Earth and Life pp 653-675 | Cite as

Late Ludfordian Correlations and the Lau Event

  • Lennart JeppssonEmail author
  • John A. Talent
  • Ruth Mawson
  • Anita Andrew
  • Carlo Corradini
  • Andrew J. Simpson
  • Jane Wigforss-Lange
  • Hans Peter Schönlaub
Part of the International Year of Planet Earth book series (IYPE)


Changes in whole conodont faunas and δ13C values are combined to achieve high-resolution correlations of Upper Silurian successions in many areas (primarily Gotland, Skåne, Lithuania, Bohemia, Austria, Sardinia and Queensland); other areas are correlated with lower precision. Four of the widely recognised subzones average considerably less than 0.1 Ma and a fifth interval less than 0.01 Ma. The main constraints on resolution and precision now achievable are the amount of, and the precision in, new or previously published data from each local section; centimetric scale collecting would be worthwhile in many sections. Some stratal characters are more widespread during certain intervals than might have been expected, for example, the presence of oncolites and algal coatings in the Icriodontid Zone and the lower part of the O. snajdri Zone. Similarly, the Dayia navicula bloom in the Upper P. siluricus Subzone was widespread. So also were muddy-sandy sediments followed by oolite low in the O. snajdri Zone; crinoids flourished widely when the lower part of the Lower Icriodontid Subzone was formed. Closely spaced samples show that, in some intervals, the now well-known δ13C spike was modified considerably by fluctuations; that is, it is not a smooth plateau. The best-documented fluctuations (19 analyses) are 2.5 smooth cycles with up to 2.7‰ in amplitude during ca 12,000 years or less in the base of the O. snajdri Zone. An enigma is the depletion of the spike in some sections, especially in the best Bohemian section.


Silurian Mid-Ludfordian Gotland Skåne Bohemia Austria Sardinia Australia Conodonts Lithostratigraphy Chemostratigraphy δ13



Otto Walliser permitted us to use all data from his Cellon collections but declined co-authorship. Antanas Brazauskas very kindly gave access to and generously provided much information on Lithuanian bore cores. Sven Laufeld, Rickard Anehus and Peep Männik assisted LJ during parts of the fieldwork. Git Klintvik Ahlberg processed and picked many of the conodont samples. Fredrik Jerre measured and sampled the section at Bjärsjölagård 2b for scolecodonts and gave the conodonts to LJ. Correspondence with Jiri Kříž and Dim Kaljo helped interpret the Bohemian and Latvian sequences. Nadia Talent assisted in sampling the Botvide section for isotopes; Terry Sloan, the late Ross Talent and Glenn Brock helped sample various Broken River sections. The Swedish Natural Science Council and the Swedish Research Council funded much of LJ’s field and laboratory work, especially conodont extraction, administration, rent for working space and similar university fees. Research grants from the Australian Research Council and Macquarie University to RM and JAT enabled sampling for isotopes at Botvide, and sampling various Broken River sections for conodont and isotope data, as well as funding the isotope analyses and conodont extraction from Australian samples. To all our sincere thanks.


  1. Barca S, Corradini C, Ferretti A, Olivieri R, Serpagli E (1995) Conodont biostratigraphy of the “Ockerkalk” (Silurian) from southestern Sardinia. Rivista Italiana Paleont Stratigr 100:459–476Google Scholar
  2. Barrick JE, Kleffner MA, Gibson MA, Peavey FN, Karlsson HR (2009) The mid-Ludfordian Lau Event and carbon isotope excursion in southern Laurentia – preliminary results. Soc Paleontol Italiana Bolli 49:13–34Google Scholar
  3. Berry WBN, Murphy MA (1975) Silurian and Devonian graptolites of central Nevada. Univ California Pub Geol Sci 110:109 ppGoogle Scholar
  4. Bouček (1937) Stratigrafie siluru v dalejském údolí u Prahy a v jeho nejblizsím okolí (also in French). Rozpr Ceské Akad Ved a Umeni Praha Tr II 46(27):1–20Google Scholar
  5. Calner M (2005) A Late Silurian extinction event and anachronistic period. Geology 33:305–308CrossRefGoogle Scholar
  6. Calner M (2008) Silurian global events – at the tipping point of climate change. In: Elewa AMT (ed) Mass extinctions. Springer, Berlin, Heidelberg, pp 21–58Google Scholar
  7. Cherns L (1982) Paleokarst, tidal erosion surfaces and stromatolites in the Silurian Eke Formation of Gotland, Sweden. Sedimentology 29:819–833CrossRefGoogle Scholar
  8. Corradini C, Olivieri R, Serpagli E (1995) Possible relationships between anomalous conodonts and Silurian oceanic episodes. N Jahrb Geol Paläontol Monats 12:737–746Google Scholar
  9. Corradini C, Ferretti A, Serpagli E (1998a) The Silurian and Devonian sequence in SE Sardinia. In: Serpagli E (ed) Sardinia field-trip guide-book, ECOS VII. Giorn Geol 60(Spec Issue):71–74Google Scholar
  10. Corradini C, Ferretti A, Serpagli E, Barca S (1998b) The Ludlow-Pridoli section “Genna Ciuerciu” west of Silius. In: Serpagli E (ed) Sardinia field-trip guide-book, ECOS VII. Giorn Geol 60:112–118Google Scholar
  11. Corradini C, Ferretti A, Serpagli E (2002a) The Gerrei Tectonic Unit (SE Sardinia, Italy). Soc Paleontol Italiana Rendiconti 1:69–76Google Scholar
  12. Corradini C, Ferretti A, Serpagli E (2002b) The “Ockerkalk” limestone in the Genna Ciuerciu Section (SE Sardinia, Italy). Soc Paleontol Italiana Rendiconti 1:255–260Google Scholar
  13. Corradini C, Ferretti A, Corriga MG, Serpagli E (2009a) The reference section of the Sardinian Ockerkalk: the Silius section. Soc Paleontol Italiana Rendiconti 3:209–216Google Scholar
  14. Corradini C, Ferretti A, Corriga MG, Serpagli E (2009b) Loboliths (crinoids) and conodont biostratigraphy of the Genna Ciuerciu section (SE Sardinia). Soc Paleontol Italiana Rendiconti 3:217–224Google Scholar
  15. Cramer BD, Kleffner MA, Saltzman MR (2006) The late Wenlock ‘Mulde’ positive carbon isotope (δ13Ccarb) excursion in North America. Geologiska Föreningens i Stockholm Förhandlingar 128:85–90Google Scholar
  16. Cramer BD, Brett CE, Melchin MJ, Männik P, Kleffner MA, McLaughlin PI, Lloydell DK, Munnecke A, Jeppsson L, Corradini C, Brunton FR, Saltzman MR (2010) Revised correlation of Silurian provincial series of North America with global and regional chronostratigraphic and δ13Ccarb chemostratigraphy. Lethaia. doi:10.1111/j.1052-3931.2010.00234.xGoogle Scholar
  17. Eriksson MJ, Calner C (2008) A sequence stratigraphical model for the late Ludfordian (Silurian) of Gotland, Sweden: implications for timing between changes in sea level, palaeoecology, and the global carbon cycle. Facies 54:253–276CrossRefGoogle Scholar
  18. Ferretti A, Serpagli E (1996) Geological outline, community sequence and paleoecology of the Silurian of Sardinia. Rivista Italiana di Paleontologia e Stratigrafia 102:353–362Google Scholar
  19. Hede JE (1919) Djupborrningen vid Burgsvik på Gotland 1915. Paleontologisk-stratigrafiska resultat. Sveriges Geologiska Undersökning C298:1–59Google Scholar
  20. Hede JE (1921) Gotlands Silurstratigrafi. Sveriges Geologiska Undersökning C305:100pGoogle Scholar
  21. Hede JE (1925) Berggrunden (Silursystemet). In: Munthe H, Hede JE, von Post L (eds) Beskrivning till kartbladet Ronehamn. Sveriges Geologiska Undersökning Aa156:14–51Google Scholar
  22. Hede JE (1942) On the correlation of the Silurian of Gotland. In: Lunds Geologiska Fältklubb, 1892–1942, pp 205–229 [also in Meddelanden från Lunds Geologisk-Mineralogiska Institution 101]Google Scholar
  23. Histon K, Schönlaub HP (1999) Taphonomy, palaeoecology and bathymetric implications of the nautiloid fauna from the Silurian of the Cellon section (Carnic Alps, Austria). Abh Geol Bundesanstalt (Wien) 54:259–274Google Scholar
  24. Jeppsson L (1975 [1974]) Aspects of Late Silurian conodonts. Fossils Strata 6:79pGoogle Scholar
  25. Jeppsson L (1990) An oceanic model for lithological and faunal changes tested on the Silurian record. J Geol Soc Lond 147:663–674CrossRefGoogle Scholar
  26. Jeppsson L (1993) Silurian events: the theory and the conodonts. Proc Estonian Acad Sci 42:23–27Google Scholar
  27. Jeppsson L (1998) Silurian oceanic event. A summary of general characteristics. In: Landing E, Johnson ME (eds) Silurian cycles: linkages of dynamic stratigraphy with atmospheric, oceanic and tectonic changes, James hall centennial volume. N Y State Mus Bull 491:239–257Google Scholar
  28. Jeppsson L (2005) Biases in the recovery and interpretation of micropalaeontological data. In: Purnell MA, Donoghue PCJ (eds) Conodont biology and phylogeny – interpreting the fossil record. Spec Pap Palaeontol 73:57–71Google Scholar
  29. Jeppsson L (2006) Conodont-based revisions of the Late Ludfordian on Gotland, Sweden. Geologiska Föreningens i Stockholm Förhandlingar 127:273–282Google Scholar
  30. Jeppsson L, Aldridge RJ (2000) Ludlow (late Silurian) oceanic episodes and events. J Geol Soc London 157:1137–1148CrossRefGoogle Scholar
  31. Jeppsson L, Laufeld S (1987 [1986]) The Late Silurian Öved-Ramsåsa Group in Skåne, southern Sweden. Sveriges Geologiska Undersökning, Ser Ca 58:1–45 [also as Lund Publications in Geology 55]Google Scholar
  32. Jeppsson L, Viira V, Männik P (1994) Silurian conodont-based correlations between Gotland (Sweden) and Saaremaa (Estonia). Geol Mag 131:201–218CrossRefGoogle Scholar
  33. Jeppsson L, Talent JA, Mawson R, Simpson AJ, Andrew AS, Calner M, Whitford DJ, Trotter JA, Sandström O, Caldon H-J (2007) High-resolution Late Silurian correlations between Gotland, Sweden, and the Broken River region, NE Australia: lithologies, conodonts and isotopes. Palaeogeogr Palaeoclimatol Palaeoecol 245:115–137CrossRefGoogle Scholar
  34. Kaljo D, Martma T (2006) Application of carbon isotope stratigraphy to dating the Baltic Silurian rocks. Geologiska Föreningens i Stockholm Förhandlingar 128:123–129Google Scholar
  35. Kaljo D, Kiipli T, Martma T (1997) Correlation of carbon isotope event markers through the Wenlock–Pridoli sequence at Ohesaare (Estonia) and Priekule (Latvia). Palaeogeogr Palaeoclimatol Palaeoecol 132:211–223CrossRefGoogle Scholar
  36. Kaljo D, Kiipli T, Martma T (1998) Carbon isotope events and environmental cyclicity in the east Baltic Silurian. In: Landing E, Johnson ME (eds) Silurian cycles: linkages of dynamic stratigraphy with atmospheric, oceanic and tectonic changes. James Hall Centennial Volume. N Y State Mus Bull 491:197–312Google Scholar
  37. Klapper G, Murphy MA (1975 [1974]) Silurian–Lower Devonian conodont sequence in the Roberts Mountains Formation of central Nevada. Univ California Publ Geol Sci 111Google Scholar
  38. Koren’ T (1993) Main event levels in the evolution of the Ludlow graptolites. Stratigr Geol Correl 1:44–52 (in Russian)Google Scholar
  39. Kozłowski W (2003) Age, sedimentary environment and palaeogeographical position of the Late Silurian oolitic beds in the Holy Cross Mountains (Central Poland). Acta Geol Polonica 53:341–357Google Scholar
  40. Kreutzer LH, Schönlaub HP (1997) The depositional environment. In: Schönlaub HP (ed) IGCP project 421 North Gondwanan Mid Palaeozoic Biodynamics inaugural meeting Vienna (Sept 17–21, 1997). Berichte Geol Bundesanstalt (Wien) 40:99–105Google Scholar
  41. Kříž J (1992) Silurian field excursions Prague Basin (Barrandian), Bohemia. Natl Mus Wales, Geol Ser 13:111ppGoogle Scholar
  42. Kříž J, Schönlaub HP (1980) Stop 1. Daleje Valley, Muslowka Quarry section Ludlovian-Pridolian. In: Schönlaub HP (ed) Second European Conodont symposium (Ecos II) guidebook, abstracts. Abh Geol Bund (Wien) 35:153–157Google Scholar
  43. Lawson JD (1960) The succession of shelly faunas in the British Ludlovian. Int Geol Congr, Rept Twenty-First Session, 1960, Part VII, Proc Sec 7 Ordovician and Silurian Stratigraphy and Correlations, Copenhagen, pp 114–125Google Scholar
  44. Lehnert O, Fryda J, Buggisch W, Manda S (2003) A first report of the Ludlow Lau event from the Prague Basin (Barrandian, Czech Republic). In: Ortega G, Aceñolaza GF (eds) Proc 7th international Graptolite conference and field meeting of the international subcommission on Silurian Stratigraphy. Ser Correl Geol 18:139–144Google Scholar
  45. Lehnert O, Fryda J, Buggisch W, Munnecke A, Nützel A, Kříž J, Manda S (2007) δ13C records across the late Silurian Lau event: new data from middle palaeo-latitudes of northern peri-Gondwana (Prague Basin, Czech Republic). Palaeogeogr Palaeoclimol Palaeoecol 245:227–244CrossRefGoogle Scholar
  46. Liljedahl L (1994) Silurian nucoloid and modiomorfid bivalves from Sweden. Fossils Strata 33:1–89Google Scholar
  47. Link AG, Druce EC (1972) Ludlovian and Gedinnian conodont stratigraphy of the Yass Basin, New South Wales. Bur Min Res Geol Geophys Bull 134:136ppGoogle Scholar
  48. Loydell DK (1998) Early Silurian sea-level changes. Geol Mag 135:447–471CrossRefGoogle Scholar
  49. Manda S, Kříž J (2006) Environmental and biotic changes in subtropical isolated carbonate platforms during the Late Silurian kozlowskii Event, Prague Basin. Geologiska Föreningens i Stockholm Förhandlingar 128:161–168Google Scholar
  50. Männik P, Małkowski KC (1998) Silurian conodonts from the Goldap core, Poland. In: Szaniawski H (ed) Proc Sixth European Conodont symposium (ECOS VI). Paleontologia Polonica 58:141–151Google Scholar
  51. Marshall CR (1990) Confidence intervals on stratigraphic ranges. Paleobiology 16:1–10Google Scholar
  52. Martinsson A (1967) The succession and correlation of ostracode faunas in the Silurian of Gotland. Geologiska Föreningens i Stockholm Förhandlingar 89:350–386CrossRefGoogle Scholar
  53. Munthe H (1902) Stratigrafiska studier öfver Gotlands silurlager. Geologiska Föreningens i Stockholm Förhandlingar 24:272–273Google Scholar
  54. Ogg JG, Ogg G, Gradstein FM (2008) The concise geological time scale. Cambridge University, CambridgeGoogle Scholar
  55. Patterson WP, Walter LM (1994) Depletion of 13C in seawater ∑CO2 on modern carbonate platforms: significance for the carbon isotopic record of carbonates. Geology 22:865–888Google Scholar
  56. Rexroad CB, Craig WW (1971) Restudy of the conodonts from the Bainbridge formation (Silurian) at Lithium Missouri. J Paleont 45:468–703Google Scholar
  57. Salzman MR (2001) Silurian δ13C stratigraphy: a view from North America. Geology 2001 August:671–674Google Scholar
  58. Samtleben C, Munnecke A, Bickert T, Pätzold J (1996) The Silurian of Gotland (Sweden). facies interpretation based on stable isotopes in brachiopod shells. Geol Rundschau 85:278–292CrossRefGoogle Scholar
  59. Samtleben C, Munnecke A, Bickert T (2000) Development of facies and C/O-isotopes in transects through the Ludlow of Gotland: evidence for global and local influences on a shallow-marine environment. Facies 43:1–38CrossRefGoogle Scholar
  60. Sarv L (1982) On ostracode zonation of the East Baltic Upper Silurian. In: Kaljo D, Klaamann E (eds) Ecostratigraphy of the East Baltic Silurian. Academy of Sciences of the Estonian SSR, pp 71–77Google Scholar
  61. Serpagli E, Corradini C, Ferretti A (1998) Conodonts from a Ludlow–Pridoli section near the Silius Village. In: Serpagli E (ed) Sardinia field-trip guide-book, ECOS VII; Giornale di Geologia 60(spec issue):104–111Google Scholar
  62. Simpson A (2000) Silurian to basal Devonian conodonts from the Broken River Crossing, northern Australia. Rec Western Australian Mus Suppl 58:145–162Google Scholar
  63. Spjeldnaes N (1950) On some vertebrate fossils from Gotland with some comments on the stratigraphy. Arkiv Mineral Geol 1(8):211–218Google Scholar
  64. Štorch P (1995) Upper Silurian (upper Ludlow) graptolites of the N. inexpectatus and N. kozlowski zones from Kosov Quarry near Beroun (Barrandian area, Bohemia). Vestnik Ceskeho Geologickeho Ustavu 70:65–89Google Scholar
  65. Urbanek A (1997) Late Ludfordian and early Prídolí monograptids from the Polish Lowland. In: Urbanek A, Teller L (eds) Silurian graptolite faunas in the East European Platform: stratigraphy and evolution. Palaeontol Polonica 56:23–57Google Scholar
  66. Uyeno TT (1981 [1980]) Stratigraphy and conodonts of Upper Silurian and Lower Devonian rocks in the environs of the Boothia Uplift, Canadian Arctic Archipelago. Part II, Systematic study of conodonts. Geol Surv Canada Bull 292:39–75Google Scholar
  67. Viira V (1982) Late Silurian shallow and deep water conodonts of the East Baltic. In: Kaljo D, Klaamann E (eds) Ecostratigraphy of the East Baltic Silurian. Estonian SSR, Academy of Sciences, pp 79–87Google Scholar
  68. Walliser OH (1964) Conodonten des Silurs. Abh Hessischen Landesamtes Bodenforsch Wiesbaden 41:106ppGoogle Scholar
  69. Wenzel B (1997) Isotopenstratigraphische Untersuchungen an silurischen Abfolgen und deren paläozeanographische Interpretation. Erlanger Geol Abh 129:117ppGoogle Scholar
  70. Wenzel B, Joachimski MM (1996) Carbon and oxygen isotopic composition of Silurian brachiopods (Gotland/Sweden): palaeoceanographic implications. Palaeogeogr Palaeoclimatol Palaeoecol 122:143–166CrossRefGoogle Scholar
  71. Wigforss-Lange J (1999) Carbon isotope δ13C enrichment in Upper Silurian (Witcliffian) marine calcareous rocks in Scania, Sweden. Geologiska Föreningens i Stockholm Förhandlingar 121:273–279Google Scholar
  72. Wigforss-Lange J (2007) Tidal facies in the Upper Silurian Öved-Ramsåsa Group of Scania, Sweden: linkages of radial and cerebroid ooids and evaporite tracers to subtidal, lagoonal environment. Geologiska Föreningens i Stockholm Förhandlingar 129:7–16Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Lennart Jeppsson
    • 1
    Email author
  • John A. Talent
    • 2
  • Ruth Mawson
    • 2
  • Anita Andrew
    • 3
  • Carlo Corradini
    • 4
  • Andrew J. Simpson
    • 5
  • Jane Wigforss-Lange
    • 1
  • Hans Peter Schönlaub
    • 6
  1. 1.Department of GeologyUniversity of LundLundSweden
  2. 2.Earth and Planetary SciencesMacquarie UniversityAustralia
  3. 3.CSIRO Petroleum ExplorationNorth RydeAustralia
  4. 4.Dipartimento di Scienze della TerraUniversità di CagliariCagliariItaly
  5. 5.Department of Earth and Planetary SciencesMuseum Studies and Centre for Ecostratigraphy and Palaeobiology (MUCEP), Macquarie UniversityAustralia
  6. 6.Kötschach-MauthenAustria

Personalised recommendations