Skip to main content

The Stellar Mass Function in Globular Clusters

  • Conference paper
  • First Online:
The Impact of HST on European Astronomy

Part of the book series: Astrophysics and Space Science Proceedings ((ASSSP))

Abstract

Globular clusters in our own Milky Way formed at redshift z≃5 or more, when the physical conditions of the environment, such as pressure, density, temperature and chemical composition, were very different from those found in current star forming regions. The end product of this massive star formation is a stellar initial mass function (IMF) that holds the secret to the making of stars in the primeval universe. Over time, under the effects of stellar evolution and dynamical interactions, the stellar IMF of globular clusters has evolved to become what we can now accurately measure with the HST down to very small masses near the Hydrogen burning limit. But how does this present mass function compare with the original IMF and what can we learn from it about star formation at high redshift? I report here on the discovery of a surprising correlation between the shape of the current mass function of globular clusters and their central concentration, which suggests that our understanding of their dynamical evolution might not yet be complete.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andreuzzi, G., De Marchi, G., Ferraro, F., et al., 2001. Astron. Astrophys. 372, 851.

    Article  ADS  Google Scholar 

  2. Chabrier, J., 2003. Publ. Astron. Soc. Pac. 115, 763.

    Article  ADS  Google Scholar 

  3. Da Costa, G., 1982. Astron. J. 87, 990.

    Article  ADS  Google Scholar 

  4. De Marchi, G., Paresce, F., 1995. Astron. Astrophys. 304, 202.

    ADS  Google Scholar 

  5. De Marchi, G., Pulone, L., 2007. Astron. Astrophys. 467, 107.

    Article  ADS  Google Scholar 

  6. De Marchi, G., Leibundgut, B., Paresce, F., Pulone, L., 1999. Astron. Astrophys. 343, 9L.

    ADS  Google Scholar 

  7. De Marchi, G., Paresce, F., Portegies Zwart, S., 2005. In: Corbelli, E., Palla, F., Zinnecker, H. (Eds.), ASSL, vol. 327, p. 77. Springer, Dordrecht.

    Google Scholar 

  8. De Marchi, G., Pulone, L., Paresce, F., 2006. Astron. Astrophys. 449, 161.

    Article  ADS  Google Scholar 

  9. De Marchi, G., Paresce, F., Pulone, L., 2007. Astrophys. J. 656, L65.

    Article  ADS  Google Scholar 

  10. Djorgovski, S., King, R., 1986. Astrophys. J. 305, L61.

    Article  ADS  Google Scholar 

  11. Djorgovski, S., Meylan, G., 1993. In: Djorgovski, S. Meylan, G. (Eds.), Structure and Dynamics of Globular Clusters, ASP Conf. Ser., vol. 50, p. 325. ASP, San Francisco.

    Google Scholar 

  12. Elson, R., Hut, P., Ingaki, S., 1987. Annu. Rev. Astron. Astrophys. 25, 565.

    Article  ADS  Google Scholar 

  13. Gnedin, O., Ostriker, J., 1997. Astrophys. J. 474, 223.

    Article  ADS  Google Scholar 

  14. Harris, W., 1996. Astron. J. 112, 1487.

    Article  ADS  Google Scholar 

  15. King, I., Anderson, J., Cool, A., et al., 1998. Astrophys. J. 492, L37.

    Article  ADS  Google Scholar 

  16. Koch, A., Grebel, E., Odenkirchen, M., et al., 2004. Astron. J. 128, 2274.

    Article  ADS  Google Scholar 

  17. Paresce, F., De Marchi, G., 2000. Astrophys. J. 534, 870.

    Article  ADS  Google Scholar 

  18. Paresce, F., De Marchi, G., Jedrzejewski, R., 1995. Astrophys. J. Lett. 442, L57.

    Article  ADS  Google Scholar 

  19. Paresce, F., De Marchi, G., Romaniello, M., 1995. Astrophys. J. 440, 216.

    Article  ADS  Google Scholar 

  20. Richer, H., Fahlman, G., Buonanno, R., et al., 1991. Astrophys. J. 381, 147.

    Article  ADS  Google Scholar 

  21. Richer, H., et al., 2008. Astron. J. 135, 214.

    Article  Google Scholar 

  22. Sarajedini, A., Bedin, L., Chaboyer, B, et al., 2002. Astron. J. 133, 1658.

    Article  ADS  Google Scholar 

  23. Spitzer, L., 1987. Dynamical Evolution of Globular Clusters. PUP, Princeton.

    Google Scholar 

  24. Trager, S., Djorgovski, S., King, I., 1995. Astron. J. 109, 218.

    Article  ADS  Google Scholar 

  25. Vesperini, E., Heggie, D., 1997. Mon. Not. R. Astron. Soc. 289, 898.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido De Marchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

De Marchi, G. (2010). The Stellar Mass Function in Globular Clusters. In: Macchetto, F. (eds) The Impact of HST on European Astronomy. Astrophysics and Space Science Proceedings. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3400-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-3400-7_11

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-3399-4

  • Online ISBN: 978-90-481-3400-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics