Earth and Life pp 795-810 | Cite as

Survival, but…! New Tales of ‘Dead Clade Walking’ from Austral and Boreal Post-K–T Assemblages

  • Jeffrey D. StilwellEmail author
  • Eckart Håkansson
Part of the International Year of Planet Earth book series (IYPE)


Our knowledge of postmass extinction biotic trajectories is at the mercy of available data and detailed research on the governing factors of differential extinction/survivorship patterns of fossil biotas. Some taxa managed—barely—to survive major extinction events, but only for the short-term, becoming extinct at variable times in the following geologic stage, having succumbed to myriad natural forces generated by severe paleoenvironmental perturbations. These ‘Dead Clade Walking’ (DCW) organisms should be included in investigations on the resultant effects of the extinction bottleneck and subsequent rebound phase(s). Significantly, even though the ‘big five’ mass extinctions of the Phanerozoic are distinguished primarily by their overwhelming intensities, their magnitudes—and thus importance for shaping the present-day biosphere—have been systematically underestimated, when time frames including immediate, post-apocalyptic DCW taxa are included in survivorship/extinction analyses. Our research from recent studies of Austral and Boreal invertebrates and vertebrates in relation to the Cretaceous–Tertiary (K–T) boundary provides alluring new evidence of the DCW phenomenon, including the short-term survivorship of ammonoid cephalopods and possible non-avian dinosaurs into the dawn of the Cenozoic.


Cretaceous Maastrichtian Paleogene Danian Cheilostome bryozoans Ammonoids Gastropods Postmass extinction Survival patterns 



We thank the following for their support and assistance throughout this investigation: Draga Gelt and Ben Doherty (Monash University); Bill Zinsmeister (Purdue University); Ewan Fordyce (University of Otago, Dunedin, New Zealand); Chris Consoli (Geoscience Australia); Claus Heinberg (Roskilde, Denmark); John Jagt (Natuurhistorisch Museum Maastricht, the Netherlands). This research was funded by a Research Initiatives grant from Monash University to JDS, and support from the Geological Institute, Copenhagen, Denmark, and University of Western Australia, Perth, to EH.


  1. Alvarez LW, Alvarez W, Asaro F, Michel HV (1980) Extraterrestrial cause for the Cretaceous/Tertiary extinction. Science 208:1095–1108CrossRefGoogle Scholar
  2. Berggren WA, Miller KG (1988) Paleogene tropical planktonic foraminiferal biostratigraphy and magnetobiochronology. Micropaleontology 34:362–380CrossRefGoogle Scholar
  3. Birkelund T (1979) The last Maastrichtian ammonites. In: Birkelund T, Bromley RG (eds) Cretaceous–Tertiary boundary events. I. The Maastricthian and Danian of Denmark. University of Copenhagen, Copenhagen, pp 51–57Google Scholar
  4. Birkelund T (1993) Ammonites from the Maastrichtian White Chalk of Denmark. Bull Geol Soc Denmark 40:33–81Google Scholar
  5. Birkelund T, Håkansson E (1982) The terminal Cretaceous extinction in Boreal shelf seas – a multicausal event. Geol Soc Am Spec Pap 190:373–384Google Scholar
  6. Buchanan LA, Consoli CP, Stilwell JD (2007) Early Paleocene marine vertebrates from the Wangaloa Formation, South Island, New Zealand. New Zealand J Geol Geophys 50:33–37CrossRefGoogle Scholar
  7. Consoli CP, Stilwell JD (2009) Late Cretaceous marine reptiles (Elasmosauridae and Mosasauridae) of the Chatham Islands, New Zealand. Cretaceous Res 30:991–999CrossRefGoogle Scholar
  8. Fassett JE (2007) The documentation of in-place dinosaur fossils in the Paleocene Ojo Alamo Sandstone and Animas Formation in the San Juan Basin of New Mexico and Colorado mandates a paradigm shift: dinosaurs can no longer be thought of as absolute index fossils for end-Cretaceous strata in the Western Interior of North America. New Mexico Geol 29:56Google Scholar
  9. Fassett JE, Zielinski RA, Budahn JR (2002) Dinosaurs that did not die: evidence for Paleocene dinosaurs in the Ojo Alamo Sandstone, San Juan Basin, New Mexico. In: Koeberl, C, MacLeod KG (eds) Catastrophic events and mass extinctions: impacts and beyond. Geol Soc Am Spec Pap 356:307–336Google Scholar
  10. Håkansson E (2007) The role of frontal wall architecture in the development of a cheilostome phylogeny – and the Cretaceous Tertiary boundary. International Bryozoology Association, 14th International Conference, Boone, North Carolina. AbstractsGoogle Scholar
  11. Håkansson E, Thomsen E (1999) Benthic extinctions and recovery patterns at the K/T boundary in shallow water carbonates, Denmark. Palaeogeogr Palaeoclimatol Palaeoecol 154:67–85CrossRefGoogle Scholar
  12. Håkansson E, Machalski M, Heinberg C, Jagt J (2008) Ammonites from the type Danian of Denmark. Abstract, 33rd International Geological Congress, Norway, 6th–14th August 2008Google Scholar
  13. Hallam A, Wignall PB (1997) Mass extinctions and their aftermath. Oxford University Press, OxfordGoogle Scholar
  14. Heinberg C (1999) Lower Danian bivalves, Stevns Klint, Denmark: continuity across the K/T boundary. Palaeogeogr Palaeoclimatol Palaeoecol 154:87–106CrossRefGoogle Scholar
  15. Heinberg C, Rasmussen JA, Håkansson E (2001) Planktic foraminifera from the lowermost type Danian of Stevns Klint, Denmark. Palaeontol Assoc, 45th Annual Meeting, Abstracts, 15, Geological Museum, CopenhagenGoogle Scholar
  16. Hutton FW (1877) Report on the geology of the north-east portion of the South Island, from Cook Straits to the Rakaia. Reports of the Geological Explorations during 1873–4, Wellington, New Zealand, pp 27–58Google Scholar
  17. Jablonski D (2002) Survival without recovery after mass extinctions. Proc Natl Acad Sci USA 99(12):8139–8144CrossRefGoogle Scholar
  18. Jagt JWM, Smit J, Schulp A (2003) ?Early Paleocene ammonites and other molluscan taxa from the Ankerpoort–Curfs quarry (Geulhem, southern Limburg, the Netherlands). In: Lamolda MA (ed) Bioevents: their stratigraphic records, patterns and causes, Caravaca, 3rd–8th June 2003:113. Ayuntamiento de Caravaca de la CruzGoogle Scholar
  19. Kauffmann E, Erwin D (1995) Surviving mass extinctions. Geotimes 40.3:14–17Google Scholar
  20. Keller G (1988) Extinction, survivorship and evolution of planctic foraminifera across the Cretaceous/Tertiary boundary at El Kef, Tunesia. Mirine Micropaleontol 13:239–263CrossRefGoogle Scholar
  21. Kjaer CR, Thomsen E (1999) Heterochrony in bourgueticrinid sea-liliesrelated to the K/T boundary event. Paleobiology 25:29–40Google Scholar
  22. Korn D, Belka Z, Fröhlich S, Rücklin M, Wendt J (2004) The youngest African clymeniids (Ammonoidea: Late Devonian) – failed survivors of the Hangenberg Event. Lethaia 37:307–315CrossRefGoogle Scholar
  23. Lamarck J-BPA de M de (1801) Système des Animaux sans vertèbres. The Author, Dèterville, Paris, vii+432 ppGoogle Scholar
  24. Landman NH, Johnson RO, Garb MP, Edwards LE, Kyte FT (2007) Cephalopods from the Cretaceous/Tertiary boundary interval on the Atlantic Coastal Plain, with a description of the highest ammonite zones in North America. Part III. Manasquan River Basin, Monmouth County, New Jersey. Bull Am Mus Nat Hist 303:1–122CrossRefGoogle Scholar
  25. Machalski M (2002) Danian ammonites: a discussion. Bull Geol Soc Denmark 49:49–52Google Scholar
  26. Machalski M, Heinberg C (2005) Evidence for ammonite survival into the Danian (Paleogene) from the Cerithium Limestone at Stevns Klint, Denmark. Bull Geol Soc Denmark 52:97–111Google Scholar
  27. Machalski M, Jagt JWM, Heinberg C, Landman NH, Håkansson E (2009) Dańskie amonity – obecny stan wiedzy I perspektywy badań (Danian ammonites – the present state of knowledge and perspectives for future research [in Polish]. Przegląd Geol 57:486–493Google Scholar
  28. MacLeod N, Rawson PF, Forey PL, Banner FT, Boudagher-Fadel MK, Bown PR, Burnett JA, Chambers P, Culver S, Evans SE, Jeffrey C, Kaminski MA, Lord AR, Milner AC, Milner AR, Morris N, Owen E, Rosen BR, Smith AB, Taylor PD, Urquhart E, Young JR (1997) The Cretaceous–Tertiary biotic transition. J Geol Soc 154:265–292CrossRefGoogle Scholar
  29. Marshall P (1916) Some new fossil gastropods. Trans New Zealand Inst 48:100–119Google Scholar
  30. McArthur JM, Thirwall MF, Engkilde M, Zinsmeister WJ, Howarth RJ (1998) Strontium isotope profiles across the K/T boundary sequences in Denmark and Antarctica. Earth Planet Sci Lett 160:179–192CrossRefGoogle Scholar
  31. Meek FB (1876) A report on the invertebrate Cretaceous and Tertiary fossils of the Upper Missouri Country. U.S. Geol Surv Territories, Reports, 9, 629ppGoogle Scholar
  32. Popenoe (1983) Cretaceous Aporrhaidae from California: Aporrhainae and Arrhoginae. J Paleontol 57:742–765Google Scholar
  33. Prejean H (1994) Dead man walking. Random House, New YorkGoogle Scholar
  34. Rasmussen HW (1971) Echinoid and crustacean burrows and their diagenetic significance in the Maastricthian—Danian of Stevns Klint, Denmark. Lethaia 4:191–216CrossRefGoogle Scholar
  35. Rasmussen JA, Heinberg C, Håkansson E (2005) Planktonic foraminiferid biostratigraphy of the lowermost Danian strata at Stevns Klint, Denmark. Bull Geol Soc Denmark 52:113–131Google Scholar
  36. Robertson DS, McKenna MC, Toon OB, Hope S, Lillegraven JA (2004). Survival in the first hours of the Cenozoic. GSA Bull 116:760–768CrossRefGoogle Scholar
  37. Rosenkrantz A (1924) Nye iagttagelser over Certhiumkalken I Stevns Klint med bemækninger om Grænsen mellem Kridt og Tertiær. Meddelelser fra Dansk Geologisk Forening 6:28–31Google Scholar
  38. Sharman G, Newton ET (1897) Notes on some additional fossils collected at Seymour Island, Graham’s Land, by Dr. Donald and Captain Larsen. Proc R Soc Edinburgh 22:58–61Google Scholar
  39. Sowerby J (1817) The mineral conchology of Great Britain, vol. 2, pls. 151–184, A, 185–186. The Author, LondonGoogle Scholar
  40. Stilwell JD (1993) New Early Paleocene Mollusca from the Wangaloa formation of South Island, New Zealand. J Paleontol 67(3):360–369Google Scholar
  41. Stilwell JD (1994) Latest Cretaceous to earliest Paleogene molluscan faunas of New Zealand: changes in composition as a consequence of the break-up of Gondwana and extinction. Unpublished PhD dissertation, The University of Otago, Dunedin, New Zealand, 1630 pp, 84 platesGoogle Scholar
  42. Stilwell JD (2003) Patterns of biodiversity and faunal rebound following the K–T boundary extinction event in Austral Palaeocene molluscan faunas. Palaeogeogr Palaeoclimatol Palaeoecol 195:319–356CrossRefGoogle Scholar
  43. Stilwell JD, Consoli CP, Sutherland R, Salisbury D, Rich TH, Vickers-Rich PA, Currie PJ, Wilson GJ (2006) Dinosaur sanctuary on the Chatham Islands, Southwest Pacific: first record of theropods from the K–T boundary Takatika Grit. Palaeogeogr Palaeoclimatol Paleoecol 230:243–250CrossRefGoogle Scholar
  44. Stilwell JD, Hope S, Consoli CP (2008) Origins of post–K–Pg Danian macroinvertebrates and vertebrates from the southern high latitudes: new data from Antarctica and New Zealand–Chatham Islands. Abstract, 33rd International Geological Congress, Norway, 6th–14th August 2008Google Scholar
  45. Stilwell JD, Zinsmeister WJ, Oleinik AE (2004) Early Paleocene Mollusks of Antarctica: systematics, paleoecology and paleobiogeographic significance. Bull Am Paleontol 367:89 ppGoogle Scholar
  46. Surlyk F (1997) A cool-water carbonate ramp with bryozoan mounds: Late Cretaceous Danian of the Danish Basin. In: James NP, Clarke JAD (eds) Cool-water carbonates. Special Publications – SEPM (Society for Sedimentary Geology), vol 56, pp. 293–307Google Scholar
  47. Surlyk F, Nielsen JM (1999) The last ammonite? Bull Geol Soc Denmark 46:115–119Google Scholar
  48. Surlyk F, Damholt T, Bjerager M (2006) Stevns Klint, Denmark: uppermost Maastrichtian chalk, Cretaceous–Tertiary boundary, and lower Danian bryozoan mound complex. Bull Geol Soc Denmark 54:48ppGoogle Scholar
  49. Thomsen E, Håkansson E (1995) Sexual versus asexual dispersal in clonal animals – examples from cheilostome bryozoans. Paleobiology 21:496–508Google Scholar
  50. Trechmann CT (1917) Cretaceous Mollusca of New Zealand. Geological Magazine n.s. Decade vi, 4:294–305, 337–342Google Scholar
  51. Varricchio DJ, Martin AJ, Katsura Y (2007) First trace and body fossil evidence of a burrowing, denning dinosaur. Proc R Soc B, Biol Sci 274:1361–1368CrossRefGoogle Scholar
  52. Voigt E (1962) Werchnemelowyje Mshanki europeiskoi tschasti SSSR i nekotorych sopredelnych oblastai. Moskowo Universiteta, 124 pp (in Russian)Google Scholar
  53. Wilckens O (1910) Die Anneliden, Bivalven und Gastropoden der Antarktischen Kreideformations In: Wissenschaftliche Ergebnisse der Schwedischen Südolar-Expedition 1901–1903 unter leitung von Dr. Otto Nordenskjöld. Band III. Geologie und Paläontologie, 132pp, 4 pls. Lithographisches Institut des Generalstabs, StockholmGoogle Scholar
  54. Wilson GJ, Schiøler P, Hiller N, Jones CM (2005) Age and provenance of Cretaceous marine reptiles from the South Island and Chatham Islands, New Zealand. New Zealand J Geol Geophys 48:377–387CrossRefGoogle Scholar
  55. Zinsmeister WJ (2001) Late Maastricthian short-term biotic events on Seymour Island, Antarctic Peninsula. Geology 109:213–229CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Applied Palaeontology and Basin Studies Group, School of GeosciencesMonash UniversityClaytonAustralia
  2. 2.Centre for Evolutionary ResearchAustralian MuseumSydneyAustralia
  3. 3.School of Earth and Geographical SciencesUniversity of Western AustraliaCrawleyAustralia
  4. 4.Geological InstituteUniversity of CopenhagenCopenhagen KDenmark

Personalised recommendations