Heat Shock Proteins and Whole Body Physiology pp 327-350

Part of the Heat Shock Proteins book series (HESP, volume 5) | Cite as

72 kDa Extracellular Heat Shock Protein (eHsp72), Norepinephrine (NE), and the Innate Immune Response Following Moderate Exercise

  • Eduardo Ortega
  • Esther Giraldo
  • M. Dolores Hinchado
  • Leticia Martín-Cordero
  • Juan J. García
Chapter

Abstract

It is now well known that both norepinephrine (NE) and 72 kDa extracellular heat shock protein (eHsp72) are released during stress, and that they can activate the immune system, mainly the innate immune response, even before a pathogen challenge. This is one reason why they have been postulated as “stress messengers or mediators” or “danger signals” for the immune system during stress. Exercise constitutes a stress because it alters the organism’s homeostasis. Indeed, most of the exercise-induced changes in the immune system (including moderate exercise) are mediated by stress hormones and proteins, including NE and eHsp72. In this chapter, we present the latest studies performed in our laboratory about the role of NE and eHsp72 in the moderate-exercise-induced stimulation of neutrophil function, reviewing the main literature on the interaction between NE and Hsp72 not only in stimulating the innate immune response but also in the role of NE as a triggering signal in the stress-induced systemic release of eHsp72, particularly following moderate exercise. We also discuss the immunophysiological relevance of these interactions, as well as the optimal level of exercise that improves, but not impairs, the immune function by stimulating innate and/or inflammatory response mechanisms

Keywords

Catecholamines Hsp70 neutrophils immunity stress health 

Abbreviations

ACTH

adrenocorticotropic hormone

APC

antigen presenting cells

PBMC

peripheral blood mononuclear cells

eHsp72

seventy two kilo Dalton extracellular heat shock protein

ERK

extracellular signal-regulated kinases

fMLP

formyl methionyl-leucyl-phenylalanine peptide

IL-6

interleukin-6

LPS

lipopolysaccharide

NE

norepinephrine

NFkB

nuclear factor kappa-light-chain-enhancer of activated B cells

NK

natural killer cells

PI3K

Phosphoinositide 3-kinases

PRR’s

pattern recognition receptors

ROS

reactive oxygen species

SNS

sympathetic nervous system

SP

stress proteins

TLR 2

toll like receptor 2

References

  1. Asea, A. (2005) Stress proteins and initiation of immune response: chaperokine activity of hsp72. Exerc. Immunol. Rev. 11, 34–45.Google Scholar
  2. Asea, A. (2006) Initiation of the immune response by extracellular Hsp72: chaperokine activity of Hsp72. Curr. Immunol. Rev. 2, 209–215.Google Scholar
  3. Asea, A., Kraeft, S. K., Kurt-Jones, E. A. et al. (2000) HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat. Med. 6, 435–442.Google Scholar
  4. Bausero, M. A., Gastpar, R., Multhoff, G. and Asea, A. (2005) Alternative mechanism by which IFN-γ enhances tumor recognition: active release of heat shock protein. J. Immunol. 175, 2900–2912.PubMedGoogle Scholar
  5. Besedovsky, H. O. and Del Rey, A. (2007) Physiology of psychoneuroimmunology: a personal view. Brain Behav. Immun. 21, 34–44.CrossRefPubMedGoogle Scholar
  6. Blake, M. J., Udelsman, R., Feulner, G. J., Norton, D. D. and Holbrook, N. J. (1991) Stress-induced heat shock protein 70 expression in adrenal cortex: an adrenocorticotropic hormone-sensitive, age-dependent response. Proc. Natl. Acad. Sci. U. S. A. 88, 9873–9877.CrossRefPubMedGoogle Scholar
  7. Brenner, I., Shek, P. N., Zamecnik, J. and Shepard, R. J. (1998) Stress hormones and the immunological responses to heat and exercise. Int. J. Sports. Med. 19, 130–143.CrossRefPubMedGoogle Scholar
  8. Campisi, J. and Fleshner, M. (2003) Role of extracellular HSP72 in acute stress-induced potentiation of innate immunity in active rats. J. Appl. Physiol. 94, 43–52.PubMedGoogle Scholar
  9. Campisi, J., Leem, T. H. and Fleshner, M. (2003) Stress-induced extracellular Hsp72 is a functionally significant danger signal to the immune system. Cell. Stress Chaperones 8, 272–286.CrossRefPubMedGoogle Scholar
  10. Caren, L. D. (1991) Effects of exercise on the human immune system. Does exercise influence susceptibility to infections? BioScience 41, 410–414.CrossRefGoogle Scholar
  11. Ceddia, M. A., Voss, E. W. and Woods, J. A. (2000) Intracellular mechanism responsible for exercise-induced suppression of macrophage antigen presentation. J. Appl. Physiol. 88, 804–810.PubMedGoogle Scholar
  12. Chen, H. W., Yang, H. L., Jing, H. H. et al. (1995) Synthesis of Hsp72 induced by exercise in high temperature. Chin. J. Physiol. 38, 241–246.PubMedGoogle Scholar
  13. Clayton, A., Turkes, A., Navabi, H., Mason, M. D. and Tabi, Z. (2005) Induction of heat shock proteins in B-cell exosomes. J. Cell Sci. 118, 3631–3638.CrossRefPubMedGoogle Scholar
  14. Cohen, L. A., Kendall, M. E., Meschter, C., Epstein, M. A., Reinhandt, J. and Zang, E. (1993) Inhibition of rat mammary tumorigenesis by voluntary exercise. In Vivo 7, 151–158.PubMedGoogle Scholar
  15. Elenkov, I. J. and Chrousos, G. P. (2002) Stress hormones, proinflammatory and antiinflammatory cytokines, and autoimmunity. Ann. N. Y. Acad. Sci. 966, 290–303.CrossRefPubMedGoogle Scholar
  16. Elenkov, I. J., Wilder, R. L., Chrousos, G. P. and Vizi, E. S. (2000) The sympathetic nerve – an integrative interface between two supersystems: the brain and the immune system. Pharmacol. Rev. 52, 595–638.PubMedGoogle Scholar
  17. Febbraio, M. A., Steensberg, A., Walsh, R. et al. (2002) Reduced glycogen availability is associated with an elevation in HSP72 in contracting human skeletal muscle. J. Physiol. 538, 911–917.CrossRefPubMedGoogle Scholar
  18. Fehrenbach, E., Niess, A. M., Voelker, K., Northoff, H. and Mooren, F. C. (2005) Exercise intensity and duration affect blood soluble HSP72. Int. J. Sports Med. 26, 552–557.CrossRefPubMedGoogle Scholar
  19. Fitzgerald, L. (1988) Exercise and the immune system. Immunol. Today 9, 337–339.CrossRefPubMedGoogle Scholar
  20. Fleshner, M., Campisi, J., Amiri, L. and Diamond, D. M. (2004) Cat exposure induces both intra- and extracellular Hsp72: the role of adrenal hormones. Psychoneuroendocrinology 29, 1142–1152.CrossRefPubMedGoogle Scholar
  21. Fleshner, M., Campisi, J. and Johnson, J. D. (2003) Can exercise stress facilitate innate immunity? A functional role for stress-induced extracellular Hsp72. Exerc. Immunol. Rev. 9, 6–24.PubMedGoogle Scholar
  22. Fleshner, M. and Johnson, J. D. (2005) Endogenous extra-cellular heat shock protein 72: releasing signal(s) and function. Int. J. Hyperthermia. 21, 457–471.CrossRefPubMedGoogle Scholar
  23. Forner, M. A., Barriga, C., Rodríguez, A. B. and Ortega, E. (1995) A study of the role of corticosterone as a mediator in exercise-induced stimulation of murine macrophage phagocytosis. J. Physiol. 488, 789–794.PubMedGoogle Scholar
  24. Gallucci, S., Lolkema, M. and Matzinger, P. (1999) Natural adjuvants: endogenous activators of dendritic cells. Nat. Med. 5, 1249–1255.CrossRefPubMedGoogle Scholar
  25. García, J. J., del Carmen Sáez, M., De la Fuente, M. and Ortega, E. (2003a) Noradrenaline and its end metabolite 3-methoxy-4-hydroxyphenylglycol inhibit lymphocyte chemotaxis: role of alpha- and beta-adrenoreceptors. Mol. Cell. Biochem. 254, 305–309.CrossRefPubMedGoogle Scholar
  26. García, J. J., del Carmen Sáez, M., De la Fuente, M. and Ortega, E. (2003b) Regulation of phagocytic process of macrophages by noradrenaline and its end metabolite 4-hydroxy-3 metoxyphenyl-glycol. Role of alpha- and beta-adrenoreceptors. Mol. Cell. Biochem. 254, 299–304.CrossRefPubMedGoogle Scholar
  27. Gastpar, R., Gehrmann, M., Bausero, M. A. et al. (2005) Heat shock protein 70 surfacepositive tumor exosomes stimulate migratory and cytolytic activity of natural killer cells. Cancer Res. 65, 5238–5247.CrossRefPubMedGoogle Scholar
  28. Giraldo, E., Hinchado, M. D., Garcia, J. J. and Ortega, E. (2008) Influence of gender and oral contraceptives intake on innate and inflammatory response. Role of neuroendocrine factors. Mol. Cell. Biochem. 313, 147–153.CrossRefPubMedGoogle Scholar
  29. Heneka, M. T., Gavrilyuk, V., Landreth, G. E., O’Banion, M. K., Weinberg, G. and Feinstein, D. L. (2003) Noradrenergic depletion increases inflammatory responses in brain: effects on IkappaB and HSP70 expression. J. Neurochem. 85, 387–398.CrossRefPubMedGoogle Scholar
  30. Hennigan, S. M., Wang, J. H., Redmond, H. P. and Bouchier-Hayes, D. (1999) Neutrophils heat shock proteins expression and activation correlated with increased apoptosis following transmigration through the endothelial barrier. Shock 12, 32–38.CrossRefPubMedGoogle Scholar
  31. Hightower, L. E. and Guidon, P. T., Jr. (1989) Selective release from cultured mammalian cells of heat-shock (stress) proteins that resemble glia-axon transfer proteins. J. Cell. Physiol. 138, 257–266.CrossRefPubMedGoogle Scholar
  32. Hoffman-Goetz, L. and Husted, J. (1994) Exercise and breast cancer: review and critical analysis of the literature. Can. J. Appl. Physiol. 19, 237–252.PubMedGoogle Scholar
  33. Hoffman-Goetz, L. and Pedersen, B. K. (1994) Exercise and the immune system: a model of stress response? Immunol. Today 15, 382–387.CrossRefPubMedGoogle Scholar
  34. Horowitz, M. and Robinson, S. D. (2007) Heat shock proteins and the heat shock response during hyperthermia and its modulation by altered physiological conditions. Prog. Brain. Res. 162, 433–446.PubMedGoogle Scholar
  35. Hunter-Lavin, C., Davies, E. L., Bacelar, M. M., Marshall, M. J., Andrew, S. M. and Williams, J. H. (2004) Hsp70 release from peripheral blood mononuclear cells. Biochem. Biophys. Res. Commun. 324, 511–517.CrossRefPubMedGoogle Scholar
  36. Ignatowski, T. A., Gallant, S. and Spengler, R. N. (1996) Temporal regulation by adrenergic receptor stimulation of macrophage (M phi)-derived tumor necrosis factor (TNF) production post-LPS challenge. J. Neuroimmunol. 65, 107–117.CrossRefPubMedGoogle Scholar
  37. Ilback, N. G., Friman, G., Beisel, W. R., Johnson, A. J. and Berendt, R. F. (1984) Modifying effects of exercise on clinical course and biochemical response of the myocardium in influenza and tularaemia in mice. Infect. Immunol. 45, 498–504.Google Scholar
  38. Johnson, J. D., Campisi, J., Sharkey, C. M., Kennedy, S. L., Nickerson, M. and Fleshner, M. (2005) Adrenergic receptors mediate stress-induced elevations in extracellular Hsp72. J. Appl. Physiol. 99, 1789–1795.CrossRefPubMedGoogle Scholar
  39. Johnson, J. D. and Fleshner, M. (2006) Releasing signals, secretory pathways, and immune function of endogenous extracellular heat shock protein 72. J. Leukoc. Biol. 79, 425–434.PubMedGoogle Scholar
  40. Khansari, D. N., Murgo, A. J. and Faith, R. E. (1990) Effect of stress on the immune system. Immunol. Today 11, 170–175.CrossRefPubMedGoogle Scholar
  41. Kovalchin, J. T., Wang, R., Wagh, M. S., Azoulay, J., Sanders, M. and Chandawarkar, R. Y. (2006) In vivo delivery of heat shock protein 70 accelerates wound healing by up-regulating macrophage-mediated phagocytosis. Wound Repair Regen. 14, 129–137.PubMedGoogle Scholar
  42. Kregel, K. C. (2002) Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. J. Appl. Physiol. 92, 2177–2186.PubMedGoogle Scholar
  43. Lancaster, G. I. and Febbraio, M. A. (2005) Exosome-dependent trafficking of HSP70: a novel secretory pathway for cellular stress proteins. J. Biol. Chem. 280, 23349–23355.CrossRefPubMedGoogle Scholar
  44. Lancaster, G. I., Møller, K., Nielsen, B., Secher, N. H., Febbraio, M. A. and Nybo, L. (2004) Exercise induces the release of heat shock protein 72 from the human brain in vivo. Cell. Stress Chaperones 9, 276–280.CrossRefPubMedGoogle Scholar
  45. Locke, M. and Noble, E. G. (1995) Stress proteins: the exercise response. Can. J. Appl. Physiol. 20, 155–167.PubMedGoogle Scholar
  46. Mackinnon, L. T. Exercise and immunology: present and future directions. In: Exercise and Immunology, L. T. Mackinon, ed., Human Kinetics Books, Champaign, IL, 1992, pp. 85–90.Google Scholar
  47. Macneil, B. and Hoffman-Goetz, L. (1993) Exercise training and tumor metastasis in mice: influence of time of exercise onset. Anticancer Res. 13, 2085–2088.PubMedGoogle Scholar
  48. Madden, K. S. and Livnat, S. Catecholamines action and immunologic reactivity. In: Psychoneuroimmunology., R. Ader, D. L. Felten, and N. Cohen, eds., Academic Press, New York, 1991, pp. 283–305.Google Scholar
  49. Maloyan, A. and Horowitz, M. (2002) β-Adrenergic signaling and thyroid hormones affect HSP72 expression during heat acclimation. J. Appl. Physiol. 93, 107–115.PubMedGoogle Scholar
  50. Marini, M., Frabetti, F., Musiani, D. and Franceschi, C. (1996) Oxygen radicals induce stress proteins and tolerance to oxidative stress in human lymphocytes. Int. J. Radiat. Biol. 70, 337–350.CrossRefPubMedGoogle Scholar
  51. Matz, J. M., LaVoi, K. P. and Blake, M. J. (1996) Adrenergic regulation of the heat shock response in brown adipose tissue. J. Pharmacol. Exp. Ther. 277, 1751–1758.PubMedGoogle Scholar
  52. Matzinger, P. (1994) Tolerance, danger and the extended family. Ann. Rev. Immunol. 12, 991–1045.Google Scholar
  53. Matzinger, P. (1998) An innate sense of danger. Semin. Immunol. 10, 399–415.CrossRefPubMedGoogle Scholar
  54. Meltzer, J. C., MacNeil, B. J., Sanders, V. et al. (2004) Stress-induced suppression of in vivo splenic cytokine production in the rat by neural and hormonal mechanisms. Brain Behav. Immun. 18, 262–273.CrossRefPubMedGoogle Scholar
  55. Nagatomi, R., Kaifu, T., Okutsu, M., Zhang, X., Kanemi, O. and Ohmori, H. (2000) Modulation of the immune system by the autonomic nervous system and its implication in immunological changes after training. Exerc. Immunol. Rev. 6, 54–74.PubMedGoogle Scholar
  56. Nance, D. M. and Sanders, V. M. (2007) Autonomic innervation and regulation of the immune system 1987–2007. Brain Behav. Immun. 21, 736–745.CrossRefPubMedGoogle Scholar
  57. Ogura, Y., Naito, H., Akin, S. et al. (2008) Elevation of body temperature is an essential factor for exercise-increased extracellular heat shock protein 72 level in rat plasma. Am. J. Physiol. Regul. Integr. Comp. Physiol. 294, R1600–R1607.PubMedGoogle Scholar
  58. Ortega, E. (1994) Physiological and biochemistry: influence of exercise on phagocytosis. Int. J. Sports Med. 15, 5172–5178.Google Scholar
  59. Ortega, E. (2003) Neuroendocrine mediators in the modulation of phagocytosis by exercise: physiological implications. Exerc. Immunol. Rev. 9, 70–94.Google Scholar
  60. Ortega, E., Collazos, M. E., Barriga, C. and De la Fuente, M. (1992) Stimulation of the phagocytic function in guinea pig peritoneal macrophages by physical activity stress. Eur. J. Appl. Physiol. Occup. Physiol. 64, 323–327.CrossRefPubMedGoogle Scholar
  61. Ortega, E., Forner, M. A. and Barriga, C. (1997) Exercise-induced stimulation of murine macrophage chemotaxis: role of corticosterone and prolactin as mediators. J. Physiol. 498, 729–734.PubMedGoogle Scholar
  62. Ortega, E., García, J. J. and De la Fuente, M. (2000a) Modulation of adherence and chemotaxis of macrophages by norepinephrine. Influence of ageing. Mol. Cell. Biochem. 203, 113–117.CrossRefPubMedGoogle Scholar
  63. Ortega, E., García, J. J., Marchena, J. M., Barriga, C. and Rodriguez, A. B. (2005a) Phagocytes may counteract the “open window” situation during a bout of moderate exercise performed by sedentary individuals: role of noradrenaline. J. Appl. Biomed. 3, 75–82.Google Scholar
  64. Ortega, E., García, J. J., Sáez, M. C. and De la Fuente, M. (2000b) Changes with aging in the modulation of macrophages by norepinephrine. Mech. Ageing Dev. 118, 103–114.CrossRefPubMedGoogle Scholar
  65. Ortega, E., Giraldo, E., Hinchado, M. D. et al. (2006) Role of Hsp72 and norepinephrine in the moderate exercise-induced stimulation of neutrophils’ microbicide capacity. Eur. J. Appl. Physiol. 98, 250–255.CrossRefPubMedGoogle Scholar
  66. Ortega, E., Giraldo, E., Hinchado, M. D., Martín, L., García, J. J. and De la Fuente, M. (2007) Neuroimmunomodulation during exercise: role of catecholamines as “stress mediator” and/or “danger signal” for the innate immune response. Neuroimmunomodulation 14, 206–212.CrossRefPubMedGoogle Scholar
  67. Ortega, E., Hinchado, M. D., Martín-Cordero, L. and Asea, A. (2009) The effect of stress-inducible extracelular Hsp72 on human neutrophils chemotaxis: the role during acute intense exercise. Stress 12, 240–249.Google Scholar
  68. Ortega, E., Marchena, J. M., García, J. J. et al. (2001) Phagocytic function in cyclists: correlation with catecholamines and cortisol. J. Appl. Physiol. 91, 1067–1072.Google Scholar
  69. Ortega, E., Marchena, J. M., García, J. J., Barriga, C. and Rodríguez, A. B. (2005b) Norepinephrine as mediator in the stimulation of phagocytosis induced by moderate exercise. Eur. J. Appl. Physiol. 93, 714–718.CrossRefPubMedGoogle Scholar
  70. Peake, J., Peiffer, J. J., Abbiss, C. R. et al. (2008) Body temperature and its effect on leukocyte mobilization, cytokines and markers of neutrophil activation during and after exercise. Eur. J. Appl. Physiol. 102, 391–401.CrossRefPubMedGoogle Scholar
  71. Pedersen, B. K. and Hoffman-Goetz, L. (2000) Exercise and the immune system: regulation, inegration and adaptation. Physiol. Rev. 80, 1055–1081.PubMedGoogle Scholar
  72. Pedersen, B. K., Rhode, T. and Ostrowski, K. (1998) Recovery of the immune system after exercise. Acta. Physiol. Scand. 162, 325–332.CrossRefPubMedGoogle Scholar
  73. Pittet, J. F., Lee, H., Morabito, D., Howard, M. B., Welch, W. J. and Mackersie, R. C. (2002) Serum levels of Hsp 72 measured early after trauma correlate with survival. J. Trauma. 52, 611–617.CrossRefPubMedGoogle Scholar
  74. Pockley, A. G. (2002) Heat shock proteins, inflammation, and cardiovascular disease. Circulation 105, 1012–1017.CrossRefPubMedGoogle Scholar
  75. Pockley, A. G. (2003) Heat shock proteins as regulators of the immune response. Lancet 362, 469–476.CrossRefPubMedGoogle Scholar
  76. Pockley, A. G., Georgiades, A., Thulin, T., de Faire, U. and Frostegard, J. (2003) Serum heat shock protein 70 levels predict the development of atherosclerosis in subjects with established hypertension. Hypertension 42, 235–238.CrossRefPubMedGoogle Scholar
  77. Prohászka, Z. and Füst, G. (2004) Immunological aspects of heat-shock proteins-the optimum stress of life. Mol. Immunol. 41, 29–44.CrossRefPubMedGoogle Scholar
  78. Sáez, M. C., Barriga, C., García, J. J., Rodríguez, A. B. and Ortega, E. (2007) Exercise-induced stress enhances mammary tumor growth in rats: beneficial effect of the hormone melatonin. Mol. Cell. Biochem. 294, 19–24.CrossRefGoogle Scholar
  79. Saez, M. C., Garcia, J. J., De la Fuente, M. and Ortega, E. (2002) Modulation of superoxide anion levels of macrophages from young-adult and old mice by the norepinephrine metabolite, 4-hydroxy-3-methoxyphenyl-glycol. Exp. Gerontol. 37, 395–400.CrossRefPubMedGoogle Scholar
  80. Sanders, V. M. (2006) Interdisciplinary research: noradrenergic regulation of adaptive immunity. Brain Behav. Immun. 20, 1–8.PubMedGoogle Scholar
  81. Sun, L., Chang, J., Kirchhoff, S. R. and Knowlton, A. A. (2000) Activation of HSF and selective increase in heat-shock proteins by acute dexamethasone treatment. Am. J. Physiol. Heart. Circ. Physiol. 278, H1091–H1097.PubMedGoogle Scholar
  82. Thompson, H. J. (1994) Effect of exercise intensity and duration on the induction of mammary carcinogenesis. Cancer Res. 54, 1960s–1963s.PubMedGoogle Scholar
  83. Udelsman, R., Li, D. G., Stagg, C. A., Gordon, C. B. and Kvetnansky, R. (1994) Adrenergic regulation of adrenal and aortic heat shock protein. Surgery 116, 177–182.PubMedGoogle Scholar
  84. Van Eden, W., van der Zee, R., Paul, A. et al. (1998) Do heat shock proteins control the balance of T-cell regulation in inflammatory diseases? Immunol. Today 19, 303–307.PubMedGoogle Scholar
  85. Walsh, R. C., Koukolas, I., Garnham, A., Moseley, P. L., Hargreaves, M. and Febbraio, M. A. (2001) Exercise increases serum Hsp72 in humans. Cell. Stress Chaperones 6, 386–393.CrossRefPubMedGoogle Scholar
  86. Wang, R., Town, T., Gokarn, V., Flavell, R. A. and Chandawarkar, R. Y. (2006) Hsp70 enhances macrophage phagocytosis by interaction with lipid Raft-associated TLR7 and upregulating p38 MAPK and PI3K pathways. J. Burg. Res. 136, 58–69.Google Scholar
  87. Whitham, M. and Fortes, M. B. (2008) Heat shock protein 72: release and biological significance during exercise. Front. Biosci. 13, 1328–1339.CrossRefPubMedGoogle Scholar
  88. Whitham, M., Walker, G. J. and Bishop, N. C. (2006) Effect of caffeine supplementation on the extracellular heat shock protein 72 response to exercise. J. Appl. Physiol. 101, 1222–1227.CrossRefPubMedGoogle Scholar
  89. Wilder, R. and Elenkov., I. (2001) Ovarian and sympathoadrenal hormones, pregnancy and autoimmunity diseases. In: Psyconeuroimmunology, Vol. 2, R. Ader, D. L. Felten, and N. Cohen, eds., Academic Press, New York, pp. 421–431.Google Scholar
  90. Woods, J. A. (2000) Exercise and neuroendocrine modulation of macrophage function. Int. J. Sports Med. 21, 24–30.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Eduardo Ortega
    • 1
  • Esther Giraldo
    • 2
  • M. Dolores Hinchado
    • 2
  • Leticia Martín-Cordero
    • 2
  • Juan J. García
    • 2
  1. 1.Departamento de Fisiología. Facultad de CienciasUniversidad de ExtremaduraBadajozSpain
  2. 2.Department of Physiology (Immunophysiology Research Group), Faculty of ScienceUniversity of ExtremaduraBadajozSpain

Personalised recommendations