Skip to main content

Metastable Water Under Pressure

  • Conference paper
Metastable Systems under Pressure

Abstract

We have summarized some of the recent results, including studies for bulk, confined and interfacial water. By analyzing a cell model within a mean field approximation and with Monte Carlo simulations, we have showed that all the scenarios proposed for water's P-T phase diagram may be viewed as special cases of a more general scheme. In particular, our study shows that it is the relationship between H bond strength and H bond cooperativity that governs which scenario is valid. The investigation of the properties of metastable liquid water under pressure could provide essential information that could allow us to understand the mechanisms ruling the anomalous behavior of water. This understanding could, ultimately, lead us to the explanation of the reasons why water is such an essential liquid for life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zheligovskaya, E. A., and Malenkov, G. G. (2006) Russ. Chem. Rev. 75, 57

    Article  ADS  Google Scholar 

  2. Debenedetti, P. G., (2003) J. Phys.: Condens. Matter 15, R1669

    Article  ADS  Google Scholar 

  3. Debenedetti, P. G. and Stanley, H. E. (2003) The Physics of Supercooled and Glassy Water, Physics Today 56, 40

    Article  Google Scholar 

  4. Angell, C. A. (1982) in: Water: A Comprehensive Treatise vol. 7, edited by F. Franks (Plenum, NewYork)

    Google Scholar 

  5. Ball, P. (2008) Chem. Rev. 108, 74

    Article  Google Scholar 

  6. Franzese, G., and Rubi, eds. M. (2008) Aspects of Physical Biology: Biological Water, Protein Solutions, Transport and Replication, (Springer, Berlin)

    Google Scholar 

  7. Anisimov, M. A., Sengers, J. V., and Levelt-Sengers, J. M. H. (2004) in Aqueous System at Elevated Temperatures and Pressures: Physical Chemistry in Water, Stream and Hydrothmaler Solutions, edited by D.A. Palmer, R. Fernandez-Prini, A. H. Harvey (Elsevier, Amsterdam)

    Google Scholar 

  8. Granick and S., and Bae, S. C. (2008) Science 322, 1477

    Article  Google Scholar 

  9. Speedy, R. J. (1982) J. Phys. Chem. 86, 3002

    Article  Google Scholar 

  10. Sastry, S., Debenedetti, P. G., Sciortino, F., and Stanley, H. E. (1996) Phys. Rev. E 53, 6144

    Article  ADS  Google Scholar 

  11. Poole, P. H., Sciortino, F., Essmann, U., and Stanley, H. E. (1992) Nature 360, 324

    Article  ADS  Google Scholar 

  12. Poole, P. H., Sciortino, F., Grande, T., Stanley, H. E., and Angell, C. A. (1994) Phys. Rev. Lett. 73, 1632

    Article  ADS  Google Scholar 

  13. Franzese, G., Marques, M., and Stanley, H. E. (2003) Phys. Rev. E. 67, 011103

    Article  ADS  Google Scholar 

  14. Tanaka, H. (1996) Nature 380, 328

    Article  ADS  Google Scholar 

  15. Angell, C. A. (2008) Science 319, 582

    Article  Google Scholar 

  16. Faraone, A., Liu, L., Mou, C. Y., Yen, C. W., and Chen, S. H. (2004) J. Chem. Phys. 121, 10843

    Article  ADS  Google Scholar 

  17. Liu, L., Chen, S. H., Faraone, A., Yen, C. W., and Mou, C. Y. (2005) Phys. Rev. Lett. 95, 117802

    Article  ADS  Google Scholar 

  18. Mallamace, F., Broccio, M., Corsaro, C., Faraone, A., Wanderlingh, U., Liu, L., Mou, C. Y., and Chen, S. H. (2006) J. Chem. Phys. 124, 161102

    Article  ADS  Google Scholar 

  19. Chen, S.-H., Liu, L., Fratini, E., Baglioni, P., Faraone, A., and Mamontov, E. (2006) Proc. Natl. Acad. Sci. USA 103, 9012

    Article  ADS  Google Scholar 

  20. Mamontov, E. (2005) J. Chem. Phys. 123, 171101

    Article  ADS  Google Scholar 

  21. Jansson, H., Howells, W. S., and Swenson, J. (2006) J. Phys. Chem. B 110, 13786

    Article  Google Scholar 

  22. Chen, S.-H. et al., (2006) J. Chem. Phys. 125, 171103

    Article  ADS  Google Scholar 

  23. Chu, X., Fratini, E., Baglioni, P., Faraone, A., and Chen, S.-H. (2008) Phys. Rev. E 77, 011908

    Article  ADS  Google Scholar 

  24. Franzese, G., Stokely, K., Chu, X.-Q., Kumar, P., Mazza, M. G., Chen. S.-H., and Stanley, H. E. (2008) J. Phys.: Cond. Matt. 20, 494210

    Article  Google Scholar 

  25. Stanley, H. E., Kumar, P., Franzese, G., Xu, L. M., Yan, Z. Y., Mazza, M.G., Chen, S.-H., Mallamace, F., Buldyrev, S. V. (2008) “Liquid polyamorphism: Some unsolved puzzles of water in bulk, nano-confined, and biological environments”, in Complex Systems, M. Tokuyama, I. Oppenheim, H. Nishiyama, H, eds. AIP Conference Proceedings 982, 251

    Google Scholar 

  26. Xu, L., Kumar, P., Buldyrev, S. V., Chen, S.-H., Poole, P. H., Sciortino, F., and Stanley, H. E. (2005) Proc. Natl. Acad. Sci. 102, 16558

    Article  ADS  Google Scholar 

  27. Kumar, P., Yan, Z., Xu, L., Mazza, M. G., Buldyrev, S. V., Chen. S.-H., Sastry, S., and Stanley, H. E. (2006) Phys. Rev. Lett. 97, 177802

    Article  ADS  Google Scholar 

  28. Stanley, H. E., Buldyrev, S. V., Franzese, G., Giovambattista, N. F., Starr, W. (2005) Phil. Trans. Royal Soc. 363, 509; Kumar, P., Franzese, G., Buldyrev, S. V., and Stanley, H. E. (2006) Phys. Rev. E 73, 041505

    Article  ADS  Google Scholar 

  29. Kumar, P., Franzese, G., and Stanley, H. E. (2008) Phys. Rev. Lett. 100, 105701

    Article  ADS  Google Scholar 

  30. Franzese, G., and Stanley, H. E. (2002) J. Phys. Cond. Matter 14, 2201 (2002); Physica A 314, 508

    Article  ADS  Google Scholar 

  31. Stokely, K., Mazza, M. G., Stanley, H. E., and Franzese, G. (2008) arXiv: 0805.3468v3

    Google Scholar 

  32. Kumar, P., Franzese, G., and Stanley, H. E. (2008) J. Phys.: Cond. Matt. 20, 244114

    Article  ADS  Google Scholar 

  33. Pendas, A. M., Blanco, M. A., and Francisco, E. (2006) J. Chem. Phys. 125, 184112

    Article  ADS  Google Scholar 

  34. Isaacs, E. D., Shukla, A., Platzman, P. M., Hamann, D. R., Barbiellini, B., and Tulk, C. A. (2000) J. Phys. Chem. Solids 61, 403

    Article  ADS  Google Scholar 

  35. Ricci, M. A., Bruni, F., Giuliani, A. (2009) Similarities between confined and supercooled water, to appear on Faraday Discussion, in press

    Google Scholar 

  36. Ohno, K., Okimura, M., Akai, N., and Katsumoto, Y. (2005) Phys. Chem. Chem. Phys. 7, 3005

    Article  Google Scholar 

  37. Cruzan, J. D., Braly, L. B., Liu, K., Brown, M. G., Loeser, J. G., and Saykally, R. J. (1996) Science 271, 59

    Article  ADS  Google Scholar 

  38. Schmidt, D. A., and Miki, K. (2007) J. Phys. Chem. A 111, 10119

    Article  Google Scholar 

  39. Chaplin, M. (2007) “Water's Hydrogen Bond Strength”, cond-mat/ 0706.1355

    Google Scholar 

  40. Franzese, G., and Stanley, H. E. (2007) J. Phys.: Condens. Matter 19, 205126

    Article  ADS  Google Scholar 

  41. Coniglio, A., and Peruggi, F. (1982) J. Phys. A 15, 1873

    Article  ADS  Google Scholar 

  42. Cataudella, V., Franzese, G., Nicodemi, M., Scala, A., and Coniglio, A. (1996) Phys. Rev. E 54, 175; Franzese, G. (1996) J. Phys. A 297367

    Article  ADS  Google Scholar 

  43. Wolff, U. (1989) Phys. Rev. Lett. 62, 361

    Article  ADS  Google Scholar 

  44. The results of [41, 42] guarantee that the cluster algorithm described here satisfies the detailedbalance and is ergodic. Therefore, it is a valid Monte Carlo dynamics

    Google Scholar 

  45. Mazza M.G. et al. (2006) Phys. Rev. Lett. 96, 057803; N. Giovambattista et al., (2004) J. Phys. Chem. B 1086655; M.G. Mazza et al. (2007) Phys. Rev. E 76, 031203

    Article  ADS  Google Scholar 

  46. Oleinikova, A., Brovchenko, I., (2006) J. Phys.: Condens. Matter 18, S2247

    Article  ADS  Google Scholar 

  47. We fit the boundary of the CPF scenario with the functional form Jσ= a+bJ, with a =0.30 ±0.01 and b = 0.36 ±0.01

    Google Scholar 

  48. Maruyama, S., Wakabayashi, K., and Oguni, M. (2004) AIP Conf. Proc. Proc. 708, 675

    Article  ADS  Google Scholar 

  49. Oguni, M., Maruyama, S., Wakabayashi, K., and Nagoe, A. (2007) Chem. Asian 2, 514

    Article  Google Scholar 

  50. Oguni, M., Kanke, Y., and Namba, S. (2008) AIP Conference Proceedings 982, 34

    Article  ADS  Google Scholar 

  51. Mazza, M. G., Stokely, K., Stanley, H. E., and Franzese, G. (2008) arXiv:0810.4688

    Google Scholar 

  52. Mallamace, F. (2008) preprint

    Google Scholar 

  53. Bruni, F. (2008) private communication

    Google Scholar 

  54. Our resolution in T does not allow us to observe the expected divergence of C P upon approaching the critical point.

    Google Scholar 

  55. Marques, M. I. (2007) Phys. Rev. E 76, 021503

    Article  ADS  Google Scholar 

  56. The difference of our results with those in [55], i.e. the presence of two maxima also at P < PC and T > TC is due to the different choice of parameters for the model: here Jσ < J < ϵ as in [13, 30, 31], while in [55] is ϵ < Jσ < J which gives rise to a different phase diagram.

    Google Scholar 

  57. The non-zero value of CP at low T is reminiscent of the appearance of reproduce the splitting of the maxima seen in MC at P⟫ PCthe broad maximum. However the MF approximation is not able to

    Google Scholar 

  58. In the range of T of interest here the contribution to H of the UW term is negligible

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Stokely, K., Mazza, M.G., Stanley, H.E., Franzese, G. (2010). Metastable Water Under Pressure. In: Rzoska, S., Drozd-Rzoska, A., Mazur, V. (eds) Metastable Systems under Pressure. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3408-3_14

Download citation

Publish with us

Policies and ethics