Earth and Life pp 831-847 | Cite as

The Paleobiogeography of Pennsylvanian Crinoids and Blastoids

  • Johnny WatersEmail author
  • Gary D. Webster
Part of the International Year of Planet Earth book series (IYPE)


Historically, Pennsylvanian crinoid and blastoid paleogeography has been poorly constrained. Recent discoveries of Pennsylvanian faunas from Queensland (eastern Australia), Algeria, Western China, and Iran contribute to a worldwide data set that permits a more complete analysis of Pennsylvanian echinoderm paleogeography. Cluster analysis of generic occurrence groups from North America, China, the UK/Ireland, and Russia define a paleogeographic group based on cladid domination of the echinoderm communities. In contrast, many echinoderm communities in the Paleo-Tethyan realm show increased contributions from camerates and blastoids. Crinoids are noted for being endemic, rarely occurring on more than one tectonic block. Approximately 60% of Pennsylvanian crinoid genera occur on a single block. Crinoid clades differ in their patterns of endemism. Cladids are the most endemic (60%), followed by the flexibles, the disparids, and the camerates, each of which have approximately 50% endemic genera. Among genera found in a single geographic area, North America contains the most endemic faunas (64%), followed by Russia (40%) and Australia (30%). Other geographic regions show significantly lower rates of endemism ranging from 0 to 16%. North American endemics are predominantly cladids, a pattern not seen in the other areas. Although poorly known until recently, these Pennsylvanian Paleo-Tethyan echinoderm communities were the precursors to the well-studied, but still enigmatic, Permian echinoderm communities from Southeast Asia, particularly Timor.


Pennsylvanian Crinoids Blastoids Cluster analysis Paleobiogeography Endemism 


  1. Arendt YA (1960) Novyii podvid blastoidey iz podmoskovnogo karbona. Moskov [In Russian: New subspecies of blastoid from the Submoscovian Carboniferous]. Byulleten Moskovskogo Obshchestva Ispyitatelei Prirodyi, new series 65, Otdel Geologii. [Bulletin Societe Imperial Naturalists Moscou, Geologii Section] 35(4):149–150Google Scholar
  2. Arendt YA (2002) Early Carboniferous echinoderms of the Moscow region. Paleontol J 36(Suppl 2):115–184Google Scholar
  3. Arendt YA, Stupachenko AV (1983) Novyi dannye ob Akrokrinidakh [New data on the Acrocrinids]. Paleontologicheskii Zhurnal 2:69–80Google Scholar
  4. Arendt YA, Breimer A, Macurda DB Jr (1968) A new blastoid fauna from the lower Namurian of north Kazachstan (USSR). Proc Koninklijke Nederlandse Akademie van Wetenschappen. Series B: Palaeont Geol Phys Chem Anthropol 71:159–174Google Scholar
  5. Ausich WI, Kammer TW (2001) The study of crinoids during the 20th century and the challenges of the 21st century. J Paleontol 75:1161–1173CrossRefGoogle Scholar
  6. Ausich WI, Kammer TW, Baumiller TK (1994) Demise of the middle Paleozoic crinoid fauna: a single extinction event or rapid faunal turnover? Paleobiology 20:345–361Google Scholar
  7. Bassler RS, Moodey MW (1943) Bibliographic and faunal index of Paleozoic pelmatozoan echinoderms. Geol Soc Am Spec Pap 45:734Google Scholar
  8. Baumiller TK (1994) Patterns of dominance and extinction in the record of Paleozoic crinoids. In: David B, Guille A, Feral JP, Roux M (eds) Echinoderms through time. Balkema, Rotterdam, pp 193–198Google Scholar
  9. Breimer A, Macurda DB Jr (1972) The phylogeny of the fissiculate blastoids Verhangelingen der Koninklijke Nederlandsche Akademie van Wetenschappen, Afdeeling Natuurkunde Eerste Reeks, Deel 26:1–390Google Scholar
  10. Bowsher AL, Strimple HL (1986). Platycrinites and associated crinoids from Pennsylvanian rocks of the Sacramento Mountains, New Mexico. New Mex Bureau Mines Miner Resour Circular 197:1–37Google Scholar
  11. de Marez Oyens FAHW (1940) Neue Permische Krinoiden von Timor, mit Bemerkungenber deren Vorkommen in Basleogebiet. Geological Expedition to the Lesser Sunda Island under leadership of HA Brouwer 1:285–348Google Scholar
  12. Etheridge R Jr (1892) The organic remains of the Permo-Carboniferous System (Chapter 22). The organic remains of the Rolling Downs Formation (Chapter 32). The organic remains of the Desert Sandstone Formation (Chapter 34). Palaeontology of New Guinea (Chapter 39). In: Jack RL, Etheridge RJ (eds) The geology and palaeontology of Queensland and New Guinea. JC Beal, Brisbane, 2 vols, 768pGoogle Scholar
  13. Golonka J (2002) Phanerozoic reef patterns. In: Kiessling W, Flügel E, Golonka J (eds) Plate-tectonic maps of the phanerozoic. SEPM (Society for Sedimentary Geology) Special Publications 72, pp. 21–75Google Scholar
  14. Hashimoto K (2001) Pennsylvanian camerate crinoids from the Akiyoshi Limestone Group, southwest Japan. Bull Akiyoshi-dai Mus Nat Hist 36:1–16Google Scholar
  15. Hashimoto K (2005) Pennsylvanian (Missourian) camerate crinoid from limestone blocks in the Tsunemori Formation. Bull Mine City Mus Yamaguchi Prefecture, Japan 20:1–15Google Scholar
  16. Hayashaka I (1924) On the fauna of the Anthracolithic Limestone of Omi-Mura in the western part of Echigo. Sci Reports of Tohoku Imperial Univ, Sendai, Japan, ser. 2, Geology 8:1–82Google Scholar
  17. Hoepffner C, Houari MR, Bouabdelli M (2006) Tectonics of the North African variscides (Morocco, Western Algeria): an outline. Comptes Rendus Geosci 338:25–40CrossRefGoogle Scholar
  18. Holtedahl O (1911) Zur Kenntnis der Karbonablagerungen des Westlichen Spitzbergens I. Eine Fauna der Moskauer Stufe. Kristiania, Videnskabsselskabets Skrifter I. Matematisk–Naturvidenskapelig Klasse 10:1–46Google Scholar
  19. Itano WM, Webster GD, Houck KJ, Bateman WD (2003) The first Pennsylvanian batocrinid and other new echinoderms from the Minturn Formation of central Colorado. The Mountain Geologist 40:83–100Google Scholar
  20. Kammer TW, Ausich WI (2006) The age of Crinoids: a Mississippian biodiversity spike coincident with widespread carbonate ramps. Palaios 21:238–248CrossRefGoogle Scholar
  21. Kammer TW, Springer GS (2008) Biostratigraphy of crinoids from the Wymps Gap Member of the Greenbrier Formation (Mississippian, Chesterian) in northern West Virginia. J Paleontol 82:1182–1189CrossRefGoogle Scholar
  22. Katz SG (1978) Revision of the Morrowan (Lower Pennsylvanian) Pentremites from Oklahoma and Arkansas. J Paleontol 52:675–682Google Scholar
  23. Kolata DR, Frest TJ, Mapes RH (1991) The youngest carpoid: occurrence, affiities, and life mode of a Pennsylvanian (Morrowan) mitrate from Oklahoma. J Paleontol 65:844–855Google Scholar
  24. Lane NG, Sevastopulo GD (1982) Microcrinoids from the Middle Pennsylvanian of Indiana. J Paleontol 56:103–115Google Scholar
  25. Lane NG, Sevastopulo GD (1990) Biogeography of Lower Carboniferous crinoids. In: McKerrow WSS, Scotese SR (eds) Palaeozoic palaeogeography and biogeography. Geol Soc London Mem 12:333–338Google Scholar
  26. Lane NG, Webster GD (1980) Crinoidea. In: Broadhead TW, Waters JA (eds) Echinoderms, Notes for a Short Course. Univ Tennessee, Stud Geol 3:144–157Google Scholar
  27. Lane NG, Waters JA, Maples CG, Marcus SA, Liao ZT (1996) A camerate-rich Late Carboniferous (Moscovian) crinoid fauna from volcanic conglomerate, Xinjiang, Peoples Republic of China. J Paleontol 70:117–128Google Scholar
  28. Macurda DB Jr (1983) Systematics of the ssiculate Blastoidea. Museum of Paleontology. Univ Michigan Pap Paleontol 22:291pGoogle Scholar
  29. Macurda DB Jr, Mapes RH (1982) The enigma of Pennsylvanian blastoids. Proc North Am Paleontol Convention 3:343–345Google Scholar
  30. Maples CG, Waters JA (1991) Mississippian pelmatozoan community reorganization; a predation-mediated faunal change. Paleobiology 17:400–410Google Scholar
  31. McKellar RG (1966) A revision of the blastoids “Mesoblastus? australis”, “Granatocrinus? wachsmuthi”, and “Tricoelocrinus? carpenteri”, described by Etheridge (1892) from the Carboniferous of Queensland. Mem Queensland Mus 14:191–197Google Scholar
  32. Moore RC, Strimple HL (1969) Explosive evolutionary differentiation of unique group of Mississippian–Pennsylvanian camerate crinoids (Acrocrinidae). Univ Kansas Paleontol Contribs, Pap 39:1–44Google Scholar
  33. Moore RC, Strimple HL (1973) Lower Pennsylvanian (Morrowan) crinoids from Arkansas, Oklahoma, and Texas. Univ Kansas Paleontol Contribs, Article 60, Echinodermata 12:1–84Google Scholar
  34. Moore RC, Teichert C (1978) Treatise on Invertebrate Paleontology, Part T, Echinodermata 2, Crinoidea: 3 vols. Geological Society of America and University of Kansas, 1026pGoogle Scholar
  35. Pabian RK, Strimple HL (1980) Some Late Pennsylvanian (Virgilian) crinoids from southeastern Nebraska and southwestern Iowa. Proc Iowa Acad Sci 87:1–19Google Scholar
  36. Sabattini N, Castillo E (1989) Equinodermo blastoideo en el Carbonifero de las Sierras de Tepuel y Languineo, Provincia de Chubut, Argentina. Ameghiniana 26:219–224Google Scholar
  37. Sano H (2006) Impact of long-term climate change and sea-level uctuation on Mississippian to Permian mid-oceanic atoll sedimentation (Akiyoshi Limestone Group, Japan). Palaeogeogr Palaeoclimatol Palaeoecol 236:169–189CrossRefGoogle Scholar
  38. Sano H, Kanmera K (1988) Paleogeographic reconstruction of accreted oceanic rocks, Akiyoshi, southwest Japan. Geology 16:600–603CrossRefGoogle Scholar
  39. Sepkoski JJ (2002) A compendium of fossil marine animal genera. Bull Am Paleontol 363:1–560Google Scholar
  40. Sevastopulo GD (2005) The early ontogeny of blastoids. Geol J 40:351–362CrossRefGoogle Scholar
  41. Sevastopulo GD (2008) Chapter 3. Paleobiology of Carboniferous microcrinoids. In: Ausich WI, Webster GD (eds) Echinoderm paleobiology. Indiana University Press, Bloomington, pp 55–69, 456Google Scholar
  42. Strimple HL (1975) Middle Pennsylvanian (Atokan) crinoids from Oklahoma and Missouri. Univ Kansas Paleontol Contrib, Pap 76:1–30Google Scholar
  43. Strimple HL, Heckel PH (1978) A significant acrocrinid (Crinoidea: Camerata) from the Ladore Shale (Missourian, Upper Pennsylvanian) in Eastern Kansas. Kansas Geol Surv, Bull 211:5–9Google Scholar
  44. Strimple HL, Mapes RH (1977) A new Upper Pennsylvanian fissiculate blastoid from Texas. J Paleontol 51:357–362Google Scholar
  45. Strimple HL, Moore RC (1971) Crinoids of the LaSalle Limestone (Pennsylvanian) of Illinois. Univ Kansas Paleontol Contrib, Article 55, Echinodermata 11:1–48Google Scholar
  46. Strimple HL, Watkins WT (1969) Carboniferous crinoids of Texas with stratigraphic implications. Palaeontogr Am 6(40):139–275Google Scholar
  47. Termier G, Termier H (1950) Paleontologie Marocaine II. Invertebres de l’Ere Primaire. 4. Annelides, Arthropodes, Echinodermes, Conularides et Graptolithes. Service Carte Gologique Morocco, Notes et Memoires 79(4):1–279Google Scholar
  48. Wanner J (1916) Die Permischen echinodermen von Timor, I. Teil. Palaontologie von Timor 11:1–329Google Scholar
  49. Wanner J (1924) Die permischen Krinoiden von Timor. Mijnw Nederl Oost-Indie Verhandel 1921(3):348 p, 22 plGoogle Scholar
  50. Wanner J (1937) Neue Beiträge zur Kenntnis der permischen Echinodermen von Timor VIII–XIII. Palaeontographica Supp Bd 4, Abt 4 (2):57–212, pl 5–14Google Scholar
  51. Waters JA (1988) The evolutionary palaeoecology of the Blastoidea. In: Paul CRC, Smith AB (eds) Echinoderm phylogeny and evolutionary biology. Clarendon Press, Oxford, UK, pp 215–233Google Scholar
  52. Waters JA (1990) The palaeobiogeography of the Blastoidea (Echinodermata). In: McKerrow WSS, Scotese CR (eds) Palaeozoic palaeogeography and biogeography. Mem Geol Soc London 12:339–352Google Scholar
  53. Waters JA, Maples CG, Lane NG, Marcus S, Liao ZT, Liu L, Hou HF, Wang JX (2003) A quadrupling of Famennian pelmatozoan diversity; new Late Devonian blastoids and crinoids from Northwest China. J Paleontol 77:922–948CrossRefGoogle Scholar
  54. Waters JA, Marcus SA, Maples CG, Lane NG, Hou HF, Liao ZT, Wang JX, Liu LJ (2008) An overview of paleozoic stemmed echinoderms from China. In: Ausich WI, Webster GD (eds) Echinoderm paleobiology. Indiana University Press, Bloomington, pp 347–367, 456 pGoogle Scholar
  55. Webster GD (1981) New Crinoids from the Naco Formation (Middle Pennsylvanian) of Arizona and a Revision of the Family Cromyocrinidae. J Paleontol 55:1176–1199Google Scholar
  56. Webster GD (1987) Permian crinoids from the type-section of the Callytharra Formation, Callytharra Springs, Western Australia. Alcheringa 11:95–135CrossRefGoogle Scholar
  57. Webster GD (1998) Palaeobiogeography of Tethys Permian crinoids. Proc R Soc Victoria 110:289–308Google Scholar
  58. Webster GD (2003) Bibliography and index of Paleozoic crinoids, coronates, and hemistreptocrinoids. 1758–1999. Geol Soc Am, Spec Pap 363:2335. GSA website: Google Scholar
  59. Webster GD, Jell PA (1999) New Carboniferous crinoids from eastern Australia. Mem Queensland Mus 43:237–278Google Scholar
  60. Webster GD, Kues BS (2006) Pennsylvanian crinoids of New Mexico. New Mexico Geol 28:1–37Google Scholar
  61. Webster GD, Lane NG (1970) Carboniferous echinoderms from the southwestern United States. J Paleontol 44:276–296Google Scholar
  62. Webster GD, Lane NG (2007) New Permian crinoids from the Battleship Wash patch 5 reef in southern Nevada. J Paleontol 81:951–965CrossRefGoogle Scholar
  63. Webster GD, Maples CG (2008) Cladid crinoid radial facets, brachials, and arm appendages: a terminology solution for studies of lineage, classification, and paleoenvironment. In: Ausich WI, Webster GC (eds) Echinoderm paleobiology. Indiana University Press, Bloomington, pp 196–226, 456Google Scholar
  64. Webster GD, Yazdi M, Dastanpour M, Maples CG (2001) Preliminary analysis of Devonian and Carboniferous crinoids and blastoids from Iran. Travaux de Institut Scientique, Rabat, Serie Geologie et Geographie Physique (2000) 20:108–115Google Scholar
  65. Webster GD, Maples CG, Sevastopulo GD, Frest T, Waters JA (2004) Carboniferous (Visean–Moscovian) echinoderms from the Bechar Basin area of western Algeria. Bull Am Paleontol 368:1–98Google Scholar
  66. Webster GD, Waters JA, Liao ZT, Maples CG (2009) New Pennsylvanian (Moscovican) Echinoderms from Xinjiang–Uyghur Autonomous Region, Western China. Palaeoworld 18:241–250CrossRefGoogle Scholar
  67. Weller JM (1930) A group of larviform crinoids from Lower Pennsylvanian strata of the eastern Interior Basin. Illinois Geol Surv, Report 21:1–43Google Scholar
  68. Yabe H, Sugiyama T (1934) An upper Paleozoic crinoid from Japan. Jpn J Geol Geogr 11:349–351Google Scholar
  69. Yakovlev NN, Ivanov AP (1956). Morskie lilii i blastoidei kamennougolnykh i permskikh otlozheniy SSR.TrudyVsesoy Nauchno-Issledov Geol Inst 11:142 p, 21 plGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of GeologyAppalachian State UniversityBooneUSA
  2. 2.School of Earth and Environmental SciencesWashington State UniversityPullmanUSA

Personalised recommendations