Skip to main content
Book cover

Isoscapes pp 161–178Cite as

Approaches to Plant Hydrogen and Oxygen Isoscapes Generation

Abstract

Our understanding of the δ2H and δ18O of plant water and tissues ranges from model descriptions of multiple fractionating processes and mechanistic drivers, to primarily observational relationships often described by simple regression relationships. Plant hydrogen and oxygen isoscapes are therefore produced with a range of model sophistications and demonstrate some of the diversity of approaches to producing and utilizing isoscapes in general. Leaf water is central to much of plant H & O isoscape modeling. It affects the atmosphere at large scales by influencing atmospheric CO2 and O2 δ18O, and the biosphere at a range of scales through its influence on the isotopic composition of plant organic compounds. Leaf water isoscapes have therefore been produced as part of efforts to understand atmospheric gas isotopic composition and also have the potential to contribute to other areas where spatial variation in plant-derived organic compound isotope ratios is of interest. For example, improving our understanding of the isotope ratios of cellulose or n-alkanes improves their utility for paleoreconstructions. Spatially-explicit models of food isotope ratios may improve the use of animal isotope ratios to infer migration patterns. Finally, plant hydrogen and oxygen isoscapes can yield forensic information for a variety of products, including food, drugs, or other plant-derived materials. Given this wide range of applications, we discuss approaches to producing plant H & O isoscapes that vary in their complexity depending on the level of mechanistic understanding, data availability, and the question being pursued.

Keywords

  • Isotopic Composition
  • Isotope Ratio
  • Leaf Water
  • Oxygen Isotope Ratio
  • Oxygen Stable Isotope

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-90-481-3354-3_8
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-90-481-3354-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 8.1
Fig. 8.2
Fig. 8.3
Fig. 8.4

References

  • Aramendia MA et al (2007) Oxygen-18 measurement of Andalusian olive oils by continuous flow pyrolysis/isotope ratio mass spectrometry. Rapid Commun Mass Spectrom 21:487–496

    CrossRef  CAS  Google Scholar 

  • Augusti A, Betson TR, Schleucher J (2008) Deriving correlated climate and physiological signals from deuterium isotopomers in tree rings. Chem Geol 252:1–8

    CrossRef  CAS  Google Scholar 

  • Barbour MM (2007) Stable oxygen isotope composition of plant tissue: a review. Funct Plant Biol 34:83–94

    CrossRef  CAS  Google Scholar 

  • Barbour MM, Farquhar GD, Hanson DT, Bickford CP, Powers H, McDowell NG (2007) A new measurement technique reveals temporal variation in delta O-18 of leaf-respired CO2. Plant Cell Environ 30:456–468

    CrossRef  CAS  Google Scholar 

  • Barbour MM, Schuur U, Henry BK, Wong SC, Farquhar GD (2000) Variation in the oxygen isotope ratio of phloem sap sucrose from castor bean. Evidence in support of the Péclet Effect. Plant Phys 123:671–679

    CrossRef  CAS  Google Scholar 

  • Bariac T, Gonzalezdunia J, Katerji N, Bethenod O, Bertolini JM, Mariotti A (1994) Spatial variation of the isotopic composition of water (O-18, H-2) in the soil-plant-atmosphere system. 2. Assessment under field conditions. Chem Geol 115:317–333

    CrossRef  CAS  Google Scholar 

  • Bender M, Sowers T, Labeyrie L (1994) The Dole effect and its variations during the last 130,000 years as measured in the Vostok ice core. Global Biogeochem Cycles 8:363–376

    CrossRef  CAS  Google Scholar 

  • Cappa CD, Hendricks MB, DePaolo DJ, Cohen RC (2003) Isotopic fractionation of water during evaporation. J Geophys Res – Atmos 108(D16), Art.No. 4525

    Google Scholar 

  • Ciais P et al (1997) A three-dimensional synthesis study of delta O-18 in atmospheric CO2. 1. Surface fluxes. J Geophys Res – Atmos 102:5857–5872

    CrossRef  CAS  Google Scholar 

  • Cuntz M, Ciais P, Hoffmann G, Knorr W (2003) A comprehensive global three-dimensional model of δ18O in atmospheric CO2: 1. Validation of surface processes. J Geophys Res 108(D17), Art. No. 4527

    Google Scholar 

  • Cuntz M, Ogee J, Farquhar GD, Peylin P, Cernusak LA (2007) Modelling advection and diffusion of water isotopologues in leaves. Plant Cell Environ 30:892–909

    CrossRef  CAS  Google Scholar 

  • Dawson TE, Ehleringer JR (1993) Isotopic enrichment of water in the “woody” tissues of plants: implications for plant water source, water uptake, and other studies which use the stable isotopic composition of cellulose. Geochim Cosmochim Acta 57:3487–3492

    CrossRef  CAS  Google Scholar 

  • Dawson TE, Mambelli S, Plamboeck AH, Templer PH, Tu KP (2002) Stable isotopes in plant ecology. Annu Rev Ecol Syst 33:507–559

    CrossRef  Google Scholar 

  • DeNiro MJ, Sternberg LD, Marino BD, Druzik JR (1988) Relation between D/H ratios and 18O/16O ratios in cellulose from linen and maize-implications for paleoclimatology and from sindonology. Geochim Cosmochim Acta 52:2189–2196

    CrossRef  CAS  Google Scholar 

  • Dongmann G, Nurnberg HW, Forstel H, Wagener K (1974) On the enrichment of H 182 O in the leaves of transpiring plants. Radiat Environ Biophys 11:41–52

    CrossRef  CAS  Google Scholar 

  • Ehleringer JR et al (2002) Stable isotopes and carbon cycle processes in forests and grasslands. Plant Biol 4:181–189

    CrossRef  Google Scholar 

  • Epstein S, Thompson P, Yapp CJ (1977) Oxygen and hydrogen isotopic ratios in plant cellulose. Science 198:1209–1215

    CrossRef  CAS  Google Scholar 

  • Estep MF, Hoering TC (1981) Stable hydrogen isotope fractionations during autotrophic and mixotrophic growth of microalgae. Plant Physiol 67:474–477

    CrossRef  CAS  Google Scholar 

  • Farquhar GD et al (1993) Vegetation effects on the isotope composition of oxygen in atmospheric CO2. Nature 363:439–443

    CrossRef  CAS  Google Scholar 

  • Feng XH, Epstein S (1996) Climatic trends from isotopic records of tree rings: the past 100–200 years. Clim Change 33:551–562

    CrossRef  Google Scholar 

  • Feng XH, Reddington AL, Faiia AM, Posmentier ES, Shu Y, Xu XM (2007) The changes in North American atmospheric circulation patterns indicated by wood cellulose. Geology 35:163–166

    CrossRef  Google Scholar 

  • Ferguson PR, Veizer J (2007) Coupling of water and carbon fluxes via the terrestrial biosphere and its significance to the Earth’s climate system. J Geophys Res – Atmos 112:17

    CrossRef  Google Scholar 

  • Flanagan LB, Comstock JP, Ehleringer JR (1991) Comparison of modeled and observed environmental influences on the stable oxygen and hydrogen isotope composition of leaf water in Phaseolus-vulgaris L. Plant Physiol 96:588–596

    CrossRef  CAS  Google Scholar 

  • Gan KS, Wong SC, Yong JWH, Farquhar GD (2002) O-18 spatial patterns of vein xylem water, leaf water, and dry matter in cotton leaves. Plant Physiol 130:1008–1021

    CrossRef  CAS  Google Scholar 

  • Gan KS, Wong SC, Yong JWH, Farquhar GD (2003) Evaluation of models of leaf water O-18 enrichment using measurements of spatial patterns of vein xylem water, leaf water and dry matter in maize leaves. Plant Cell Environ 26:1479–1495

    CrossRef  Google Scholar 

  • Gerst S, Quay P (2001) Deuterium component of the global molecular hydrogen cycle. J Geophys Res – Atmos 106:5021–5031

    CrossRef  CAS  Google Scholar 

  • Gillon J, Yakir D (2001) Influence of carbonic anhydrase activity in terrestrial vegetation on the O-18 content of atmospheric CO2. Science 291:2584–2587

    CrossRef  CAS  Google Scholar 

  • Gray J, Thompson P (1977) Climatic information from O-18/O-16 analysis of cellulose, lignin and whole wood from tree rings. Nature 270:708–709

    CrossRef  CAS  Google Scholar 

  • Helliker BR, Ehleringer JR (2000) Establishing a grassland signature in veins: O-18 in the leaf water of C-3 and C-4 grasses. Proc Natl Acad Sci U S A 97:7894–7898

    CrossRef  CAS  Google Scholar 

  • Helliker BR, Richter SL (2008) Subtropical to boreal convergence of tree-leaf temperatures. Nature 454:511–U516

    CrossRef  CAS  Google Scholar 

  • Hemming D et al (2007) The future of large-scale stable isotope networks. In: Dawson T, Siegwolf R (eds) Stable isotopes as indicators of ecological change. Academic, London

    Google Scholar 

  • Hoffmann G et al. (2004) A model of the Earth’s Dole effect. Global Biogeochemical Cycles 18. GB1008. doi:10.1029/2003GB002059

    Google Scholar 

  • Hou JZ, D’Andrea WJ, Huang YS (2008) Can sedimentary leaf waxes record D/H ratios of continental precipitation? Field, model, and experimental assessments. Geochim Cosmochim Acta 72:3503–3517

    CrossRef  CAS  Google Scholar 

  • Ingraham NL, Caldwell EA (1999) Influence of weather on the stable isotopic ratios of wines: tools for weather/climate reconstruction? J Geophys Res – Atmos 104:2185–2194

    CrossRef  CAS  Google Scholar 

  • Jia GD, Wei K, Chen FJ, Peng PA (2008) Soil n-alkane delta D vs. altitude gradients along Mount Gongga, China. Geochim Cosmochim Acta 72:5165–5174

    CrossRef  CAS  Google Scholar 

  • Jones AA, Sessions AL, Campbell BJ, Li C, Valentine DL (2008) D/H ratios of fatty acids from marine particulate organic matter in the California Borderland Basins. Geochemistry 39:485–500

    Google Scholar 

  • Kahmen A et al (2008) Effects of environmental parameters, leaf physiological properties and leaf water relations on leaf water delta O-18 enrichment in different Eucalyptus species. Plant Cell Environ 31:738–751

    CrossRef  CAS  Google Scholar 

  • Kelly S, Heaton K, Hoogewerff J (2005) Tracing the geographical origin of food: the application of multi-element and multi-isotope analysis. Trends Food Sci Technol 16:555–567

    CrossRef  CAS  Google Scholar 

  • Keppler F et al (2007) Stable hydrogen isotope ratios of lignin methoxyl groups as a paleoclimate proxy and constraint of the geographical origin of wood. New Phytol 176:600–609

    CrossRef  CAS  Google Scholar 

  • Lai C-T, Ehleringer JR, Bond BJ, Paw UKT (2006) Contributions of evaporation, isotopic non-steady state transpiration and atmospheric mixing on the 18O of water vapour in Pacific Northwest coniferous forests. Plant, Cell Environ 29:77–94

    Google Scholar 

  • Landais A et al (2007) Millenial scale variations of the isotopic composition of atmospheric oxygen over Marine Isotopic Stage 4. Earth Planet Sci Lett 258:101–113

    CrossRef  CAS  Google Scholar 

  • Lee XH, Kim K, Smith R (2007) Temporal variations of the O-18/O-16 signal of the whole-canopy transpiration in a temperate forest. Global Biogeochem Cycles 21:12

    CrossRef  Google Scholar 

  • Leff B, Ramankutty N, Foley JA (2004) Geographic distribution of major crops across the world. Global Biochemical Cycles 18. GB1009. doi:10.1029/2003GB002108

    Google Scholar 

  • Lis G, Wassenaar LI, Hendry MJ (2008) High-precision laser spectroscopy D/H and O-18/O-16 measurements of microliter natural water samples. Anal Chem 80:287–293

    CrossRef  CAS  Google Scholar 

  • Loader NJ, Hemming DL (2004) The stable isotope analysis of pollen as an indicator of terrestrial palaeoenvironmental change: a review of progress and recent developments. Quat Sci Rev 23:893–900

    Google Scholar 

  • Luo YH, Sternberg LDL (1992) Hydrogen and oxygen isotopic fractionation during heterotrophic cellulose synthesis. J Exp Bot 43:47–50

    CrossRef  CAS  Google Scholar 

  • Majoube M (1971) Oxygen-18 and deuterium fractionation between water and steam. J Chim Phys Phys-Chim Biol 68:1423–1436

    CAS  Google Scholar 

  • McKeon TA, Chen GQ, Lin JT (2000) Biochemical aspects of castor oil biosynthesis. Biochem Soc Trans 28:972–974

    Google Scholar 

  • Miller DL, Mora CI, Grissino-Mayer HD, Mock CJ, Uhle ME, Sharp Z (2006) Tree-ring isotope records of tropical cyclone activity. Proc Natl Acad Sci U S A 103:14294–14297

    CrossRef  CAS  Google Scholar 

  • Ogee J, Cuntz M, Peylin P, Bariac T (2007) Non-steady-state, non-uniform transpiration rate and leaf anatomy effects on the progressive stable isotope enrichment of leaf water along monocot leaves. Plant Cell Environ 30:367–387

    CrossRef  CAS  Google Scholar 

  • Pataki DE et al (2003) Tracing changes in ecosystem function under elevated carbon dioxide conditions. BioScience 53:805–818

    CrossRef  Google Scholar 

  • Peters LI, Yakir D (2008) A direct and rapid leaf water extraction method for isotopic analysis. Rapid Commun Mass Spectrom 22:2929–2936

    CrossRef  CAS  Google Scholar 

  • Peylin P, Ciais P, Denning A, Tans P, Berry J, White J (1999) A 3-dimensional study of d18O in atmospheric CO2: contribution of different land ecosystems. Tellus B 51:642–667

    CrossRef  Google Scholar 

  • Richter SL, Johnson AH, Dranoff MM, Taylor KD (2008) Continental-scale patterns in modern wood cellulose delta O-18: implications for interpreting paleo-wood cellulose delta O-18. Geochim Cosmochim Acta 72:2735–2743

    CrossRef  CAS  Google Scholar 

  • Ripullone F et al (2008) Environmental effects on oxygen isotope enrichment of leaf water in cotton leaves. Plant Physiol 146:729–736

    CrossRef  CAS  Google Scholar 

  • Roden JS, Ehleringer JR (1999) Observations of hydrogen and oxygen isotopes in leaf water confirm the Craig–Gordon model under wide-ranging environmental conditions. Plant Physiol 120:1165–1173

    CrossRef  CAS  Google Scholar 

  • Roden JS, Ehleringer JR (2000) Hydrogen and oxygen isotope ratios of tree ring cellulose for field-grown riparian trees. Oecologia 123:481–489

    CrossRef  Google Scholar 

  • Roden JS, Lin GG, Ehleringer JR (2000) A mechanistic model for interpretation of hydrogen and oxygen isotope ratios in tree-ring cellulose. Geochim Cosmochim Acta 64:21–35

    CrossRef  CAS  Google Scholar 

  • Rossmann A, Reniero F, Moussa I, Schmidt HL, Versini G, Merle MH (1999) Stable oxygen isotope content of water of EU data-bank wines from Italy, France and Germany. Zeitschrift Fur Lebensmittel-Untersuchung Und-Forschung a – Food Res Technol 208:400–407

    CAS  Google Scholar 

  • Sachse D, Radke J, Gleixner G (2004) Hydrogen isotope ratios of recent lacustrine sedimentary n-alkanes record modern climate variability. Geochim Cosmochim Acta 68:4877–4889

    CrossRef  CAS  Google Scholar 

  • Shu Y, Feng XH, Posmentier ES, Sonder LJ, Faiia AM, Yakir D (2008) Isotopic studies of leaf water. Part 1: a physically based two-dimensional model for pine needles. Geochim Cosmochim Acta 72:5175–5188

    CrossRef  CAS  Google Scholar 

  • Smith FA, Freeman KH (2006) Influence of physiology and climate on delta D of leaf wax n-alkanes from C-3 and C-4 grasses. Geochim Cosmochim Acta 70:1172–1187

    CrossRef  CAS  Google Scholar 

  • Stern B, Clelland SJ, Nordby CC, Urem-Kotsou D (2006) Bulk stable light isotopic ratios in archaeological birch bark tars. Appl Geochem 21:1668–1673

    CrossRef  CAS  Google Scholar 

  • Stern B, Moore CDL, Heron C, Pollard AM (2008) Bulk stable light isotopic ratios in recent and archaeological resins: towards detecting the transport of resins in antiquity? Archaeometry 50:351–370

    CrossRef  CAS  Google Scholar 

  • Sternberg L, Pinzon MC, Anderson WT, Jahren AH (2006) Variation in oxygen isotope fractionation during cellulose synthesis: intramolecular and biosynthetic effects. Plant Cell Environ 29:1881–1889

    CrossRef  CAS  Google Scholar 

  • Sternberg LDL, Pinzon MC, Vendramini PF, Anderson WT, Jahren AH, Beuning K (2007) Oxygen isotope ratios of cellulose-derived phenylglucosazone: an improved paleoclimate indicator of environmental water and relative humidity. Geochim Cosmochim Acta 71:2463–2473

    CrossRef  CAS  Google Scholar 

  • Sternberg LdSL (1988) D/H ratios of environmental water recorded by D/H ratios of plant lipids. Nature 333:59–61

    CrossRef  Google Scholar 

  • Still C J, Riley WJ, Biraud SC, Noone DC, Buenning NH, Randerson JT, Torn MS, Welker J, White JWC, Vachon R, Farquhar GD, Berry JA (2009) Influence of clouds and diffuse radiation on ecosystem-atmosphere CO2 and (COO)-O-18 exchanges. J Geophys Res-Biogeosciences 114:17

    Google Scholar 

  • Vendramini PF, Sternberg L (2007) A faster plant stem-water extraction method. Rapid Commun Mass Spectrom 21:164–168

    CrossRef  CAS  Google Scholar 

  • West JB, Bowen GJ, Cerling TE, Ehleringer JR (2006) Stable isotopes as one of nature’s ecological recorders. Trends Ecol Evol 21:408–414

    CrossRef  Google Scholar 

  • West JB, Ehleringer JR, Cerling TE (2007) Geography and vintage predicted by a novel GIS model of wine delta O-18. J Agric Food Chem 55:7075–7083

    CrossRef  CAS  Google Scholar 

  • West JB, Sobek A, Ehleringer JR (2008) A simplified GIS approach to modeling global leaf water isoscapes. PLoS ONE 3:e2447

    CrossRef  Google Scholar 

  • White JWC, Cook ER, Lawrence JR, Broecker WS (1985) The D/H ratios of sap in trees: implications for water sources and tree ring D/H ratios. Geochim Cosmochim Acta 49:237–246

    CrossRef  CAS  Google Scholar 

  • Williams D, Evans R, West J, Ehleringer J (2007) Applications of stable isotope measurements for early-warning detection of ecological change. In: Dawson T, Siegwolf R (eds) Stable isotopes as indicators of ecological change. Academic, London

    Google Scholar 

  • Xia ZH et al (2008) Hydrogen isotope ratios of terrigenous n-alkanes in lacustrine surface sediment of the Tibetan Plateau record the precipitation signal. Geochem J 42:331–338

    CrossRef  CAS  Google Scholar 

  • Yakir D, Deniro MJ (1990) Oxygen and hydrogen isotope fractionation during cellulose metabolism in Lemna-gibba L. Plant Physiol 93:325–332

    CrossRef  CAS  Google Scholar 

  • Yakir D, Sternberg LDL (2000) The use of stable isotopes to study ecosystem gas exchange. Oecologia 123:297–311

    CrossRef  Google Scholar 

  • Yakir D, Berry JA, Giles L, Osmond CB (1994) Isotopic heterogeneity of water in transpiring leaves – identification of the component that controls the delta-O-18 of atmospheric O-2 and CO2. Plant Cell Environ 17:73–80

    CrossRef  CAS  Google Scholar 

  • Yamada K, Ozaki Y, Nakagawa F, Sudo S, Tsuruta H, Yoshida N (2006) Hydrogen and carbon isotopic measurements of methane from agricultural combustion: implications for isotopic signatures of global biomass burning sources. J Geophys Res – Atmos 111:12

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason B. West .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

West, J.B., Kreuzer, H.W., Ehleringer, J.R. (2010). Approaches to Plant Hydrogen and Oxygen Isoscapes Generation. In: West, J., Bowen, G., Dawson, T., Tu, K. (eds) Isoscapes. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3354-3_8

Download citation