miocene climatic oscillations recorded in the Lakes Entrance oil shaft, southeastern Australia: benthic foraminiferal response on a mid-latitude margin. Micropaleontology 43:149–164Google Scholar
  66. Li Q, McGowran B (2000) The Miocene foraminifera from Lakes Entrance Oil Shaft, southeastern Australia. Assoc Aust Palaeontols, Mem 22:142Google Scholar
  67. Li Q, Zhong G, Tian J (2009) Chapter 3: Stratigraphy and sea level changes. In: Wang P, Li Q (eds) The South China Sea. Developments in paleoenvironmental Research, vol 13, pp 75–170. doi:10.1007/978–1–4020–9745–4_3Google Scholar
  68. Lipps JH (1970) Plankton evolution. Evolution 24:1–22Google Scholar
  69. Lipps JH (1981) What, if anything, is micropaleontology? Paleobiology 7:167–199Google Scholar
  70. Lyell C (1871) Students elements of geology. John Murray, LondonGoogle Scholar
  71. Lyle M, Pälicke H, Nishi H, Raffi I, Gamage K, Klaus A, the IODP Expeditions 320/321 Scientific Party (2010) The Pacific equatorial age transect, IODP Expeditions 320 and 321: building a 50-million-year-long environmental record of the equatorial Pacific. Sci Drilling 9:4–15. doi:10.2204/ Scholar
  72. Mayr E, Provine WB (1980) The evolutionary synthesis. Harvard University Press, CambridgeGoogle Scholar
  73. McGowran B (1979) The Australian Tertiary: foraminiferal overview. Mar Micropaleontol 4:235–264Google Scholar
  74. McGowran B (2005) Biostratigraphy: microfossils and geological time. Cambridge University Press, Cambridge, 459ppGoogle Scholar
  75. McGowran B (2009) The Australo-Antarctic Gulf and the Auversian facies shift. In: Koeberl C, Montanari A (eds) The Late Eocene Earth—hothouse, icehouse, and impacts. Geological Society of American Special Paper 452, Ch 14, Boulder, CO, pp 215–240. doi:10.1130/2009.2452(14)Google Scholar
  76. McGowran B, Li Q (1996) Ecostratigraphy and sequence biostratigraphy, with a neritic foraminiferal example from the Miocene in southern Australia. Hist Biol 11:137–169Google Scholar
  77. McGowran B, Li Q (2000) Evolutionary palaeoecology of Cainozoic foraminifera: Tethys, IndoPacific, southern Australasia. Hist Biol 15:3–28Google Scholar
  78. McGowran B, Li Q (2007) Stratigraphy: gateway to geohistory and biohistory. Stratigraphy 4:173–185Google Scholar
  79. Miller KG, Katz ME, Berggren WA (1992) Cenozoic deep-sea benthic foraminifera: a tale of three turnovers. In: Takayanagi Y, Saito T (eds) Studies in benthic foraminifera: proceedings of the fourth international symposium on Benthic Foraminifera, Sendai, 1990 (Benthos ‘90), Tokai University Press, Tokyo, pp 245–248Google Scholar
  80. Moss G, McGowran B (2003) Oligocene neritic foraminifera in Southern Australia: spatiotemporal biotic patterns reflect sequence-stratigraphic environmental patterns. In: Olson H, Leckie M (eds) Paleobiological, geochemical, and other proxies of sea level change. SEPM (Society of Sedimentary Geology) special volume 75. Tulsa, pp 117–138Google Scholar
  81. Murray J, Hjort J (1912) The ocean: a general account of the science of the sea. Williams & Norgate, LondonGoogle Scholar
  82. Nebelsick JH, Rasser MW, Bassi D (2005) Facies dynamics in Eocene to Oligocene circumalpine carbonates. Facies 51:197–216Google Scholar
  83. Norris RD (1991) Parallel evolution in the keel structure of planktonic foraminifera. J Foraminiferal Res 21:319–331Google Scholar
  84. Norris RD (1996) Symbiosis as an evolutionary innovation in the radiation of Paleocene planktonic foraminifera. Paleobiology 22:461–480Google Scholar
  85. Norris RD, Wilson PA (1998) Low-latitude sea-surface temperatures for the mid-Cretaceous and the evolution of planktic foraminifera. Geology 26:823–826Google Scholar
  86. Pagani M, Zachos JC, Freeman KH, Tipple B, Bohaty S (2005) Marked decline in atmospheric carbon dioxide concentrations during the Palaeogene. Science 309:600–603Google Scholar
  87. Pawlowski J, Fahrnis J, Lecroq B, Longet G, Cornelius N, Excoffier L, Cedhagen T, Gooday AJ (2007) Bipolar gene flow in deep-sea benthic foraminifera. Mol Ecol 16:4089–4096Google Scholar
  88. Pearson PN (1998) Stable isotopes and the study of evolution in planktonic foraminifera. Paleontol Soc Pap 4:138–178Google Scholar
  89. Pearson PN, Olsson RK, Huber BT, Hemleben C, Berggren WA (eds) (2006a) Atlas of Eocene planktonic foraminifera: Fredericksburg, Cushman Foundation Foraminiferal Res, Spec Publ No. 41, 514ppGoogle Scholar
  90. Pearson PN, Olsson RK, Huber BT, Hemleben C, Berggren WA, Coxall HK (2006b) Chapter 1: Overview of Eocene planktonic foraminiferal taxonomy, paleoecology, phylogeny, and biostratigraphy. In: Pearson et al. (2006a), pp 11–28Google Scholar
  91. Prothero DR (2004) Did impacts, volcanic eruptions, or climate change affect mammalian evolution? Palaeogeogr Palaeoclimatol Palaeoecol 214:283–294Google Scholar
  92. Pujalte V, Schmitz B, Baceta JI, Orue-Etxebarria X, Bernaola G, Dinares-Turell J, Payros A, Apellaniz E, Caballero F (2009) Correlation of the Thanetian–Ilerdian turnover of larger foraminifera and the Paleocene–Eocene thermal maximum: confirming evidence form the Campo area (Pyrenees, Spain). Geol Acta 7:161–175. doi:10.1344/105.000000276Google Scholar
  93. Reichel M (1937) Étude sur les Alvéolines. Mém Suisses Paléontol 57 et 59:1–147Google Scholar
  94. Reiss Z, Hottinger L (1984) The Gulf of Aquaba: ecological micropaleontology. Springer, New YorkGoogle Scholar
  95. Renema W (2002) Larger foraminifera as marine environmental indicators. Scr Geol 124:263ppGoogle Scholar
  96. Renema W (2007) Faunal development of larger benthic foraminifera in the Cenozoic of southeast Asia. In: Renema W (ed) Biogeography, time, and place: distributions, barriers, and islands. Topics in geobiology, vol 29, Ch 6. Springer, Netherlands, pp 179–215Google Scholar
  97. Schiebel R, Hemleben C (2005) Modern planktic foraminifera. Paläontologische Zeitschrift 79:135–148Google Scholar
  98. Schmidt DN, Lazarus D, Young JR, Kucera M (2006) Biogeography and body size in marine plankton. Earth-Sci Rev 78:239–266Google Scholar
  99. Serra-Kiel J, Hottinger L, Caus E, Drobne K, Ferràndez C, Jauhri AK, Less G, Pavlovec R, Pignatti J, Samso JM, Schaub H, Sire E., Strougo, Tambareau Y, Tosquella J, Zakrevskaya E (1998) Larger foraminiferal biostratigraphy of the Tethyan Paleocene and Eocene. Bull Société Géologique France 169:281–299Google Scholar
  100. Sexton PF, Norris RD (2008) Dispersal and biogeography of marine plankton: long-distance dispersal of the foraminifer. Geology 36:899–902. doi:10.1130/G25232A.1Google Scholar
  101. Sexton PF, Wilson PA, Pearson PN (2006) Palaeoecology of late middle Eocene planktic foraminifera and evolutionary implications. Mar Micropaleontol 60:1–16Google Scholar
  102. Smocovitis VB (1996) Unifying biology: the evolutionary synthesis and evolutionary biology. Princeton University Press, Princeton, 248ppGoogle Scholar
  103. Subbotina NN (1953) [Globigerinidae, Hantkeninidae, and Globorotaliidae. Fossil foraminifera of the U.S.S.R.] Vses. Neft. Nauchno-Issled. Geol-Razved Inst (VNIGRI), Trudy, ns 6:1–296Google Scholar
  104. Thomas E (1992) Middle Eocene-late Oligocene bathyal benthic foraminifera (Weddell Sea): faunal changes and implications for ocean circulation. In: Prothero DR, Berggren WA (eds) Eocene–Oligocene climatic and biotic evolution. Princeton Univ Press, Princeton, pp 245–271Google Scholar
  105. Thomas E (1998) The biogeography of the late Paleocene benthic foraminiferal extinction. In: Aubry M-P, Lucas S, Berggren WA (eds) Late Paleocene–Early Eocene climatic and biotic events in the marine and terrestrial records. Columbia University Press, New York, pp 214–243Google Scholar
  106. Thomas E (2007) Cenozoic mass extinctions in the deep sea: what perturbs the largest habitat on Earth? Geol Soc Am, Spec Pap 424:1–23. doi:10.11.30/2007.2424(01)Google Scholar
  107. Thomas E, Gooday AJ (1996) Deep-sea benthic foraminifera: tracers for Cenozoic changes in oceanic productivity? Geology 24:355–358. doi:10.11.30/0091–7613(1996)024<0355:CDSBFT>;2Google Scholar
  108. Thomas E, Vincent E (1987) Equatorial Pacific deep-sea benthic foraminifera: faunal changes before the Middle Miocene polar cooling. Geology 15:1035–1039Google Scholar
  109. Tripati A, Backman J, Elderfield H, Ferretti P (2005) Eocene bipolar glaciation associated with global carbon cycle changes. Nature 436:341–346Google Scholar
  110. Ujiié Y, Kimoto K, Pawlowski J (2008) Molecular evidence for an independent origin of modern triserial planktonic foraminifera from benthic ancestors. Mar Micropaleontol 69:334–340Google Scholar
  111. van Andel TJH, Heath GR, Moore TC Jr (1975) Cenozoic history and paleoceanography of the central Pacific Ocean. Geol Soc Am Mem 143:1–134Google Scholar
  112. van Dam JA, Aziz HA, Sierra MAA, Hilgen FJ, van den Hoek Ostende LW, Lourens, LJ, Mein P, van der Meulen AJ, Pelaez-Campomanes P (2006) Long-period astronomical forcing of mammal turnover. Nature 443:687–691Google Scholar
  113. Van der Vlerk IM (1959) Problems and principles of Tertiary and Quaternary stratigraphy. Q J Geol Soc London 115:49–63Google Scholar
  114. Webb SD (1984) On two kinds of rapid faunal turnover. In: Berggren WA, van Couvering JA (eds) Catastrophes and earth history. Princeton University Press, Princeton, pp 417–436Google Scholar
  115. Woodburne MO (ed) (2004) Late Cretaceous and Cenozoic mammals of North America: biostratigraphy and geochronology. Columbia University Press, New York, 391ppGoogle Scholar
  116. Woodburne MO (2007) Mammal ages. Stratigraphy 3(2006):229–261Google Scholar
  117. Woodburne M, Swisher C (1995) Mammal high-resolution geochronology, intercontinental overland dispersals, sea level, climate and vicariance. In: Berggren WA, Kent DV, Aubry M-P, Hardenbol J (eds) Geochronology time scales and global stratigraphic correlation. SEPM (Society of Sedimentary Geology) Special Publications, vol 54. Tulsa, pp 335–364Google Scholar
  118. Wright JD, Miller KG (1993) Southern Ocean influences on late Eocene to Miocene deepwater circulation. In: Kennett JP, Warnke DA (eds), The Antarctic Paleoenvironment: a perspective on global change. Antarctic Research Series, Part Two, American Geophysical Union, Washington, DC, pp 601–625Google Scholar
  119. Zachos JC, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to Present. Science 292:686–693Google Scholar
  120. Zachos JC, Dickens GR, Zeebe RE (2008) An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451:279–283. doi:10.1038/nature06588Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Earth and Environmental SciencesThe University of AdelaideAdelaideAustralia

Personalised recommendations