Advertisement

Earth and Life pp 631-652 | Cite as

Isotope Geochemistry and Plankton Response to the Ireviken (Earliest Wenlock) and Cyrtograptus lundgreni Extinction Events, Cape Phillips Formation, Arctic Canada

  • Paula J. NobleEmail author
  • Alfred C. Lenz
  • Chris Holmden
  • Monika Masiak
  • Matthew K. Zimmerman
  • Simon R. Poulson
  • Anna Kozłowska
Part of the International Year of Planet Earth book series (IYPE)

Abstract

Several Canadian Arctic Silurian stratigraphic sections from the basinal facies of Cape Phillips Formation have been sampled across the Llandovery–Wenlock and early–late Homerian (late Wenlock) boundary intervals for integration of biotal (graptolite, radiolarian, palynomorph) and geochemical (13C) data for two well-known extinction events, the Ireviken and lundgreni Extinction (LEE) events. Graptolites, abundant and well preserved, provide a refined biostratigraphic base for other paleontologic and geochemical data. They were globally affected by both extinction events: about 64% reduction for the Ireviken and 90–95% for the LEE. Recovery from the LEE event was slow and diversity low through the late Homerian. Radiolarians—diverse (28 species), abundant, and beautifully preserved through the early Homerian―are sharply reduced slightly below the LEE boundary. Data for the late Homerian are more scattered, but it appears that diversity was low; few early Homerian taxa crossed the extinction boundary and new taxa appeared. Palynological studies around the LEE interval are at a preliminary level, but it appears that chitinozoans and microflora (acanthomorph acritarchs, prasinophytes, sphaeromorphs) were impacted by the extinction event. Chitinozoans, though seldom abundant, appear to disappear briefly across the LEE boundary, as do palynomorphs. Amorphous organic matter is abundant in the upper part of the lundgreni Zone; it is much less common in the early and middle–late Homerian and common in the latest part. Stable isotope geochemistry shows well-marked, positive excursions in the δ13Corganic fraction associated with the Ireviken event and LEE. The Ireviken excursion (C1) curve has a sharp base, reaches a peak in the early Wenlock, and then tapers more slowly. The LEE excursion (C4) peaks at, or slightly below, the early–late Homerian boundary. Both are positive excursions. Considering the limits of biostratigraphic placement of the boundaries, they were close to or coincident with regressions, particularly across the LEE interval. The δ13Corganic excursions are greater for inshore sections compared with the offshore section. The most parsimonious explanation for increased carbon content is accelerated weathering of carbonates exposed during a lowstand.

Keywords

Silurian Llandovery Wenlock Arctic Canada Cape Phillips Formation Radiolarians Graptolites Isotope data Ireviken Event lundgreni Extinction 

Notes

Acknowledgments

This project was funded by National Science Foundation grants EAR 9870431, 9972845, and 0107139; logistical support was provided by the Polar Continental Shelf Project. M Desilets and B Peccoraro assisted with X-ray diffraction analysis; A Soufiane provided preliminary palynomorph data for the 1998 field collections at Abbott River and Twilight Creek; M. Jones and C Stott assisted in the field; funding for ACL was provided through a Natural Sciences and Engineering Research Council research grant (Canada); and partial funding for MKZ came from Geological Society of America Grants-in-aid. We sincerely thank John Talent for inviting us to contribute to this volume and are grateful to reviewers Michael Melchin, Art Boucot, and Lennart Jeppsson for constructive criticism of our manuscript.

References

  1. Adrain JM (2000) Regional Silurian trilobite turnover coincident with graptolite mass extinction. Geological Society of America, 2000 annual meeting, Abstracts With Programs 32:367Google Scholar
  2. Adrain JM, Edgecombe GD (1997) Silurian (Wenlock) calymenid trilobites from the Cape Phillips Formation, central Canadian Arctic. J Paleontol 71:237–261Google Scholar
  3. Andrew AS, Hamilton PJ, Mawson R, Talent JA, Whitford DJ (1994) Isotopic correlation tools in the mid-Palaelozoic and their relation to extinction events. Aust Pet Explor Assoc J 34:268–277Google Scholar
  4. Azmy K, Veizer J, Basset MG, Copper P (1998) Oxygen and carbon isotopic composition of Silurian brachiopods: implications for coeval seawater and glaciations. Geol Soc Am Bull 110:1499–1512CrossRefGoogle Scholar
  5. Baarli BG, Johnson ME, Antoshkina A (2003) Silurian stratigraphy and palaelogeography of Baltica. In: Landing E, Johnson ME (eds) Silurian lands and seas: palaelogeography outside of Laurentia. New York State Museum Bull 493:3–34Google Scholar
  6. Barrick JE (1997) Wenlock (Silurian) depositional sequences, eustatic events, and biotic change on the southern shelf of North America. In: Klapper G, Murphy MA, Talent JA (eds) Palaelozoic sequence stratigraphy, biostratigraphy, and biogeography: studies in honor of J. Granville (“Jess”) Johnson. Geol Soc Amer Spec Pap 321:47–65Google Scholar
  7. Bickert T, Pätzold J, Samtleben C, Munnecke A (1997) Palaeoenvironmental changes in the Silurian indicated by stable isotopes in brachiopod shells from Gotland, Sweden. Geochimica et Cosmochimica Acta 61:2717–2730CrossRefGoogle Scholar
  8. Calner M, Säll E (1999) Transgressive oolites onlapping a Silurian rocky shoreline unconformity. Geologiska Föreningens I Stockholm Förhandlinger 121:91–100Google Scholar
  9. Calner M, Jeppsson L, Munnecke A (2004) The Silurian of Gotland – Part I: review of the stratigraphic framework, event stratigraphy, and stable carbon and oxygen isotope development. Erlanger geologische Abhandlungen – Sonderland 5:113–131Google Scholar
  10. Caputo MV (1998) Ordovician–Silurian glaciations and global sea-level changes. In: Landing E, ME Johnson (eds) Silurian cycles: linkages of dynamic stratigraphy with atmospheric, oceanic and tectonic changes. New York State Mus Bull 491:15–25Google Scholar
  11. Chatterton BDE, Edgecombe GD, Tuffnell PA (1990) Extinction and migration in Silurian trilobites and conodonts of northwestern Canada. J Geol Soc (London) 147:703–715CrossRefGoogle Scholar
  12. Coniglio M, Melchin MJ (1995) Petrography and isotope geochemistry of diagenetic carbonates in the lower Cape Phillips Formation, Cornwallis Island, Arctic Archipelago, Canada. Bull Canadian Petrol Geol 43:251–266Google Scholar
  13. Corfield RM, Siveter DJ, Cartlidge JE, McKerrow WS (1992) Carbon isotope excursion near the Wenlock–Ludlow (Silurian) boundary in the Anglo–Welsh area. Geology 20:371–374CrossRefGoogle Scholar
  14. Cramer BD, Saltzman MR (2005) Sequestration of 12C in the deep ocean during the early Wenlock (Silurian) positive isotope excursion. Palaeogeogr Palaeoclimatol Palaeoecol 219:333–349CrossRefGoogle Scholar
  15. Cramer BD, Saltzman MR (2006) Fluctuations in epeiric sea carbonate production during Silurian positive isotope excursions: a review of proposed palaeoceanographic models. Palaeogeogr Palaeoclimatol Palaeoecol 245:37–46CrossRefGoogle Scholar
  16. De Freitas TA, Nowlan GA (1998) A new, major Silurian reef tract and overview of regional Silurian reef development, Canadian Arctic and north Greenland. Bull Can Petrol Geol 48:327–249Google Scholar
  17. De Freitas TA, Trettin HP, Dixon OA, Mallamo M (1999) Silurian system of the Canadian Arctic Archipelago. Bull Can Petrol Geol 47:136–193Google Scholar
  18. Diaz-Martinez E (1997) Latest Ordovician–Early Silurian glaciation and carbonate deposition in the Bolivian Central Andes. V Reunión International del Proyecto 351 del PICG, La Coruña, Libro de Resúmenes y Excursiones, pp 51–53Google Scholar
  19. Diaz-Martinez E (1998) Silurian of Peru and Bolivia: recent advances and future research. Temas Geologico–Mineros ITGE 23:69–75Google Scholar
  20. Diaz-Martinez E, Grahn Y (2007) Early Silurian glaciation along the western margin of Gondwana (Peru, Bolivia, and northern Argentina): Palaeoecologic and geodynamic setting. Palaeogeogr Palaeoclimatol Palaeoecol 245:62–81CrossRefGoogle Scholar
  21. Gelsthorpe DN (2004) Microplankton changes through the early Silurian Ireviken extinction event on Gotland, Sweden. Rev Palaeobot Palynol 130:89–203CrossRefGoogle Scholar
  22. Goodbody QH (1981) Silurian Radiolaria from the Cape Phillips formation, Canadian Arctic Archipelago. Unpublished MSc thesis, University of Alberta, Edmonton, Alberta, Canada, 388 ppGoogle Scholar
  23. Goodbody QH (1982) Silurian Radiolaria from the Cape Phillips formation, Canadian Arctic Archipelago. Proceedings of the Third North American Palaelontological Convention, vol 1, pp 211–216Google Scholar
  24. Goodbody QH (1986) Wenlock Palaeoscenidiidae and Entactiniidae (Radiolaria) from the Cape Phillips formation of the Canadian Arctic Archipelago. Micropalaelontology 32:129–157CrossRefGoogle Scholar
  25. Grahn Y, Caputo MV (1992) Early Silurian glaciations in Brazil. Palaeogeogr Palaeoclimatol Palaeoecol 99:9–15CrossRefGoogle Scholar
  26. Hallam A, Wignall PB (1999) Mass extinctions and sea-level changes. Earth Sci Rev 48:217–250CrossRefGoogle Scholar
  27. Heath RJ, Brenchley PJ, Marshall JD (1998) Early Silurian carbon and oxygen stable-isotope stratigraphy of Estonia: implications for climate change. In: Landing E, Johnson ME (eds) Silurian cycles: linkages of dynamic stratigraphy with atmospheric, oceanic and tectonic changes. New York State Mus Bull 491:313–323Google Scholar
  28. Holdsworth BK (1977) Palaeozoic Radiolaria: stratigraphic distribution in Atlantic borderlands. In: Swain FM (ed) Stratigraphic micropalaelontology of Atlantic Basin and Borderlands. Elsevier, Amsterdam, pp 167–184CrossRefGoogle Scholar
  29. Holmden C, Creaser RA, Muehlenbachs K, Leslie SA, Bergström SM (1998) Isotopic evidence for geochemical decoupling between ancient Epeiric seas and bordering oceans: implications for secular curves. Geology 26:567–570CrossRefGoogle Scholar
  30. Immenhauser A, Kenter JAM, Gansse G, Bahamonde JR, Vliet VA, Saher MH (2002) Origin and significance of isotope shifts in Pennsylvanian carbonates (Asturias, NW Spain). J Sed Res 72:82–94CrossRefGoogle Scholar
  31. Immenhauser A, Porta DG, Kenter JAM, Bahamonde JR (2003) An alternative model for positive shifts in shallow-marine carbonate δ13C and δ18O. Sedimentology 50:1–7CrossRefGoogle Scholar
  32. Jaeger H (1991) Neue Standard-Graptolithenzonenfolge nach der “Grossen Krise” an der Wenlock/Ludlow–Grenze (Silur). Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 182:303–354Google Scholar
  33. Jeppsson L (1987) Lithological and conodont distributional evidence for episodes of anomalous oceanic conditions during the Silurian. In: Aldridge RJ (ed) Palaeobiology of conodonts. Ellis Horwood, Chichester, pp 129–145Google Scholar
  34. Jeppsson L (1990) An oceanic model for lithological and faunal changes tested on the Silurian record. J Geol Soc London 147:663–374CrossRefGoogle Scholar
  35. Jeppsson L (1997) The anatomy of the mid–early Silurian Ireviken event and a scenario for P–S events. In: Brett CE, Baird GC (eds) Palaelontological events: stratigraphic, ecological, and evolutionary implications. Columbia University Press, New York, pp 451–492Google Scholar
  36. Jeppsson L (1998) Silurian oceanic events: summary of general characteristics. In: Landing E, Johnson ME (eds) Silurian cycles: linkages of dynamic stratigraphy with atmospheric, oceanic and tectonic changes. New York State Mus Bull 491:239–257Google Scholar
  37. Johnson ME (1996) Stable cratonic sequences and a standard for Silurian eustacy. In: Witzke BJ, Ludvigson GA, Day JE (eds) Palaelozoic sequence stratigraphy: views from the North American craton. Geol Soc Am Spec Pap 306:203–311Google Scholar
  38. Johnson ME, McKerrow WS (1991) Sea level and faunal changes during the latest Llandovery and earliest Ludlow (Silurian). Hist Biol 5:153–169CrossRefGoogle Scholar
  39. Kaljo D, Martma T (2006) Application of carbon isotope stratigraphy to dating the Baltic Silurian rocks. GFF Geol Soc Sweden 128:123–129Google Scholar
  40. Kaljo D, Boucot AJ, Corfield RM, Leherissé A, Koren TN, Kříž, J, Männik T, Nestor V, Shaver RH, Siveter DJ, Viira V (1995) Silurian bio-events. In: Walliser OH (ed) Global events and event stratigraphy in the phanerozoic. Springer, Berlin, pp 173–224Google Scholar
  41. Kaljo D, Kiipli T, Martma T (1997) Carbon Isotope event markers through the Wenlock–Pridoli sequence at Ohesaare (Estonia) and Priekule (Latvia). Palaeogeogr, Palaeoclimatol, Palaeoecol 132:211–223CrossRefGoogle Scholar
  42. Kaljo D, Kiipli T, Martma T (1998) Correlation of carbon isotope events and environmental cyclicity in the east Baltic Silurian. In: Landing E, Johnson ME (eds) Silurian cycles: linkages of dynamic stratigraphy with atmospheric, oceanic, and tectonic changes. New York State Mus Bull 491:297–312Google Scholar
  43. Kaljo D, Martma T, Mannik P, Viira V (2003) Implications of Gondwana glaciations in the Baltic late Ordovician and Silurian and a carbon isotopic test of environmental cyclicity. Bulletin de la Societé géologique de France 174:59–66CrossRefGoogle Scholar
  44. Kleffner MA, Cramer BD, Saltzman MM (2005) First documentation of early Wenlock Ireviken positive delta (super 13) C (sub CARB) excursion in the type area of the Niagaran provincial series; Irondequoit Limestone, Rochester Shale, Decew Dolomite, Gasport Dolomite, and Goat Island Dolomite are all Sheinwoodian (early Wenlock) in age. Abstr Prog Geol Soc Am 37:79Google Scholar
  45. Koren TN (1991) The lundgreni extinction event in central Asia and its bearing on graptolite biochronology within the Homerian. Proc Estonian Acad Sci Geology 40:74–78Google Scholar
  46. Koren TN, Lenz AC, Loydell DK, Melchin MJ, Štorch P, Teller L (1996) Generalized graptolite zonal sequence defining Silurian time intervals for global palaelogeographic studies. Lethaia 29:59–60CrossRefGoogle Scholar
  47. Kozłowska-Dawidziuk A, Lenz AC, Štorch P (2001) Upper Wenlock and Lower Ludlow (Silurian), post-extinction graptolites, Všeradice section, Barrandian area, Czech Republic. J Paleontol 75:147–164CrossRefGoogle Scholar
  48. Kříž J, Degardin JM, Ferretti A, Hansch W, Gutiérrez Marco JC, Paris F, Piçarra JM, Robardet M, Schönlaub H-P, Serpagli E (2003) Silurian stratigraphy and palaelogeography of Gondwanan and Perunican Europe. In: Landing E, Johnson ME (eds) Silurian lands and seas: palaelogeography outside of Laurentia. New York State Mus Bull 493:105–179Google Scholar
  49. Kump LR, Arthur MA, Patzkowsky ME, Gibbs MT, Pinkus DS, Sheehan PM (1999) A weathering hypothesis for glaciation at high atmospheric pCO2 during the late Ordovician. Palaeogeogr Palaeoclimatol Palaeoecol 152:173–187CrossRefGoogle Scholar
  50. Lenz AC (1993a) Late Wenlock–Ludlow (Silurian) graptolite extinction, evolution, and biostratigraphy: perspectives from Arctic Canada. Can J Earth Sci 30:491–498CrossRefGoogle Scholar
  51. Lenz AC (1993b) Upper Wenlock and Ludlow (Silurian) Plectograptinae (retiolitid graptolites), Cape Phillips formation, Arctic Canada. Bull Am Paleont 104:1–54Google Scholar
  52. Lenz AC (1994) New upper Homerian (uppermost Wenlock, Silurian) monograptids from Arctic Canada. Can J Earth Sci 31:1779–1784CrossRefGoogle Scholar
  53. Lenz AC (1995) Upper Homerian (Wenlock, Silurian) graptolites and graptolite biostratigraphy, Arctic Archipelago, Canada. Can J Earth Sci 32:1378–1392CrossRefGoogle Scholar
  54. Lenz AC (2001) Upper Wenlock (Silurian) graptolites of Arctic Canada: pre-extinction, lundgreni Biozone fauna. Palaeontographica Canadiana 20:61 ppGoogle Scholar
  55. Lenz AC (2002) Late Wenlock and early Ludlow graptolite extinction, evolution, and diversification: a reassessment. Palaeont Assoc Spec Papers 67:171–183Google Scholar
  56. Lenz AC (2004) Ludlow and Pridoli (Upper Silurian) Graptolites from the Arctic Islands, Canada. NRC Research Press Ottawa, Ontario, Canada, 141 ppGoogle Scholar
  57. Lenz AC, Kozłowska A (2006) Graptolites from the lundgreni Biozone (lower Homerian, Silurian), Arctic Islands, Canada: new species and supplementary material. J Paleontol 80:616–637CrossRefGoogle Scholar
  58. Lenz AC, Kozłowska-Dawidziuk A (2001) Evolutionary developments in the Silurian Retiolitidae (Graptolites). J Czech Geol Surv 46:227–238Google Scholar
  59. Lenz AC, Kozłowska-Dawidziuk A (2004) Ludlow and Pridoli (Upper Silurian) Graptolites from the Arctic Islands, Canada. NRC Research Press, Ottawa, Canada, 141 ppGoogle Scholar
  60. Lenz AC, Melchin MJ (1991) Wenlock (Silurian) graptolites, Cape Phillips formation, Canadian Arctic islands. Trans Roy Soc Edinburgh Earth Sci 82:211–237CrossRefGoogle Scholar
  61. Lenz AC, Noble PJ, Masiak M, Poulson SR, Kozłowska A (2006) The lundgreni extinction event: integration of palaelontological and geochemical data from Arctic Canada. GFF Geol Soc Sweden 128:153–158Google Scholar
  62. Loydell DK (1998) Early Silurian sea-level changes. Geol Mag 135:447–471CrossRefGoogle Scholar
  63. Loydell DK (2007a) Early Silurian positive δ13C excursions and their relationship to glaciations, sea-level changes, and extinction events. Geol J 42:531–546CrossRefGoogle Scholar
  64. Loydell AJ (2007b) Carbon isotope stratigraphy of the upper Telychian and lower Sheinwoodian (Llandovery–Wenlock, Silurian) of the Banwy River section, Wales. Geol Mag 144:1015–1019Google Scholar
  65. Loydell DK, Mannik P, Nestor P (2003) Integrated biostratigraphy of the Lower Silurian of the Aizpute-41 Core, Latvia. Geol Mag 140:205–229CrossRefGoogle Scholar
  66. Macdonald EW (1998) Llandovery Secuicollactinae and Rotasphaeridae (Radiolaria) from the Cape Phillips formation, Cornwallis Island, Arctic Canada. J Paleontol 72: 585–604Google Scholar
  67. Macdonald EW (2000) Radiolaria from the lower Silurian of the Cape Phillips Formation, Arctic Canada. Program with Abstracts Ninth Meeting International Association of Radiolarian Palaelontologists, Blairsden, CA, pp 1–48Google Scholar
  68. Macdonald EW (2003) Radiolaria from the lower Silurian of the Cape Phillips formation, Cornwallis Island, Nunavut, Canada. PhD Dissertation, Dalhousie University, Halifax, Nova Scotia, 370 ppGoogle Scholar
  69. Macdonald EW (2006) A preliminary radiolarian biozonation for the lower Silurian of the Cape Phillips formation, Nunavut, Canada. Can J Earth Sci 43:205–211CrossRefGoogle Scholar
  70. Märss T, Caldwell M, Gagnier P, Goujet D, Männik P, Martma T, Wilson M (1998) Distribution of Silurian and Lower Devonian vertebrate microremains and conodonts in the Baillie–Hamilton and Cornwallis Island sections, Canadian Arctic. Proc Estonian Acad Sci Geol 47:51–76Google Scholar
  71. Melchin MJ (1989) Llandovery graptolite biostratigraphy and palaelobiogeography, Cape Phillips formation, Canadian Arctic Islands. Can J Earth Sci 26:1726–1746CrossRefGoogle Scholar
  72. Melchin MJ (1994) Graptolite extinction at the Llandovery–Wenlock boundary. Lethaia 27:285–290CrossRefGoogle Scholar
  73. Melchin MJ, Holmden C (2006) Carbon isotope chemostratigraphy in Arctic Canada: sea level forcing of carbonate platform weathering and implications for Hirnantian global correlation. Palaeogeogr Palaeoclimatol Palaeoecol 234: 186–200CrossRefGoogle Scholar
  74. Melchin MJ, Koren TN, Štorch P (1998) Global diversity and survivorship patterns of Silurian graptoloids. In: Landing E, Johnson ME (eds) Silurian cycles. New York State Mus Bull 493:165–182Google Scholar
  75. Melchin MJ, Heath RJ, Jowett DMS, Senior SJH, Barnes CR, Marshall JD (2000) Correlation of the graptolite and conodonts zonations and carbon isotope signal through the late Llandovery and early Wenlock, Cornwallis Island, Arctic Canada. Palaeontology Down Under 2000, Geol Soc Australia Abs 61:64–65Google Scholar
  76. Mikulic DG, Kluessendorf J (1999) Stasis and extinction of Silurian (LLandovery–Wenlock) trilobite associations related to oceanic cyclicity. J Paleontol 73: 320–325Google Scholar
  77. Munnecke A, Samtleben C, Bickert T (2003) The Ireviken event in the lower Silurian of Gotland, Sweden – relation to similar Palaeozoic and Proterozoic events. Palaeogeogr Palaeoclimatol Palaeoecol 195:99–124CrossRefGoogle Scholar
  78. Nestor V (1997) Reflection of Wenlock oceanic episodes and events on the chitinozoan succession of Estonia. Eesti Teaduste Akadeemia Toimetised, Geoloogia 46(3): 119–126Google Scholar
  79. Nestor V, Einasto R, Loydell DK (2002) Chitinozoan biostratigraphy and lithological characteristics of the Lower and Upper Visby boundary beds in the Ireviken 3 section, northwest Gotland. Eesti Teaduste Akadeemia Toimetised, Geoloogia 51(4):215–226Google Scholar
  80. Noble PJ, Lenz AC (2007) Upper Wenlock Ceratoikiscidae (Radiolaria) from the Cape Phillips Formation, Arctic Canada. J Paleontol 81:1044–1052CrossRefGoogle Scholar
  81. Noble PJ, Zimmerman MK, Holmden C, Lenz AC (2005) Early Silurian (Wenlockian) δ13C profiles from the Cape Phillips formation, Arctic Canada and its relation to biotic events. Can J Earth Sci 42:1419–1430CrossRefGoogle Scholar
  82. Panchuk KM, Holmden C, Leslie S (2005a) Local controls on carbon cycling in the Midcontinent region of North America with implications for carbon isotope secular curves. J Sed Res 76:200–211CrossRefGoogle Scholar
  83. Panchuk KM, Holmden C, Kump LR (2005b) Sensitivity of the epeiric sea carbon isotope record to local-scale carbon cycle processes: tales from the Mohawkian Sea. Palaeogeogr, Palaeoclimatol, Palaeoecol 228:320–337CrossRefGoogle Scholar
  84. Porębska A, Kozlowska-Dawidzuik A, Masiak M (2004) The lundgreni event in the Silurian East European platform, Poland. Palaeogeogr Palaeoclimatol Palaeoecol 213: 271–294Google Scholar
  85. Renz GW (1988) Silurian Radiolaria of the genus Ceratoikiscum from the Canadian Arctic. Micropalaelontology 34:260–267CrossRefGoogle Scholar
  86. Saltzman MR (2001) Silurian δ13C stratigraphy: a view from North America. Geology 29:671–674CrossRefGoogle Scholar
  87. Samtleben C, Munnecke A, Bickert T (2000) Development of facies and C/O-isotopes in transects through the Ludlow of Gotland: evidence for global and local influences on a shallow–marine environment. Facies 43:1–38CrossRefGoogle Scholar
  88. Senior SJH (2005) Silurian graptolites of the genus Cyrtograptus from the Cape Phillips formation, Canadian Arctic Archipelago, Nunavut. University of Western Ontario, London, Canada, 307 pp, unpublished PhD thesisGoogle Scholar
  89. Štorch P (1995) Biotic crises and post-crisis recoveries recorded by Silurian planktonic graptolite faunas of the Barrandian area (Czech Republic). GeoLines (Praha) 3:59–70Google Scholar
  90. Talent JA, Mawson R, Andrew AS, Hamilton PJ, Whitford DJ (1993) Middle Palaelozoic extinction events: faunal and isotopic data. Palaeogeogr Palaeoclimatol Palaeoecol 104:139–152CrossRefGoogle Scholar
  91. Thorsteinsson R (1959) Cornwallis and Little Cornwallis Islands, district of Franklin, Northwest Territories. Geol Surv Canada, Mem 294:133 ppGoogle Scholar
  92. Trettin HP (1989) The Arctic Islands. In: Bally AW, Palmer AR (eds) The geology of North America. Decade of North American Geology A, pp 349–370Google Scholar
  93. Wenzel B, Joachimski MM (1996) Carbon and oxygen isotopic composition of Silurian brachiopods (Gotland/Sweden): palaeoceanographic implications. Palaeogeogr Palaeoclimatol Palaeoecol 122:143–166CrossRefGoogle Scholar
  94. Zimmerman MK (2001) Stable isotope and elemental geochemistry of early Silurian (Wenlockian) bio-events: Cape Phillips formation, Arctic Canada. University of Nevada Reno, Geological Sciences, unpublished MSc thesisGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Paula J. Noble
    • 1
    Email author
  • Alfred C. Lenz
    • 2
  • Chris Holmden
    • 3
  • Monika Masiak
    • 4
  • Matthew K. Zimmerman
    • 1
  • Simon R. Poulson
    • 1
  • Anna Kozłowska
    • 5
  1. 1.Department of Geological Sciences and EngineeringUniversity of NevadaRenoUSA
  2. 2.Department of Earth SciencesUniversity of Western OntarioLondonCanada
  3. 3.Saskatchewan Isotope Laboratory, Department of Geological SciencesUniversity of SaskatchewanSaskatoonCanada
  4. 4.Institute of Geological SciencesPolish Academy of SciencesWarszawaPoland
  5. 5.Institute of PalaeobiologyPolish Academy of SciencesWarszawaPoland

Personalised recommendations