Skip to main content

Hsp70 and Hsp27: Emerging Targets in Cancer Therapy

  • Chapter
  • First Online:
Apoptosome

Abstract

Heat shock proteins (Hsps) Hsp27 and Hsp70 are powerful chaperones whose expression is induced in response to a wide variety of physiological and environmental insults including anti-cancer chemotherapy, thus allowing the cell to survive to lethal conditions. Hsp27 and Hsp70 cytoprotective properties may be explained by their anti-apoptotic function. Indeed, both proteins can inhibit key effectors of the apoptotic machinery at the pre- and post-mitochondrial level. In cancer cells, the expression of Hsp27 and/or Hsp70 is abnormally high, and both Hsp27 and Hsp70 may participate in oncogenesis and in resistance to chemotherapy. In rodent models, Hsp27 or Hsp70 overexpression increases tumor growth and metastatic potential. The depletion or inhibition of Hsp27 and Hsp70 frequently reduces the size of the tumors and even can cause their complete involution (for Hsp70). But Hsp27 and Hsp70 can also be found in the extracellular medium. Their role is then immunogenic and the term chaperokine to define the extracellular chaperones has been advanced. Hsps are being used linked to tumor antigens in the development of vaccines. Hsp27 and Hsp70 intracellular and extracellular functions as well as the strategies that are being developed in cancer therapy exploiting these Hsps properties will be comment in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Hsp:

Heat shock proteins

Apaf-1:

Apoptotic protease activation factor-1

IAP:

Inhibitory apoptotic protein

TNF:

Tumor necrosis factor

NF-κB:

Nuclear factor-kappaB

AIF:

Apoptosis inducing factor

APC:

Antigen presenting cell

References

  • Abe M., Manola J. B., Oh W. K., Parslow D. L., George D. J., Austin C. L. and Kantoff P. W. (2004). Plasma levels of heat shock protein 70 in patients with prostate cancer: a potential biomarker for prostate cancer. Clin Prostate Cancer 3, 49–53

    Google Scholar 

  • Aghdassi A., Phillips P., Dudeja V., Dhaulakhandi D., Sharif R., Dawra R., Lerch M. M. and Saluja A. (2007). Heat shock protein 70 increases tumorigenicity and inhibits apoptosis in pancreatic adenocarcinoma. Cancer Res 67, 616–25

    Google Scholar 

  • Akakura S., Yoshida M., Yoneda Y. and Horinouchi S. (2001). A role for Hsc70 in regulating nucleocytoplasmic transport of a temperature-sensitive p53 (p53Val-135). J Biol Chem 276, 14649–57

    Google Scholar 

  • Akbar M. T., Lundberg A. M., Liu K., Vidyadaran S., Wells K. E., Dolatshad H., Wynn S., Wells D. J., Latchman D. S. and de Belleroche J. (2003). The neuroprotective effects of heat shock protein 27 overexpression in transgenic animals against kainate-induced seizures and hippocampal cell death. J Biol Chem 278, 19956–65

    Google Scholar 

  • Aloy M. T., Hadchity E., Bionda C., Diaz-Latoud C., Claude L., Rousson R., Arrigo A. P. and Rodriguez-Lafrasse C. (2008). Protective role of Hsp27 protein against gamma radiation-induced apoptosis and radiosensitization effects of Hsp27 gene silencing in different human tumor cells. Int J Radiat Oncol Biol Phys 70, 543–53

    Google Scholar 

  • Arispe N., Doh M., Simakova O., Kurganov B. and De Maio A. (2004). Hsc70 and Hsp70 interact with phosphatidylserine on the surface of PC12 cells resulting in a decrease of viability. Faseb J 18, 1636–45

    Google Scholar 

  • Arnold-Schild D., Hanau D., Spehner D., Schmid C., Rammensee H. G., de la Salle H. and Schild H. (1999). Cutting edge: receptor-mediated endocytosis of heat shock proteins by professional antigen-presenting cells. J Immunol 162, 3757–60

    Google Scholar 

  • Arrigo A. P., Virot S., Chaufour S., Firdaus W., Kretz-Remy C. and Diaz-Latoud C. (2005). Hsp27 consolidates intracellular redox homeostasis by upholding glutathione in its reduced form and by decreasing iron intracellular levels. Antioxid Redox Signal 7, 414–22

    Google Scholar 

  • Asea A., Kraeft S. K., Kurt-Jones E. A., Stevenson M. A., Chen L. B., Finberg R. W., Koo G. C. and Calderwood S. K. (2000). HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat Med 6, 435–42

    Google Scholar 

  • Asea A., Rehli M., Kabingu E., Boch J. A., Bare O., Auron P. E., Stevenson M. A. and Calderwood S. K. (2002). Novel signal transduction pathway utilized by extracellular HSP70: role of toll-like receptor (TLR) 2 and TLR4. J Biol Chem 277, 15028–34

    Google Scholar 

  • Asea A. (2007). Hsp72 release: mechanisms and methodologies. Methods 43, 194–8

    Google Scholar 

  • Barr C. S. and Dokas L. A. (1999). Glucocorticoids regulate the synthesis of HSP27 in rat brain slices. Brain Res 847, 9–17

    Google Scholar 

  • Basu S., Binder R. J., Ramalingam T. and Srivastava P. K. (2001). CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin. Immunity 14, 303–13

    Google Scholar 

  • Bausero M. A., Page D. T., Osinaga E. and Asea A. (2004). Surface expression of Hsp25 and Hsp72 differentially regulates tumor growth and metastasis. Tumour Biol 25, 243–51

    Google Scholar 

  • Bausero M. A., Gastpar R., Multhoff G. and Asea A. (2005). Alternative mechanism by which IFN-gamma enhances tumor recognition: active release of heat shock protein 72. J Immunol 175, 2900–12

    Google Scholar 

  • Beckmann R. P., Mizzen L. E. and Welch W. J. (1990). Interaction of Hsp 70 with newly synthesized proteins: implications for protein folding and assembly. Science 248, 850–4

    Google Scholar 

  • Beere H. M., Wolf B. B., Cain K., Mosser D. D., Mahboubi A., Kuwana T., Tailor P., Morimoto R. I., Cohen G. M. and Green D. R. (2000). Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nat Cell Biol 2, 469–75

    Google Scholar 

  • Bendz H., Ruhland S. C., Pandya M. J., Hainzl O., Riegelsberger S., Brauchle C., Mayer M. P., Buchner J., Issels R. D. and Noessner E. (2007). Human heat shock protein 70 enhances tumor antigen presentation through complex formation and intracellular antigen delivery without innate immune signaling. J Biol Chem 282, 31688–702

    Google Scholar 

  • Bidere N., Lorenzo H. K., Carmona S., Laforge M., Harper F., Dumont C. and Senik A. (2003). Cathepsin D triggers Bax activation, resulting in selective apoptosis-inducing factor (AIF) relocation in T lymphocytes entering the early commitment phase to apoptosis. J Biol Chem 278, 31401–11

    Google Scholar 

  • Biggs W. H., 3rd, Meisenhelder J., Hunter T., Cavenee W. K. and Arden K. C. (1999). Protein kinase B/Akt-mediated phosphorylation promotes nuclear exclusion of the winged helix transcription factor FKHR1. Proc Natl Acad Sci USA 96, 7421–6

    Google Scholar 

  • Binder R. J., Han D. K. and Srivastava P. K. (2000). CD91: a receptor for heat shock protein gp96. Nat Immunol 1, 151–5

    Google Scholar 

  • Binder R. J., Blachere N. E. and Srivastava P. K. (2001). Heat shock protein-chaperoned peptides but not free peptides introduced into the cytosol are presented efficiently by major histocompatibility complex I molecules. J Biol Chem 276, 17163–71

    Google Scholar 

  • Binder R. J., Vatner R. and Srivastava P. (2004). The heat-shock protein receptors: some answers and more questions. Tissue Antigens 64, 442–51

    Google Scholar 

  • Bivik C., Rosdahl I. and Ollinger K. (2007). Hsp70 protects against UVB induced apoptosis by preventing release of cathepsins and cytochrome c in human melanocytes. Carcinogenesis 28, 537–44

    Google Scholar 

  • Botzler C., Li G., Issels R. D. and Multhoff G. (1998). Definition of extracellular localized epitopes of Hsp70 involved in an NK immune response. Cell Stress Chaperones 3, 6–11

    Google Scholar 

  • Boya P., Gonzalez-Polo R. A., Poncet D., Andreau K., Vieira H. L., Roumier T., Perfettini J. L. and Kroemer G. (2003). Mitochondrial membrane permeabilization is a critical step of lysosome-initiated apoptosis induced by hydroxychloroquine. Oncogene 22, 3927–36

    Google Scholar 

  • Breckenridge D. G. and Xue D. (2004). Regulation of mitochondrial membrane permeabilization by BCL-2 family proteins and caspases. Curr Opin Cell Biol 16, 647–52

    Google Scholar 

  • Broker L. E., Huisman C., Span S. W., Rodriguez J. A., Kruyt F. A. and Giaccone G. (2004). Cathepsin B mediates caspase-independent cell death induced by microtubule stabilizing agents in non-small cell lung cancer cells. Cancer Res 64, 27–30

    Google Scholar 

  • Brondani Da Rocha A., Regner A., Grivicich I., Pretto Schunemann D., Diel C., Kovaleski G., Brunetto De Farias C., Mondadori E., Almeida L., Braga Filho A. and Schwartsmann G. (2004). Radioresistance is associated to increased Hsp70 content in human glioblastoma cell lines. Int J Oncol 25, 777–85

    Google Scholar 

  • Bruey J. M., Ducasse C., Bonniaud P., Ravagnan L., Susin S. A., Diaz-Latoud C., Gurbuxani S., Arrigo A. P., Kroemer G., Solary E. and Garrido C. (2000a). Hsp27 negatively regulates cell death by interacting with cytochrome c. Nat Cell Biol 2, 645–52

    Google Scholar 

  • Bruey J. M., Paul C., Fromentin A., Hilpert S., Arrigo A. P., Solary E. and Garrido C. (2000b). Differential regulation of HSP27 oligomerization in tumor cells grown in vitro and in vivo. Oncogene 19, 4855–63

    Google Scholar 

  • Brunk U. T., Dalen H., Roberg K. and Hellquist H. B. (1997). Photo-oxidative disruption of lysosomal membranes causes apoptosis of cultured human fibroblasts. Free Radic Biol Med 23, 616–26

    Google Scholar 

  • Brunk U. T. and Svensson I. (1999). Oxidative stress, growth factor starvation and Fas activation may all cause apoptosis through lysosomal leak. Redox Rep 4, 3–11

    Google Scholar 

  • Cande C., Vahsen N., Garrido C. and Kroemer G. (2004). Apoptosis-inducing factor (AIF): caspase-independent after all. Cell Death Differ 11, 591–5

    Google Scholar 

  • Cardone M. H., Roy N., Stennicke H. R., Salvesen G. S., Franke T. F., Stanbridge E., Frisch S. and Reed J. C. (1998). Regulation of cell death protease caspase-9 by phosphorylation. Science 282, 1318–21

    Google Scholar 

  • Carrello A., Allan R. K., Morgan S. L., Owen B. A., Mok D., Ward B. K., Minchin R. F., Toft D. O. and Ratajczak T. (2004). Interaction of the Hsp90 cochaperone cyclophilin 40 with Hsc70. Cell Stress Chaperones 9, 167–81

    Google Scholar 

  • Casado P., Zuazua-Villar P., del Valle E., Martinez-Campa C., Lazo P. S. and Ramos S. (2007). Vincristine regulates the phosphorylation of the antiapoptotic protein HSP27 in breast cancer cells. Cancer Lett 247, 273–82

    Google Scholar 

  • Castelli C., Rivoltini L., Rini F., Belli F., Testori A., Maio M., Mazzaferro V., Coppa J., Srivastava P. K. and Parmiani G. (2004). Heat shock proteins: biological functions and clinical application as personalized vaccines for human cancer. Cancer Immunol Immunother 53, 227–33

    Google Scholar 

  • Castellino F., Boucher P. E., Eichelberg K., Mayhew M., Rothman J. E., Houghton A. N. and Germain R. N. (2000). Receptor-mediated uptake of antigen/heat shock protein complexes results in major histocompatibility complex class I antigen presentation via two distinct processing pathways. J Exp Med 191, 1957–64

    Google Scholar 

  • Chang Y. S., Lee L. C., Sun F. C., Chao C. C., Fu H. W. and Lai Y. K. (2006). Involvement of calcium in the differential induction of heat shock protein 70 by heat shock protein 90 inhibitors, geldanamycin and radicicol, in human non-small cell lung cancer H460 cells. J Cell Biochem 97, 156–65

    Google Scholar 

  • Charette S. J., Lavoie J. N., Lambert H. and Landry J. (2000). Inhibition of Daxx-mediated apoptosis by heat shock protein 27. Mol Cell Biol 20, 7602–12

    Google Scholar 

  • Chaufour S., Mehlen P. and Arrigo A. P. (1996). Transient accumulation, phosphorylation and changes in the oligomerization of Hsp27 during retinoic acid-induced differentiation of HL-60 cells: possible role in the control of cellular growth and differentiation. Cell Stress Chaperones 1, 225–35

    Google Scholar 

  • Chauhan D., Li G., Hideshima T., Podar K., Mitsiades C., Mitsiades N., Catley L., Tai Y. T., Hayashi T., Shringarpure R., Burger R., Munshi N., Ohtake Y., Saxena S. and Anderson K. C. (2003a). Hsp27 inhibits release of mitochondrial protein Smac in multiple myeloma cells and confers dexamethasone resistance. Blood 102, 3379–86

    Google Scholar 

  • Chauhan D., Li G., Shringarpure R., Podar K., Ohtake Y., Hideshima T. and Anderson K. C. (2003b). Blockade of Hsp27 overcomes Bortezomib/proteasome inhibitor PS-341 resistance in lymphoma cells. Cancer Res 63, 6174–7

    Google Scholar 

  • Cheng E. H., Wei M. C., Weiler S., Flavell R. A., Mak T. W., Lindsten T. and Korsmeyer S. J. (2001). BCL-2, BCL-X(L) sequester BH3 domain-only molecules preventing BAX- and BAK-mediated mitochondrial apoptosis. Mol Cell 8, 705–11

    Google Scholar 

  • Chiosis G., Timaul M. N., Lucas B., Munster P. N., Zheng F. F., Sepp-Lorenzino L. and Rosen N. (2001). A small molecule designed to bind to the adenine nucleotide pocket of Hsp90 causes Her2 degradation and the growth arrest and differentiation of breast cancer cells. Chem Biol 8, 289–99

    Google Scholar 

  • Choi D. H., Ha J. S., Lee W. H., Song J. K., Kim G. Y., Park J. H., Cha H. J., Lee B. J. and Park J. W. (2007). Heat shock protein 27 is associated with irinotecan resistance in human colorectal cancer cells. FEBS Lett 581, 1649–56

    Google Scholar 

  • Ciocca D. R., Oesterreich S., Chamness G. C., McGuire W. L. and Fuqua S. A. (1993). Biological and clinical implications of heat shock protein 27,000 (Hsp27): a review. J Natl Cancer Inst 85, 1558–70

    Google Scholar 

  • Ciocca D. R. and Calderwood S. K. (2005). Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones 10, 86–103

    Google Scholar 

  • Ciocca D. R., Frayssinet P. and Cuello-Carrion F. D. (2007). A pilot study with a therapeutic vaccine based on hydroxyapatite ceramic particles and self-antigens in cancer patients. Cell Stress Chaperones 12, 33–43

    Google Scholar 

  • Compton S. A., Elmore L. W., Haydu K., Jackson-Cook C. K. and Holt S. E. (2006). Induction of nitric oxide synthase-dependent telomere shortening after functional inhibition of Hsp90 in human tumor cells. Mol Cell Biol 26, 1452–62

    Google Scholar 

  • Concannon C. G., Orrenius S. and Samali A. (2001). Hsp27 inhibits cytochrome c-mediated caspase activation by sequestering both pro-caspase-3 and cytochrome c. Gene Expr 9, 195–201

    Google Scholar 

  • Conroy S. E., Sasieni P. D., Amin V., Wang D. Y., Smith P., Fentiman I. S. and Latchman D. S. (1998). Antibodies to heat-shock protein 27 are associated with improved survival in patients with breast cancer. Br J Cancer 77, 1875–9

    Google Scholar 

  • Creagh E. M., Carmody R. J. and Cotter T. G. (2000). Heat shock protein 70 inhibits caspase-dependent and -independent apoptosis in Jurkat T cells. Exp Cell Res 257, 58–66

    Google Scholar 

  • Datta S. R., Dudek H., Tao X., Masters S., Fu H., Gotoh Y. and Greenberg M. E. (1997). Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91, 231–41

    Google Scholar 

  • De A. K., Kodys K. M., Yeh B. S. and Miller-Graziano C. (2000). Exaggerated human monocyte IL-10 concomitant to minimal TNF-alpha induction by heat-shock protein 27 (Hsp27) suggests Hsp27 is primarily an antiinflammatory stimulus. J Immunol 165, 3951–8

    Google Scholar 

  • Demidenko Z. N., Vivo C., Halicka H. D., Li C. J., Bhalla K., Broude E. V. and Blagosklonny M. V. (2006). Pharmacological induction of Hsp70 protects apoptosis-prone cells from doxorubicin: comparison with caspase-inhibitor- and cycle-arrest-mediated cytoprotection. Cell Death Differ 13, 1434–41

    Google Scholar 

  • Didelot C., Lanneau D., Brunet M., Joly A. L., De Thonel A., Chiosis G. and Garrido C. (2007). Anti-cancer therapeutic approaches based on intracellular and extracellular heat shock proteins. Curr Med Chem 14, 2839–47

    Google Scholar 

  • Dix D. J., Allen J. W., Collins B. W., Mori C., Nakamura N., Poorman-Allen P., Goulding E. H. and Eddy E. M. (1996). Targeted gene disruption of Hsp70-2 results in failed meiosis, germ cell apoptosis, and male infertility. Proc Natl Acad Sci USA 93, 3264–8

    Google Scholar 

  • Doody A. D., Kovalchin J. T., Mihalyo M. A., Hagymasi A. T., Drake C. G. and Adler A. J. (2004). Glycoprotein 96 can chaperone both MHC class I- and class II-restricted epitopes for in vivo presentation, but selectively primes CD8+ T cell effector function. J Immunol 172, 6087–92

    Google Scholar 

  • Dorion S. and Landry J. (2002). Activation of the mitogen-activated protein kinase pathways by heat shock. Cell Stress Chaperones 7, 200–6

    Google Scholar 

  • Du C., Fang M., Li Y., Li L. and Wang X. (2000). Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102, 33–42

    Google Scholar 

  • Ehrnsperger M., Graber S., Gaestel M. and Buchner J. (1997). Binding of non-native protein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation. Embo J 16, 221–9

    Google Scholar 

  • Enomoto Y., Bharti A., Khaleque A. A., Song B., Liu C., Apostolopoulos V., Xing P. X., Calderwood S. K. and Gong J. (2006). Enhanced immunogenicity of heat shock protein 70 peptide complexes from dendritic cell-tumor fusion cells. J Immunol 177, 5946–55

    Google Scholar 

  • Eskenazi A. E., Powers J., Pinkas J., Oesterreich S., Fuqua S. A. and Frantz C. N. (1998). Induction of heat shock protein 27 by hydroxyurea and its relationship to experimental metastasis. Clin Exp Metastasis 16, 283–90

    Google Scholar 

  • Feng X., Bonni S. and Riabowol K. (2006). HSP70 induction by ING proteins sensitizes cells to tumor necrosis factor alpha receptor-mediated apoptosis. Mol Cell Biol 26, 9244–55

    Google Scholar 

  • Flechtner J. B., Cohane K. P., Mehta S., Slusarewicz P., Leonard A. K., Barber B. H., Levey D. L. and Andjelic S. (2006). High-affinity interactions between peptides and heat shock protein 70 augment CD8+ T lymphocyte immune responses. J Immunol 177, 1017–27

    Google Scholar 

  • Foghsgaard L., Wissing D., Mauch D., Lademann U., Bastholm L., Boes M., Elling F., Leist M. and Jaattela M. (2001). Cathepsin B acts as a dominant execution protease in tumor cell apoptosis induced by tumor necrosis factor. J Cell Biol 153, 999–1010

    Google Scholar 

  • Gabai V. L., Yaglom J. A., Volloch V., Meriin A. B., Force T., Koutroumanis M., Massie B., Mosser D. D. and Sherman M. Y. (2000). Hsp72-mediated suppression of c-Jun N-terminal kinase is implicated in development of tolerance to caspase-independent cell death. Mol Cell Biol 20, 6826–36

    Google Scholar 

  • Gabai V. L., Mabuchi K., Mosser D. D. and Sherman M. Y. (2002). Hsp72 and stress kinase c-jun N-terminal kinase regulate the bid-dependent pathway in tumor necrosis factor-induced apoptosis. Mol Cell Biol 22, 3415–24

    Google Scholar 

  • Gao B. and Tsan M. F. (2003). Recombinant human heat shock protein 60 does not induce the release of tumor necrosis factor alpha from murine macrophages. J Biol Chem 278, 22523–9

    Google Scholar 

  • Gao T. and Newton A. C. (2002). The turn motif is a phosphorylation switch that regulates the binding of Hsp70 to protein kinase C. J Biol Chem 277, 31585–92

    Google Scholar 

  • Garrido C., Mehlen P., Fromentin A., Hammann A., Assem M., Arrigo A. P. and Chauffert B. (1996). Inconstant association between 27-kDa heat-shock protein (Hsp27) content and doxorubicin resistance in human colon cancer cells. The doxorubicin-protecting effect of Hsp27. Eur J Biochem 237, 653–9

    Google Scholar 

  • Garrido C., Ottavi P., Fromentin A., Hammann A., Arrigo A. P., Chauffert B. and Mehlen P. (1997). HSP27 as a mediator of confluence-dependent resistance to cell death induced by anticancer drugs. Cancer Res 57, 2661–7

    Google Scholar 

  • Garrido C., Fromentin A., Bonnotte B., Favre N., Moutet M., Arrigo A. P., Mehlen P. and Solary E. (1998). Heat shock protein 27 enhances the tumorigenicity of immunogenic rat colon carcinoma cell clones. Cancer Res 58, 5495–9

    Google Scholar 

  • Garrido C., Bruey J. M., Fromentin A., Hammann A., Arrigo A. P. and Solary E. (1999). HSP27 inhibits cytochrome c-dependent activation of procaspase-9. Faseb J 13, 2061–70

    Google Scholar 

  • Garrido C., Gurbuxani S., Ravagnan L. and Kroemer G. (2001). Heat shock proteins: endogenous modulators of apoptotic cell death. Biochem Biophys Res Commun 286, 433–42

    Google Scholar 

  • Garrido C. (2002). Size matters: of the small HSP27 and its large oligomers. Cell Death Differ 9, 483–5

    Google Scholar 

  • Garrido C., Brunet M., Didelot C., Zermati Y., Schmitt E. and Kroemer G. (2006). Heat shock proteins 27 and 70: anti-apoptotic proteins with tumorigenic properties. Cell Cycle 5, 2592–601

    Google Scholar 

  • Gastpar R., Gehrmann M., Bausero M. A., Asea A., Gross C., Schroeder J. A. and Multhoff G. (2005). Heat shock protein 70 surface-positive tumor exosomes stimulate migratory and cytolytic activity of natural killer cells. Cancer Res 65, 5238–47

    Google Scholar 

  • Gong Z., Yang J., Yang M., Wang F., Wei Q., Tanguay R. M. and Wu T. (2006). Benzo(a)pyrene inhibits expression of inducible heat shock protein 70 in vascular endothelial cells. Toxicol Lett 166, 229–36

    Google Scholar 

  • Gorman A. M., Szegezdi E., Quigney D. J. and Samali A. (2005). Hsp27 inhibits 6-hydroxydopamine-induced cytochrome c release and apoptosis in PC12 cells. Biochem Biophys Res Commun 327, 801–10

    Google Scholar 

  • Gross C., Hansch D., Gastpar R. and Multhoff G. (2003a). Interaction of heat shock protein 70 peptide with NK cells involves the NK receptor CD94. Biol Chem 384, 267–79

    Google Scholar 

  • Gross C., Schmidt-Wolf I. G., Nagaraj S., Gastpar R., Ellwart J., Kunz-Schughart L. A. and Multhoff G. (2003b). Heat shock protein 70-reactivity is associated with increased cell surface density of CD94/CD56 on primary natural killer cells. Cell Stress Chaperones 8, 348–60

    Google Scholar 

  • Guay J., Lambert H., Gingras-Breton G., Lavoie J. N., Huot J. and Landry J. (1997). Regulation of actin filament dynamics by p38 map kinase-mediated phosphorylation of heat shock protein 27. J Cell Sci 110 (Pt 3), 357–68

    Google Scholar 

  • Guicciardi M. E., Deussing J., Miyoshi H., Bronk S. F., Svingen P. A., Peters C., Kaufmann S. H. and Gores G. J. (2000). Cathepsin B contributes to TNF-alpha-mediated hepatocyte apoptosis by promoting mitochondrial release of cytochrome c. J Clin Invest 106, 1127–37

    Google Scholar 

  • Guo F., Rocha K., Bali P., Pranpat M., Fiskus W., Boyapalle S., Kumaraswamy S., Balasis M., Greedy B., Armitage E. S., Lawrence N. and Bhalla K. (2005a). Abrogation of heat shock protein 70 induction as a strategy to increase antileukemia activity of heat shock protein 90 inhibitor 17-allylamino-demethoxy geldanamycin. Cancer Res 65, 10536–44

    Google Scholar 

  • Guo F., Sigua C., Bali P., George P., Fiskus W., Scuto A., Annavarapu S., Mouttaki A., Sondarva G., Wei S., Wu J., Djeu J. and Bhalla K. (2005b). Mechanistic role of heat shock protein 70 in Bcr-Abl-mediated resistance to apoptosis in human acute leukemia cells. Blood 105, 1246–55

    Google Scholar 

  • Gurbuxani S., Bruey J. M., Fromentin A., Larmonier N., Parcellier A., Jaattela M., Martin F., Solary E. and Garrido C. (2001). Selective depletion of inducible HSP70 enhances immunogenicity of rat colon cancer cells. Oncogene 20, 7478–85

    Google Scholar 

  • Gurbuxani S., Schmitt E., Cande C., Parcellier A., Hammann A., Daugas E., Kouranti I., Spahr C., Pance A., Kroemer G. and Garrido C. (2003). Heat shock protein 70 binding inhibits the nuclear import of apoptosis-inducing factor. Oncogene 22, 6669–78

    Google Scholar 

  • Habich C., Baumgart K., Kolb H. and Burkart V. (2002). The receptor for heat shock protein 60 on macrophages is saturable, specific, and distinct from receptors for other heat shock proteins. J Immunol 168, 569–76

    Google Scholar 

  • Hadaschik B. A., Jackson J., Fazli L., Zoubeidi A., Burt H. M., Gleave M. E. and So A. I. (2008). Intravesically administered antisense oligonucleotides targeting heat-shock protein-27 inhibit the growth of non-muscle-invasive bladder cancer. BJU Int 102, 610–6

    Google Scholar 

  • Haug M., Schepp C. P., Kalbacher H., Dannecker G. E. and Holzer U. (2007). 70-kDa heat shock proteins: specific interactions with HLA-DR molecules and their peptide fragments. Eur J Immunol 37, 1053–63

    Google Scholar 

  • Havasi A., Li Z., Wang Z., Martin J. L., Botla V., Ruchalski K., Schwartz J. H. and Borkan S. C. (2008). Hsp27 inhibits Bax activation and apoptosis via a phosphatidylinositol 3-kinase-dependent mechanism. J Biol Chem 283, 12305–13

    Google Scholar 

  • Hino M., Kurogi K., Okubo M. A., Murata-Hori M. and Hosoya H. (2000). Small heat shock protein 27 (HSP27) associates with tubulin/microtubules in HeLa cells. Biochem Biophys Res Commun 271, 164–9

    Google Scholar 

  • Hu G., Tang J., Zhang B., Lin Y., Hanai J., Galloway J., Bedell V., Bahary N., Han Z., Ramchandran R., Thisse B., Thisse C., Zon L. I. and Sukhatme V. P. (2006). A novel endothelial-specific heat shock protein HspA12B is required in both zebrafish development and endothelial functions in vitro. J Cell Sci 119, 4117–26

    Google Scholar 

  • Jaattela M. (1995). Over-expression of hsp70 confers tumorigenicity to mouse fibrosarcoma cells. Int J Cancer 60, 689–93

    Google Scholar 

  • Jaattela M., Wissing D., Kokholm K., Kallunki T. and Egeblad M. (1998). Hsp70 exerts its anti-apoptotic function downstream of caspase-3-like proteases. Embo J 17, 6124–34

    Google Scholar 

  • Jaattela M. (1999a). Escaping cell death: survival proteins in cancer. Exp Cell Res 248, 30–43

    Google Scholar 

  • Jaattela M. (1999b). Heat shock proteins as cellular lifeguards. Ann Med 31, 261–71

    Google Scholar 

  • Jaattela M. and Tschopp J. (2003). Caspase-independent cell death in T lymphocytes. Nat Immunol 4, 416–23

    Google Scholar 

  • Janetzki S., Palla D., Rosenhauer V., Lochs H., Lewis J. J. and Srivastava P. K. (2000). Immunization of cancer patients with autologous cancer-derived heat shock protein gp96 preparations: a pilot study. Int J Cancer 88, 232–8

    Google Scholar 

  • Jimbo J., Sato K., Hosoki T., Shindo M., Ikuta K., Torimoto Y. and Kohgo Y. (2008). Induction of leukemia-specific antibodies by immunotherapy with leukemia-cell-derived heat shock protein 70. Cancer Sci 99, 1427–34

    Google Scholar 

  • Kalinowska M., Garncarz W., Pietrowska M., Garrard W. T. and Widlak P. (2005). Regulation of the human apoptotic DNase/RNase endonuclease G: involvement of Hsp70 and ATP. Apoptosis 10, 821–30

    Google Scholar 

  • Kamada M., So A., Muramaki M., Rocchi P., Beraldi E. and Gleave M. (2007). Hsp27 knockdown using nucleotide-based therapies inhibit tumor growth and enhance chemotherapy in human bladder cancer cells. Mol Cancer Ther 6, 299–308

    Google Scholar 

  • Kottke T., Sanchez-Perez L., Diaz R. M., Thompson J., Chong H., Harrington K., Calderwood S. K., Pulido J., Georgopoulos N., Selby P., Melcher A. and Vile R. (2007). Induction of hsp70-mediated Th17 autoimmunity can be exploited as immunotherapy for metastatic prostate cancer. Cancer Res 67, 11970–9

    Google Scholar 

  • Krause S. W., Gastpar R., Andreesen R., Gross C., Ullrich H., Thonigs G., Pfister K. and Multhoff G. (2004). Treatment of colon and lung cancer patients with ex vivo heat shock protein 70-peptide-activated, autologous natural killer cells: a clinical phase i trial. Clin Cancer Res 10, 3699–707

    Google Scholar 

  • Kuppner M. C., Gastpar R., Gelwer S., Nossner E., Ochmann O., Scharner A. and Issels R. D. (2001). The role of heat shock protein (hsp70) in dendritic cell maturation: hsp70 induces the maturation of immature dendritic cells but reduces DC differentiation from monocyte precursors. Eur J Immunol 31, 1602–9

    Google Scholar 

  • Langdon S. P., Rabiasz G. J., Hirst G. L., King R. J., Hawkins R. A., Smyth J. F. and Miller W. R. (1995). Expression of the heat shock protein HSP27 in human ovarian cancer. Clin Cancer Res 1, 1603–9

    Google Scholar 

  • Lee J. S., Lee J. J. and Seo J. S. (2005). HSP70 deficiency results in activation of c-Jun N-terminal Kinase, extracellular signal-regulated kinase, and caspase-3 in hyperosmolarity-induced apoptosis. J Biol Chem 280, 6634–41

    Google Scholar 

  • Lee S. C., Sim N., Clement M. V., Yadav S. K. and Pervaiz S. (2007). Dominant negative Rac1 attenuates paclitaxel-induced apoptosis in human melanoma cells through upregulation of heat shock protein 27: a functional proteomic analysis. Proteomics 7, 4112–22

    Google Scholar 

  • Lelj-Garolla B. and Mauk A. G. (2006). Self-association and chaperone activity of Hsp27 are thermally activated. J Biol Chem 281, 8169–74

    Google Scholar 

  • Lemieux P., Oesterreich S., Lawrence J. A., Steeg P. S., Hilsenbeck S. G., Harvey J. M. and Fuqua S. A. (1997). The small heat shock protein hsp27 increases invasiveness but decreases motility of breast cancer cells. Invasion Metastasis 17, 113–23

    Google Scholar 

  • Li C. Y., Lee J. S., Ko Y. G., Kim J. I. and Seo J. S. (2000). Heat shock protein 70 inhibits apoptosis downstream of cytochrome c release and upstream of caspase-3 activation. J Biol Chem 275, 25665–71

    Google Scholar 

  • Li P., Nijhawan D., Budihardjo I., Srinivasula S. M., Ahmad M., Alnemri E. S. and Wang X. (1997). Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91, 479–89

    Google Scholar 

  • Liang P. and MacRae T. H. (1997). Molecular chaperones and the cytoskeleton. J Cell Sci 110 (Pt 13), 1431–40

    Google Scholar 

  • Liossis S. N., Ding X. Z., Kiang J. G. and Tsokos G. C. (1997). Overexpression of the heat shock protein 70 enhances the TCR/CD3- and Fas/Apo-1/CD95-mediated apoptotic cell death in Jurkat T cells. J Immunol 158, 5668–75

    Google Scholar 

  • Liu B., Ye D., Song X., Zhao X., Yi L., Song J., Zhang Z. and Zhao Q. (2008). A novel therapeutic fusion protein vaccine by two different families of heat shock proteins linked with HPV16 E7 generates potent antitumor immunity and antiangiogenesis. Vaccine 26, 1387–96

    Google Scholar 

  • Liu Q. L., Kishi H., Ohtsuka K. and Muraguchi A. (2003). Heat shock protein 70 binds caspase-activated DNase and enhances its activity in TCR-stimulated T cells. Blood 102, 1788–96

    Google Scholar 

  • Lui J. C. and Kong S. K. (2007). Heat shock protein 70 inhibits the nuclear import of apoptosis-inducing factor to avoid DNA fragmentation in TF-1 cells during erythropoiesis. FEBS Lett 581, 109–17

    Google Scholar 

  • Luo X., Budihardjo I., Zou H., Slaughter C. and Wang X. (1998). Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94, 481–90

    Google Scholar 

  • Marin-Vinader L., Shin C., Onnekink C., Manley J. L. and Lubsen N. H. (2006). Hsp27 enhances recovery of splicing as well as rephosphorylation of SRp38 after heat shock. Mol Biol Cell 17, 886–94

    Google Scholar 

  • Matsumori Y., Hong S. M., Aoyama K., Fan Y., Kayama T., Sheldon R. A., Vexler Z. S., Ferriero D. M., Weinstein P. R. and Liu J. (2005). Hsp70 overexpression sequesters AIF and reduces neonatal hypoxic/ischemic brain injury. J Cereb Blood Flow Metab 25, 899–910

    Google Scholar 

  • Matzinger P. (2002). The danger model: a renewed sense of self. Science 296, 301–5

    Google Scholar 

  • Mayer M. P. and Bukau B. (2005). Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci 62, 670–84

    Google Scholar 

  • Mehlen P., Kretz-Remy C., Preville X. and Arrigo A. P. (1996a). Human hsp27, Drosophila hsp27 and human alphaB-crystallin expression-mediated increase in glutathione is essential for the protective activity of these proteins against TNFalpha-induced cell death. Embo J 15, 2695–706

    Google Scholar 

  • Mehlen P., Schulze-Osthoff K. and Arrigo A. P. (1996b). Small stress proteins as novel regulators of apoptosis. Heat shock protein 27 blocks Fas/APO-1- and staurosporine-induced cell death. J Biol Chem 271, 16510–4

    Google Scholar 

  • Mehlen P., Mehlen A., Godet J. and Arrigo A. P. (1997). hsp27 as a switch between differentiation and apoptosis in murine embryonic stem cells. J Biol Chem 272, 31657–65

    Google Scholar 

  • Meriin A. B., Yaglom J. A., Gabai V. L., Zon L., Ganiatsas S., Mosser D. D. and Sherman M. Y. (1999). Protein-damaging stresses activate c-Jun N-terminal kinase via inhibition of its dephosphorylation: a novel pathway controlled by HSP72. Mol Cell Biol 19, 2547–55

    Google Scholar 

  • Mijatovic T., Mathieu V., Gaussin J. F., De Neve N., Ribaucour F., Van Quaquebeke E., Dumont P., Darro F. and Kiss R. (2006). Cardenolide-induced lysosomal membrane permeabilization demonstrates therapeutic benefits in experimental human non-small cell lung cancers. Neoplasia 8, 402–12

    Google Scholar 

  • Mizukami S., Kajiwara C., Ishikawa H., Katayama I., Yui K. and Udono H. (2008). Both CD4+ and CD8+ T cell epitopes fused to heat shock cognate protein 70 (hsc70) can function to eradicate tumors. Cancer Sci 99, 1008–15

    Google Scholar 

  • Mosser D. D., Caron A. W., Bourget L., Meriin A. B., Sherman M. Y., Morimoto R. I. and Massie B. (2000). The chaperone function of hsp70 is required for protection against stress-induced apoptosis. Mol Cell Biol 20, 7146–59

    Google Scholar 

  • Mosser D. D. and Morimoto R. I. (2004). Molecular chaperones and the stress of oncogenesis. Oncogene 23, 2907–18

    Google Scholar 

  • Multhoff G., Botzler C., Jennen L., Schmidt J., Ellwart J. and Issels R. (1997). Heat shock protein 72 on tumor cells: a recognition structure for natural killer cells. J Immunol 158, 4341–50

    Google Scholar 

  • Multhoff G., Mizzen L., Winchester C. C., Milner C. M., Wenk S., Eissner G., Kampinga H. H., Laumbacher B. and Johnson J. (1999). Heat shock protein 70 (Hsp70) stimulates proliferation and cytolytic activity of natural killer cells. Exp Hematol 27, 1627–36

    Google Scholar 

  • Murakami H., Pain D. and Blobel G. (1988). 70-kD heat shock-related protein is one of at least two distinct cytosolic factors stimulating protein import into mitochondria. J Cell Biol 107, 2051–7

    Google Scholar 

  • Nicchitta C. V. (2003). Re-evaluating the role of heat-shock protein-peptide interactions in tumour immunity. Nat Rev Immunol 3, 427–32

    Google Scholar 

  • Nollen E. A., Brunsting J. F., Roelofsen H., Weber L. A. and Kampinga H. H. (1999). In vivo chaperone activity of heat shock protein 70 and thermotolerance. Mol Cell Biol 19, 2069–79

    Google Scholar 

  • Nylandsted J., Brand K. and Jaattela M. (2000a). Heat shock protein 70 is required for the survival of cancer cells. Ann NY Acad Sci 926, 122–5

    Google Scholar 

  • Nylandsted J., Rohde M., Brand K., Bastholm L., Elling F. and Jaattela M. (2000b). Selective depletion of heat shock protein 70 (Hsp70) activates a tumor-specific death program that is independent of caspases and bypasses Bcl-2. Proc Natl Acad Sci USA 97, 7871–6

    Google Scholar 

  • Nylandsted J., Gyrd-Hansen M., Danielewicz A., Fehrenbacher N., Lademann U., Hoyer-Hansen M., Weber E., Multhoff G., Rohde M. and Jaattela M. (2004). Heat shock protein 70 promotes cell survival by inhibiting lysosomal membrane permeabilization. J Exp Med 200, 425–35

    Google Scholar 

  • Oya-Ito T., Liu B. F. and Nagaraj R. H. (2006). Effect of methylglyoxal modification and phosphorylation on the chaperone and anti-apoptotic properties of heat shock protein 27. J Cell Biochem 99, 279–91

    Google Scholar 

  • Ozes O. N., Mayo L. D., Gustin J. A., Pfeffer S. R., Pfeffer L. M. and Donner D. B. (1999). NF-kappaB activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature 401, 82–5

    Google Scholar 

  • Pang Q., Keeble W., Christianson T. A., Faulkner G. R. and Bagby G. C. (2001). FANCC interacts with Hsp70 to protect hematopoietic cells from IFN-gamma/TNF-alpha-mediated cytotoxicity. Embo J 20, 4478–89

    Google Scholar 

  • Pang Q., Christianson T. A., Keeble W., Koretsky T. and Bagby G. C. (2002). The anti-apoptotic function of Hsp70 in the interferon-inducible double-stranded RNA-dependent protein kinase-mediated death signaling pathway requires the Fanconi anemia protein, FANCC. J Biol Chem 277, 49638–43

    Google Scholar 

  • Parcellier A., Gurbuxani S., Schmitt E., Solary E. and Garrido C. (2003a). Heat shock proteins, cellular chaperones that modulate mitochondrial cell death pathways. Biochem Biophys Res Commun 304, 505–12

    Google Scholar 

  • Parcellier A., Schmitt E., Gurbuxani S., Seigneurin-Berny D., Pance A., Chantome A., Plenchette S., Khochbin S., Solary E. and Garrido C. (2003b). HSP27 is a ubiquitin-binding protein involved in I-kappaBalpha proteasomal degradation. Mol Cell Biol 23, 5790–802

    Google Scholar 

  • Parcellier A., Schmitt E., Brunet M., Hammann A., Solary E. and Garrido C. (2005). Small heat shock proteins HSP27 and alphaB-crystallin: cytoprotective and oncogenic functions. Antioxid Redox Signal 7, 404–13

    Google Scholar 

  • Parcellier A., Brunet M., Schmitt E., Col E., Didelot C., Hammann A., Nakayama K., Nakayama K. I., Khochbin S., Solary E. and Garrido C. (2006). HSP27 favors ubiquitination and proteasomal degradation of p27Kip1 and helps S-phase re-entry in stressed cells. Faseb J 20, 1179–81

    Google Scholar 

  • Park H. S., Lee J. S., Huh S. H., Seo J. S. and Choi E. J. (2001). Hsp72 functions as a natural inhibitory protein of c-Jun N-terminal kinase. Embo J 20, 446–56

    Google Scholar 

  • Park H. S., Cho S. G., Kim C. K., Hwang H. S., Noh K. T., Kim M. S., Huh S. H., Kim M. J., Ryoo K., Kim E. K., Kang W. J., Lee J. S., Seo J. S., Ko Y. G., Kim S. and Choi E. J. (2002). Heat shock protein hsp72 is a negative regulator of apoptosis signal-regulating kinase 1. Mol Cell Biol 22, 7721–30

    Google Scholar 

  • Paul C., Manero F., Gonin S., Kretz-Remy C., Virot S. and Arrigo A. P. (2002). Hsp27 as a negative regulator of cytochrome C release. Mol Cell Biol 22, 816–34

    Google Scholar 

  • Phillips P. A., Dudeja V., McCarroll J. A., Borja-Cacho D., Dawra R. K., Grizzle W. E., Vickers S. M. and Saluja A. K. (2007). Triptolide induces pancreatic cancer cell death via inhibition of heat shock protein 70. Cancer Res 67, 9407–16

    Google Scholar 

  • Piotrowicz R. S., Hickey E. and Levin E. G. (1998). Heat shock protein 27 kDa expression and phosphorylation regulates endothelial cell migration. Faseb J 12, 1481–90

    Google Scholar 

  • Pocaly M., Lagarde V., Etienne G., Ribeil J. A., Claverol S., Bonneu M., Moreau-Gaudry F., Guyonnet-Duperat V., Hermine O., Melo J. V., Dupouy M., Turcq B., Mahon F. X. and Pasquet J. M. (2007). Overexpression of the heat-shock protein 70 is associated to imatinib resistance in chronic myeloid leukemia. Leukemia 21, 93–101

    Google Scholar 

  • Powers M. V., Clarke P. A. and Workman P. (2008). Dual targeting of HSC70 and HSP72 inhibits HSP90 function and induces tumor-specific apoptosis. Cancer Cell 14, 250–62

    Google Scholar 

  • Qian S. B., McDonough H., Boellmann F., Cyr D. M. and Patterson C. (2006). CHIP-mediated stress recovery by sequential ubiquitination of substrates and Hsp70. Nature 440, 551–5

    Google Scholar 

  • Ran R., Lu A., Zhang L., Tang Y., Zhu H., Xu H., Feng Y., Han C., Zhou G., Rigby A. C. and Sharp F. R. (2004). Hsp70 promotes TNF-mediated apoptosis by binding IKK gamma and impairing NF-kappa B survival signaling. Genes Dev 18, 1466–81

    Google Scholar 

  • Rane M. J., Pan Y., Singh S., Powell D. W., Wu R., Cummins T., Chen Q., McLeish K. R. and Klein J. B. (2003). Heat shock protein 27 controls apoptosis by regulating Akt activation. J Biol Chem 278, 27828–35

    Google Scholar 

  • Ravagnan L., Gurbuxani S., Susin S. A., Maisse C., Daugas E., Zamzami N., Mak T., Jaattela M., Penninger J. M., Garrido C. and Kroemer G. (2001). Heat-shock protein 70 antagonizes apoptosis-inducing factor. Nat Cell Biol 3, 839–43

    Google Scholar 

  • Ray S., Lu Y., Kaufmann S. H., Gustafson W. C., Karp J. E., Boldogh I., Fields A. P. and Brasier A. R. (2004). Genomic mechanisms of p210BCR-ABL signaling: induction of heat shock protein 70 through the GATA response element confers resistance to paclitaxel-induced apoptosis. J Biol Chem 279, 35604–15

    Google Scholar 

  • Reed R. C., Berwin B., Baker J. P. and Nicchitta C. V. (2003). GRP94/gp96 elicits ERK activation in murine macrophages. A role for endotoxin contamination in NF-kappa B activation and nitric oxide production. J Biol Chem 278, 31853–60

    Google Scholar 

  • Ribeil J. A., Zermati Y., Vandekerckhove J., Cathelin S., Kersual J., Dussiot M., Coulon S., Moura I. C., Zeuner A., Kirkegaard-Sorensen T., Varet B., Solary E., Garrido C. and Hermine O. (2007). Hsp70 regulates erythropoiesis by preventing caspase-3-mediated cleavage of GATA-1. Nature 445, 102–5

    Google Scholar 

  • Ritossa F. (1962). A new puffing pattern induced by heat shock and DNP in Drosophila. Experimentia 18, 571–573

    Google Scholar 

  • Roberg K., Kagedal K. and Ollinger K. (2002). Microinjection of cathepsin d induces caspase-dependent apoptosis in fibroblasts. Am J Pathol 161, 89–96

    Google Scholar 

  • Rocchi P., So A., Kojima S., Signaevsky M., Beraldi E., Fazli L., Hurtado-Coll A., Yamanaka K. and Gleave M. (2004). Heat shock protein 27 increases after androgen ablation and plays a cytoprotective role in hormone-refractory prostate cancer. Cancer Res 64, 6595–602

    Google Scholar 

  • Rocchi P., Beraldi E., Ettinger S., Fazli L., Vessella R. L., Nelson C. and Gleave M. (2005). Increased Hsp27 after androgen ablation facilitates androgen-independent progression in prostate cancer via signal transducers and activators of transcription 3-mediated suppression of apoptosis. Cancer Res 65, 11083–93

    Google Scholar 

  • Rocchi P., Jugpal P., So A., Sinneman S., Ettinger S., Fazli L., Nelson C. and Gleave M. (2006). Small interference RNA targeting heat-shock protein 27 inhibits the growth of prostatic cell lines and induces apoptosis via caspase-3 activation in vitro. BJU Int 98, 1082–9

    Google Scholar 

  • Rogalla T., Ehrnsperger M., Preville X., Kotlyarov A., Lutsch G., Ducasse C., Paul C., Wieske M., Arrigo A. P., Buchner J. and Gaestel M. (1999). Regulation of Hsp27 oligomerization, chaperone function, and protective activity against oxidative stress/tumor necrosis factor alpha by phosphorylation. J Biol Chem 274, 18947–56

    Google Scholar 

  • Ruchalski K., Mao H., Li Z., Wang Z., Gillers S., Wang Y., Mosser D. D., Gabai V., Schwartz J. H. and Borkan S. C. (2006). Distinct hsp70 domains mediate apoptosis-inducing factor release and nuclear accumulation. J Biol Chem 281, 7873–80

    Google Scholar 

  • Sakahira H. and Nagata S. (2002). Co-translational folding of caspase-activated DNase with Hsp70, Hsp40, and inhibitor of caspase-activated DNase. J Biol Chem 277, 3364–70

    Google Scholar 

  • Sakamoto H., Mashima T., Yamamoto K. and Tsuruo T. (2002). Modulation of heat-shock protein 27 (Hsp27) anti-apoptotic activity by methylglyoxal modification. J Biol Chem 277, 45770–5

    Google Scholar 

  • Saleh A., Srinivasula S. M., Balkir L., Robbins P. D. and Alnemri E. S. (2000). Negative regulation of the Apaf-1 apoptosome by Hsp70. Nat Cell Biol 2, 476–83

    Google Scholar 

  • Salehi A. H., Morris S. J., Ho W. C., Dickson K. M., Doucet G., Milutinovic S., Durkin J., Gillard J. W. and Barker P. A. (2006). AEG3482 is an antiapoptotic compound that inhibits Jun kinase activity and cell death through induced expression of heat shock protein 70. Chem Biol 13, 213–23

    Google Scholar 

  • Sanchez-Perez L., Kottke T., Daniels G. A., Diaz R. M., Thompson J., Pulido J., Melcher A. and Vile R. G. (2006). Killing of normal melanocytes, combined with heat shock protein 70 and CD40L expression, cures large established melanomas. J Immunol 177, 4168–77

    Google Scholar 

  • Sarto C., Valsecchi C., Magni F., Tremolada L., Arizzi C., Cordani N., Casellato S., Doro G., Favini P., Perego R. A., Raimondo F., Ferrero S., Mocarelli P. and Galli-Kienle M. (2004). Expression of heat shock protein 27 in human renal cell carcinoma. Proteomics 4, 2252–60

    Google Scholar 

  • Sashchenko L. P., Dukhanina E. A., Shatalov Y. V., Yashin D. V., Lukyanova T. I., Kabanova O. D., Romanova E. A., Khaidukov S. V., Galkin A. V., Gnuchev N. V. and Georgiev G. P. (2007). Cytotoxic T lymphocytes carrying a pattern recognition protein Tag7 can detect evasive, HLA-negative but Hsp70-exposing tumor cells, thereby ensuring FasL/Fas-mediated contact killing. Blood 110, 1997–2004

    Google Scholar 

  • Schett G., Steiner C. W., Groger M., Winkler S., Graninger W., Smolen J., Xu Q. and Steiner G. (1999). Activation of Fas inhibits heat-induced activation of HSF1 and up-regulation of hsp70. Faseb J 13, 833–42

    Google Scholar 

  • Schild H., Arnold-Schild D., Lammert E. and Rammensee H. G. (1999). Stress proteins and immunity mediated by cytotoxic T lymphocytes. Curr Opin Immunol 11, 109–13

    Google Scholar 

  • Schmitt E., Parcellier A., Gurbuxani S., Cande C., Hammann A., Morales M. C., Hunt C. R., Dix D. J., Kroemer R. T., Giordanetto F., Jaattela M., Penninger J. M., Pance A., Kroemer G. and Garrido C. (2003). Chemosensitization by a non-apoptogenic heat shock protein 70-binding apoptosis-inducing factor mutant. Cancer Res 63, 8233–40

    Google Scholar 

  • Schmitt E., Maingret L., Puig P. E., Rerole A. L., Ghiringhelli F., Hammann A., Solary E., Kroemer G. and Garrido C. (2006). Heat shock protein 70 neutralization exerts potent antitumor effects in animal models of colon cancer and melanoma. Cancer Res 66, 4191–7

    Google Scholar 

  • Schmitt E., Gehrmann M., Brunet M., Multhoff G. and Garrido C. (2007). Intracellular and extracellular functions of heat shock proteins: repercussions in cancer therapy. J Leukoc Biol 81, 15–27

    Google Scholar 

  • Seoane J. M., Varela-Centelles P. I., Ramirez J. R., Cameselle-Teijeiro J., Romero M. A. and Aguirre J. M. (2006). Heat shock proteins (HSP70 and HSP27) as markers of epithelial dysplasia in oral leukoplakia. Am J Dermatopathol 28, 417–22

    Google Scholar 

  • Shakoori A. R., Oberdorf A. M., Owen T. A., Weber L. A., Hickey E., Stein J. L., Lian J. B. and Stein G. S. (1992). Expression of heat shock genes during differentiation of mammalian osteoblasts and promyelocytic leukemia cells. J Cell Biochem 48, 277–87

    Google Scholar 

  • Shanley T. P., Ryan M. A., Eaves-Pyles T. and Wong H. R. (2000). Heat shock inhibits phosphorylation of I-kappaBalpha. Shock 14, 447–50

    Google Scholar 

  • Shashidharamurthy R., Koteiche H. A., Dong J. and McHaourab H. S. (2005). Mechanism of chaperone function in small heat shock proteins: dissociation of the HSP27 oligomer is required for recognition and binding of destabilized T4 lysozyme. J Biol Chem 280, 5281–9

    Google Scholar 

  • Shi Y. and Thomas J. O. (1992). The transport of proteins into the nucleus requires the 70-kilodalton heat shock protein or its cytosolic cognate. Mol Cell Biol 12, 2186–92

    Google Scholar 

  • Shin B. K., Wang H., Yim A. M., Le Naour F., Brichory F., Jang J. H., Zhao R., Puravs E., Tra J., Michael C. W., Misek D. E. and Hanash S. M. (2003). Global profiling of the cell surface proteome of cancer cells uncovers an abundance of proteins with chaperone function. J Biol Chem 278, 7607–16

    Google Scholar 

  • Shin K. D., Lee M. Y., Shin D. S., Lee S., Son K. H., Koh S., Paik Y. K., Kwon B. M. and Han D. C. (2005). Blocking tumor cell migration and invasion with biphenyl isoxazole derivative KRIBB3, a synthetic molecule that inhibits Hsp27 phosphorylation. J Biol Chem 280, 41439–48

    Google Scholar 

  • Simon M. M., Reikerstorfer A., Schwarz A., Krone C., Luger T. A., Jaattela M. and Schwarz T. (1995). Heat shock protein 70 overexpression affects the response to ultraviolet light in murine fibroblasts. Evidence for increased cell viability and suppression of cytokine release. J Clin Invest 95, 926–33

    Google Scholar 

  • Singh-Jasuja H., Toes R. E., Spee P., Munz C., Hilf N., Schoenberger S. P., Ricciardi-Castagnoli P., Neefjes J., Rammensee H. G., Arnold-Schild D. and Schild H. (2000). Cross-presentation of glycoprotein 96-associated antigens on major histocompatibility complex class I molecules requires receptor-mediated endocytosis. J Exp Med 191, 1965–74

    Google Scholar 

  • Solary E., Droin N., Bettaieb A., Corcos L., Dimanche-Boitrel M. T. and Garrido C. (2000). Positive and negative regulation of apoptotic pathways by cytotoxic agents in hematological malignancies. Leukemia 14, 1833–49

    Google Scholar 

  • Sondermann H., Becker T., Mayhew M., Wieland F. and Hartl F. U. (2000). Characterization of a receptor for heat shock protein 70 on macrophages and monocytes. Biol Chem 381, 1165–74

    Google Scholar 

  • Spector N. L., Ryan C., Samson W., Levine H., Nadler L. M. and Arrigo A. P. (1993). Heat shock protein is a unique marker of growth arrest during macrophage differentiation of HL-60 cells. J Cell Physiol 156, 619–25

    Google Scholar 

  • Spector N. L., Mehlen P., Ryan C., Hardy L., Samson W., Levine H., Nadler L. M., Fabre N. and Arrigo A. P. (1994). Regulation of the 28 kDa heat shock protein by retinoic acid during differentiation of human leukemic HL-60 cells. FEBS Lett 337, 184–8

    Google Scholar 

  • Srivastava P. (2002). Roles of heat-shock proteins in innate and adaptive immunity. Nat Rev Immunol 2, 185–94

    Google Scholar 

  • Srivastava P. K., Menoret A., Basu S., Binder R. J. and McQuade K. L. (1998). Heat shock proteins come of age: primitive functions acquire new roles in an adaptive world. Immunity 8, 657–65

    Google Scholar 

  • Stangl S., Wortmann A., Guertler U. and Multhoff G. (2006). Control of metastasized pancreatic carcinomas in SCID/beige mice with human IL-2/TKD-activated NK cells. J Immunol 176, 6270–6

    Google Scholar 

  • Stankiewicz A. R., Lachapelle G., Foo C. P., Radicioni S. M. and Mosser D. D. (2005). Hsp70 inhibits heat-induced apoptosis upstream of mitochondria by preventing Bax translocation. J Biol Chem 280, 38729–39

    Google Scholar 

  • Suto R. and Srivastava P. K. (1995). A mechanism for the specific immunogenicity of heat shock protein-chaperoned peptides. Science 269, 1585–8

    Google Scholar 

  • Takashima M., Kuramitsu Y., Yokoyama Y., Iizuka N., Harada T., Fujimoto M., Sakaida I., Okita K., Oka M. and Nakamura K. (2006). Proteomic analysis of autoantibodies in patients with hepatocellular carcinoma. Proteomics 6, 3894–900

    Google Scholar 

  • Targosz A., Pierzchalski P., Krawiec A., Szczyrk U., Brzozowski T., Konturek S. J. and Pawlik W. W. (2006). Helicobacter pylori inhibits expression of heat shock protein 70 (HSP70) in human epithelial cell line. Importance of Cag A protein. J Physiol Pharmacol 57, 265–78

    Google Scholar 

  • Tezel G. and Wax M. B. (2000). The mechanisms of hsp27 antibody-mediated apoptosis in retinal neuronal cells. J Neurosci 20, 3552–62

    Google Scholar 

  • Theriault J. R., Lambert H., Chavez-Zobel A. T., Charest G., Lavigne P. and Landry J. (2004). Essential role of the NH2-terminal WD/EPF motif in the phosphorylation-activated protective function of mammalian Hsp27. J Biol Chem 279, 23463–71

    Google Scholar 

  • Todryk S. M., Melcher A. A., Dalgleish A. G. and Vile R. G. (2000). Heat shock proteins refine the danger theory. Immunology 99, 334–7

    Google Scholar 

  • Toomey D., Conroy H., Jarnicki A. G., Higgins S. C., Sutton C. and Mills K. H. (2008). Therapeutic vaccination with dendritic cells pulsed with tumor-derived Hsp70 and a COX-2 inhibitor induces protective immunity against B16 melanoma. Vaccine 26, 3540–9

    Google Scholar 

  • Udono H. and Srivastava P. K. (1993). Heat shock protein 70-associated peptides elicit specific cancer immunity. J Exp Med 178, 1391–6

    Google Scholar 

  • Vabulas R. M., Ahmad-Nejad P., da Costa C., Miethke T., Kirschning C. J., Hacker H. and Wagner H. (2001). Endocytosed HSP60s use toll-like receptor 2 (TLR2) and TLR4 to activate the toll/interleukin-1 receptor signaling pathway in innate immune cells. J Biol Chem 276, 31332–9

    Google Scholar 

  • Vancompernolle K., Van Herreweghe F., Pynaert G., Van de Craen M., De Vos K., Totty N., Sterling A., Fiers W., Vandenabeele P. and Grooten J. (1998). Atractyloside-induced release of cathepsin B, a protease with caspase-processing activity. FEBS Lett 438, 150–8

    Google Scholar 

  • Vargas-Roig L. M., Gago F. E., Tello O., Aznar J. C. and Ciocca D. R. (1998). Heat shock protein expression and drug resistance in breast cancer patients treated with induction chemotherapy. Int J Cancer 79, 468–75

    Google Scholar 

  • Vega V. L., Rodriguez-Silva M., Frey T., Gehrmann M., Diaz J. C., Steinem C., Multhoff G., Arispe N. and De Maio A. (2008). Hsp70 translocates into the plasma membrane after stress and is released into the extracellular environment in a membrane-associated form that activates macrophages. J Immunol 180, 4299–307

    Google Scholar 

  • Vogel M., Bukau B. and Mayer M. P. (2006). Allosteric regulation of Hsp70 chaperones by a proline switch. Mol Cell 21, 359–67

    Google Scholar 

  • Voos W. (2003). A new connection: chaperones meet a mitochondrial receptor. Mol Cell 11, 1–3

    Google Scholar 

  • Wei M. C., Zong W. X., Cheng E. H., Lindsten T., Panoutsakopoulou V., Ross A. J., Roth K. A., MacGregor G. R., Thompson C. B. and Korsmeyer S. J. (2001). Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292, 727–30

    Google Scholar 

  • Wells A. D. and Malkovsky M. (2000). Heat shock proteins, tumor immunogenicity and antigen presentation: an integrated view. Immunol Today 21, 129–32

    Google Scholar 

  • Westerheide S. D., Kawahara T. L., Orton K. and Morimoto R. I. (2006). Triptolide, an inhibitor of the human heat shock response that enhances stress-induced cell death. J Biol Chem 281, 9616–22

    Google Scholar 

  • Wyttenbach A., Sauvageot O., Carmichael J., Diaz-Latoud C., Arrigo A. P. and Rubinsztein D. C. (2002). Heat shock protein 27 prevents cellular polyglutamine toxicity and suppresses the increase of reactive oxygen species caused by huntingtin. Hum Mol Genet 11, 1137–51

    Google Scholar 

  • Yoo C. G., Lee S., Lee C. T., Kim Y. W., Han S. K. and Shim Y. S. (2000). Anti-inflammatory effect of heat shock protein induction is related to stabilization of I kappa B alpha through preventing I kappa B kinase activation in respiratory epithelial cells. J Immunol 164, 5416–23

    Google Scholar 

  • Yuan X. M., Li W., Dalen H., Lotem J., Kama R., Sachs L. and Brunk U. T. (2002). Lysosomal destabilization in p53-induced apoptosis. Proc Natl Acad Sci USA 99, 6286–91

    Google Scholar 

  • Zeng Y., Chen X., Larmonier N., Larmonier C., Li G., Sepassi M., Marron M., Andreansky S. and Katsanis E. (2006). Natural killer cells play a key role in the antitumor immunity generated by chaperone-rich cell lysate vaccination. Int J Cancer 119, 2624–31

    Google Scholar 

  • Zermati Y., Garrido C., Amsellem S., Fishelson S., Bouscary D., Valensi F., Varet B., Solary E. and Hermine O. (2001). Caspase activation is required for terminal erythroid differentiation. J Exp Med 193, 247–54

    Google Scholar 

  • Zhang H. and Huang W. (2006). Fusion proteins of Hsp70 with tumor-associated antigen acting as a potent tumor vaccine and the C-terminal peptide-binding domain of Hsp70 being essential in inducing antigen-independent anti-tumor response in vivo. Cell Stress Chaperones 11, 216–26

    Google Scholar 

  • Zhang Y. and Shen X. (2007). Heat shock protein 27 protects L929 cells from cisplatin-induced apoptosis by enhancing Akt activation and abating suppression of thioredoxin reductase activity. Clin Cancer Res 13, 2855–64

    Google Scholar 

  • Zhao Z. G. and Shen W. L. (2005). Heat shock protein 70 antisense oligonucleotide inhibits cell growth and induces apoptosis in human gastric cancer cell line SGC-7901. World J Gastroenterol 11, 73–8

    Google Scholar 

  • Zong W. X., Lindsten T., Ross A. J., MacGregor G. R. and Thompson C. B. (2001). BH3-only proteins that bind pro-survival Bcl-2 family members fail to induce apoptosis in the absence of Bax and Bak. Genes Dev 15, 1481–6

    Google Scholar 

  • Zoubeidi A., Zardan A., Beraldi E., Fazli L., Sowery R., Rennie P., Nelson C. and Gleave M. (2007). Cooperative interactions between androgen receptor (AR) and heat-shock protein 27 facilitate AR transcriptional activity. Cancer Res 67, 10455–65

    Google Scholar 

  • Zylicz M., King F. W. and Wawrzynow A. (2001). Hsp70 interactions with the p53 tumour suppressor protein. Embo J 20, 4634–8

    Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the “Ligue Nationale Contre le Cancer” and its committees in the “Nièvre” and “Saône et Loire”. ALR and ALJ are recipient of a doctoral fellowship from the “Ligue Nationale contre le Cancer”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen Garrido .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Rérole, A.L., Joly, A.L., Thuringer, D., Garrido, C. (2010). Hsp70 and Hsp27: Emerging Targets in Cancer Therapy. In: Cecconi, F., D'Amelio, M. (eds) Apoptosome. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3415-1_9

Download citation

Publish with us

Policies and ethics