Skip to main content
Book cover

Isoscapes pp 71–88Cite as

Novel Approaches for Monitoring of Water Vapor Isotope Ratios: Plants, Lasers and Satellites

Abstract

Atmospheric water vapor is a major component of the global hydrological cycle and the isotope ratio of that vapor is a key tracer for both hydrological and biological processes. Yet little is known of the isotopic composition of vapor over any spatial scale and through time because of challenges associated with collecting water vapor samples. Here we discuss alternate methods for measuring water vapor isotopes. The first approach capitalizes on the unique physiology and broad distribution of the epiphytic plant Tillandsia usneoides (Spanish Moss) to reconstruct a growing-season-integrated isotope ratio of water vapor. The second approach utilizes infrared spectroscopy to measure the isotopic composition without sample collection. In situ laser-absorption instruments and emission spectrometers aboard satellites employ similar optical measurement approaches, and while the former lends itself to developing very detailed time series the latter offers resolution of global-scale spatial distributions. These new approaches, while highly disparate, represent novel methods that complement existing collection techniques and enable improved knowledge of both the spatial mean and variation of isotopes in atmospheric water vapor.

Keywords

  • Water Vapor
  • Isotopic Composition
  • Isotope Ratio
  • Leaf Water
  • Crassulacean Acid Metabolism

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-90-481-3354-3_4
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-90-481-3354-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 4.1
Fig. 4.2
Fig. 4.3
Fig. 4.4
Fig. 4.5
Fig. 4.6

References

  • Baer DS, Paul JB, Gupta M, O’Keefe A (2002) Sensitive absorption measurements in the near-infrared region using off-axis integrated-cavity-output spectroscopy. Appl Phys B. doi:10.1007/s00340-002-0971-z

    Google Scholar 

  • Barbour MM, Andrews TJ, Farquhar GD (2001) Correlations between oxygen isotope ratios of wood constituents of Quercus and Pinus samples from around the world. Austr J Plant Physiol 28:335–348

    CAS  Google Scholar 

  • Blaga LM, Blaga L (1977) Angaben ueber die Konzentration von Deuterium in atmosphaerischenWasserdampf. Isotopenpraxis 13:113

    CrossRef  CAS  Google Scholar 

  • Bowen G, Revenaugh J (2003) Interpolating the isotopic composition of modern meteoric precipitation. Water Resour Res 39:1299

    CrossRef  Google Scholar 

  • Brown D, Worden J and Noone D (2008) Comparison of atmospheric hydrology over convective continental regions using water vapor isotope measurements from space. J Geophys Res 113. doi: 10.1029/2007JD009676

    Google Scholar 

  • Brunel JP, Simpson HJ, Herczeg AL, Whitehead R, Walker GR (1992) Stable isotope composition of water vapor as an indicator of transpiration fluxes from rice crops. Water Resour Res 28:1407–1416

    CrossRef  CAS  Google Scholar 

  • Buenning N and Noone D (2008) The role of local and non-local processes in the seasonal cycle and interannual variability of the isotopic composition of precipitation deduced through observations and models. J Geophys Res (submitted June 2008)

    Google Scholar 

  • Buenning N et al. (2007) Modeling interannual variability of δ18O of atmospheric CO2 and its dependence on humidity and isotope hydrology. In: Cote J (ed) Research activities in atmospheric and oceanic modelling. Report No. 36, World Meteorological Organization, 4-03, Geneva

    Google Scholar 

  • Ciais P et al (1997) A three-dimensional synthesis study of δ18O in atmospheric CO2 1. Surface fluxes. J Geophys Res 102:5857–5872

    CrossRef  CAS  Google Scholar 

  • Craig H, Gordon LI (1965) Deuterium and oxygen 18 variations in the ocean and marine atmosphere. In: Tongiorigi E (ed) Stable isotopes in oceanographic studies and paleotemperatures. Consiglio Nazionale Delle Ricerche Laboratorio di Geologia Nucleare, Pisa, pp 9–130

    Google Scholar 

  • Crosson ER (2008) A cavity ring-down analyzer for measuring atmospheric levels of methane, carbon dioxide, and water vapor. Appl Phys B 92(3):403–408

    CrossRef  CAS  Google Scholar 

  • Ehleringer JR et al (2002) Stable isotopes and carbon cycle processes in forests and grasslands. Plant Biol 4:181–189

    CrossRef  Google Scholar 

  • Evans MN, Schrag DP (2004) A stable isotope-based approach to tropical dendroclimatology. Geochim Cosmochim Acta 68:3295–3305

    CrossRef  CAS  Google Scholar 

  • Farquhar GD, Cernusak LA (2005) On the isotopic composition of leaf water in the non-steady state. Funct Plant Biol 32:293–303

    CrossRef  CAS  Google Scholar 

  • Farquhar GD, Lloyd J (1993) Carbon and oxygen isotope effects in the exchange of carbon dioxide between terrestrial plants and the atmosphere. In: Ehleringer JR, Hall AE, Farquhar GD (eds) Stable isotopes and plant carbon/water relations. Academic, San Diego, CA, pp 47–70

    Google Scholar 

  • Farquhar GD et al (1993) Vegetation effects on the isotopic composition of oxygen in atmospheric CO2. Nature 363:439–443

    CrossRef  CAS  Google Scholar 

  • Ferrio JP, Voltas J (2005) Carbon and oxygen isotope ratios in wood constituents of Pinus halepensis as indicators of precipitation, temperature and vapour pressure deficit. Tellus B 57:164–173

    CrossRef  Google Scholar 

  • Flanagan LB, Comstock JP, Ehleringer JR (1991) Comparison of modeled and observed environmental influences on the stable oxygen and hydrogen isotope composition of leaf water in Phaseolus vulgaris L. Plant Physiol 96:588–596

    CrossRef  CAS  Google Scholar 

  • Garth RE (1964) Ecology of Spanish Moss (Tillandsia usneoides): its growth and distribution. Ecology 45:470–481

    Google Scholar 

  • Gat JR (1996) Oxygen and hydrogen isotopes in the hydrologic cycle. Annu Rev Earth Planet Sci 24:225–262

    CrossRef  CAS  Google Scholar 

  • Gupta P, Noone D, Sweeney C, Vaughn B, Crosson E (2009) A new age in isotope hydrology: demonstration of autonomous and continuous laboratory-class measurements of water vapor isotopologues in remote field deployments. Rapid Commun Mass Spectrom (submitted 15 January 2009)

    Google Scholar 

  • Han LF, Groning M, Aggarwal P, Helliker BR (2006) Reliable determination of oxygen and hydrogen isotope ratios in atmospheric water vapour adsorbed on 3A molecular sieve. Rapid Commun Mass Spectrom 20:3612–3618

    CrossRef  CAS  Google Scholar 

  • Hanisco TF et al (2007) Observations of deep convective influence on stratospheric water vapor and its isotopic composition. Geophys Res Lett 34:L04814

    CrossRef  Google Scholar 

  • Helliker BR, Griffiths H (2007) Toward a plant-based proxy for the isotope ratio of atmospheric water vapor. Glob Change Biol 13:723–733

    CrossRef  Google Scholar 

  • Helliker BR, Roden JR, Cook C, Ehleringer JR (2002) A rapid and precise method for sampling and determining the oxygen isotope ration of atmospheric water vapor. Rapid Commun Mass Spectrom 16:929–932

    CrossRef  CAS  Google Scholar 

  • Herbin H et al (2007) Global distributions of water vapour isotopologues retrieved from IMG/ADEOS data. Atmos Chem Phys Disc 7:4857–4888

    CrossRef  Google Scholar 

  • Huebner H, Kowski P, Hermichen W-D, Richter W, Schuetze H (1978) Regional and temporal variations of deuterium in the precipitation and atmospheric moisture of Central Europe. In: Isotope hydrology 1978, vol I. IAEA, Vienna

    Google Scholar 

  • IAEA/WMO (2006). Global Network of Isotopes in Precipitation. The GNIP Database. http://isohis.iaea.org January 1, 2009.

  • Lai CT, Ehleringer JR, Bond BJ, KTP U (2006) Contributions of evaporation, isotopic non-steady state transpiration and atmospheric mixing on the delta O-18 of water vapour in Pacific Northwest coniferous forests. Plant Cell Environ 29:77–94

    CrossRef  Google Scholar 

  • Lee X, Smith R, Williams J (2006) Water vapor 18O/16O isotope ratio in surface air in New England, USA. Tellus B 58:293–304

    CrossRef  Google Scholar 

  • Martin CE (1980) Field and laboratory studies of crassulacean acid metabolism in the epiphyte Tillandsia usneoides. Dissertation, Duke University, Durham, NC

    Google Scholar 

  • Martin CE (1982) Translocation of nocturnally fixed 14C in the Crassulacean acid metabolism epiphyte Tillandsia usneoides L. Bot Gaz 143:1–4

    CrossRef  Google Scholar 

  • Martin CE (1994) Physiological ecology of the Bromeliaceae. Bot Rev 60:1–82

    CrossRef  Google Scholar 

  • Martin CE, Schmitt AK (1989) Unusual water relations in the CAM atmospheric epiphyte Tillandsia usneoides L. (Bromeliaceae). Bot Gaz 150:1–8

    CrossRef  Google Scholar 

  • Noone D (2008) An isotopic evaluation of the factors controlling low humidity air in the troposphere. J Clim (submitted June 2008)

    Google Scholar 

  • Noone D, Sturm C (2008) Comprehensive dynamical models of global and regional water isotope distributions. In: West J, Bowen G, Dawson T, Tu K (eds) Isoscapes: understanding movement, pattern, and process on Earth through isotope mapping. Springer, this volume.

    Google Scholar 

  • Payne VH et al (2007) A global view of the deuterium content of upper tropospheric/stratospheric water vapour from satellite measurements. Q J Roy Meteor Soc 133(627):1459–1471

    CrossRef  Google Scholar 

  • Poussart PF, Schrag DP (2005) Seasonally resolved stable isotope chronologies from northern Thailand deciduous trees. Earth Planet Sci Lett 235:752–765

    CrossRef  CAS  Google Scholar 

  • Riley WJ, Still CJ, Helliker BR, Ribas-Carbo M, Berry JA (2003) O-18 composition of CO2 and H2O ecosystem pools and fluxes in a tallgrass prairie: simulations and comparisons to measurements. Glob Change Biol 9:1567–1581

    CrossRef  Google Scholar 

  • Roden JS, Ehleringer JR (1999) Observations of hydrogen and oxygen isotopes in leaf water confirm the Craig–Gordon model under wide-ranging environmental conditions. Plant Physiol 120:1165–1173

    CrossRef  CAS  Google Scholar 

  • Schoch-Fischer H et al. (1983) Hydrometeorological factors controlling the time variation of D, 18O and 3H in atmospheric water vapour and precipitation in the northwestern westwind belt. In: Isotope hydrology. IAEA, Vienna, pp 3–30

    Google Scholar 

  • Sharp Z (2007) Principles of STABLE ISOTOPE GEOCHEMISTRY. Prentice-Hall, Upper Saddle River, NJ

    Google Scholar 

  • Strong M, Sharp ZD, Gutzler DS (2007) Diagnosing moisture transport using D/H ratios of water vapor. Geophys Res Lett 34:L03404. doi:10.1029/2006GL028307

    CrossRef  Google Scholar 

  • Verheyden A, Helle G, Schleser GH, Dehairs F, Beeckman H, Koedam N (2004) Annual cyclicity in high-resolution stable carbon and oxygen isotope ratios in the wood of the mangrove tree Rhizophora mucronata. Plant Cell Environ 27:1525–1536

    CrossRef  Google Scholar 

  • Webster CR, Heymsfield AJ (2003) Water isotope ratios D/H, O-18/O-16, O-17/O-16 in and out of clouds map dehydration pathways. Science 302:1742–1745

    CrossRef  CAS  Google Scholar 

  • Welp LR et al. (2008) δ18O of water vapor, evapotranspiration and the sites of leaf evaporation in a soybean canopy. Plant Cell Environ 31:1214–1218

    Google Scholar 

  • Wen X et al (2008) Continuous measurement of water vapor D/H and 18O/16O isotope ratios in the atmosphere. J Hydrol 349:489–500

    CrossRef  Google Scholar 

  • Williams DG et al (2004) Evapotranspiration components determined by stable isotope, sap flow and eddy covariance techniques. Agr For Meteor 125:241–258

    CrossRef  Google Scholar 

  • Worden JR et al. (2006) TES observations of the tropospheric HDO/H2O ratio: retrieval approach and characterization. J Geophys Res 111(D16):D16309. doi: 10.1029/2005JD006606.

    Google Scholar 

  • Worden JR, Noone D, Bowman K (2007) Importance of rain evaporation and continental convection in the tropical water cycle. Nature 445:528–532. doi:10.1038/nature05508

    CrossRef  CAS  Google Scholar 

  • Yakir D, Sternberg LSL (2000) The use of stable isotopes to study ecosystem gas exchange. Oecologia 123:297–311

    CrossRef  Google Scholar 

  • Yakir D, Wang XF (1996) Fluxes of CO2 and water between terrestrial vegetation and the atmosphere estimated from isotope measurements. Nature 380:515–517

    CrossRef  CAS  Google Scholar 

  • Yepez EA, Williams DG, Scott RL, Lin G (2003) Partitioning overstory and understory evapotranspiration in a semiarid savanna woodland from the isotopic composition of water vapor. Agr For Meteor 119:53–68

    CrossRef  Google Scholar 

  • Zakharov VI et al (2004) Latitudinal distribution of the deuterium to hydrogen ratio in the atmospheric water vapor retrieved from IMG/ADEOS data. Geophys Res Lett 31:L12104. doi:10.1029/2004GL019433

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brent R. Helliker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Helliker, B.R., Noone, D. (2010). Novel Approaches for Monitoring of Water Vapor Isotope Ratios: Plants, Lasers and Satellites. In: West, J., Bowen, G., Dawson, T., Tu, K. (eds) Isoscapes. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3354-3_4

Download citation