Skip to main content
Book cover

Isoscapes pp 51–70Cite as

Remote Sensing of Nitrogen and Carbon Isotope Compositions in Terrestrial Ecosystems

Abstract

Stable isotopes have been frequently used to indicate processes occurring in soils, plants, and the atmosphere at scales from individual organisms to an entire ecosystem. Remote sensing, on the other hand, is a powerful tool used to identify ecosystem patterns and processes at larger scales. A union of these two approaches would hold promise for spatially continuous estimates of isotope compositions, thus providing unprecedented information into the patterns and processes within the Earth’s ecosystems. To date, however, the combination of isotope and remote sensing techniques is still in the exploratory stage. Here, two examples, one utilizing high spectral resolution remote sensing and the other employing high spatial resolution remote sensing, are suggested as possible approaches for the integration of stable isotope and remote sensing techniques. First, the feasibility of using high-resolution spectral data to estimate the vegetation δ15N from leaf to canopy levels is tested. Experimental results have shown that there is a strong correlation between foliar δ15N and spectral reflectance (R) in certain visible and near-infrared wavelengths. Stepwise regression indicates that the first-difference of the log 1/R explains 76–92% of the variation in foliar δ15N, providing the most reliable correlations in bands near 600 and 700 nm. Second, if the vegetation-soil δ13C relationship can be quantified on ground, soil δ13C distribution can be estimated by high-resolution satellite. Although limitations exist, because of the non-destructive and continuous nature, remote sensing is a promising tool to expand measurements of terrestrial δ15N and δ13C spatial patterns and dynamics.

Keywords

  • Isotope Composition
  • Spectral Reflectance
  • Mean Annual Precipitation
  • Canopy Level
  • Canopy Reflectance

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-90-481-3354-3_3
  • Chapter length: 20 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-90-481-3354-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 3.1
Fig. 3.2
Fig. 3.3
Fig. 3.4
Fig. 3.5
Fig. 3.6
Fig. 3.7
Fig. 3.8

References

  • Aranibar JN, Macko SA (2005) SAFARI 2000 plant and soil C and N Isotopes, Southern Africa, 1995–2000. Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, TN

    Google Scholar 

  • Asner GP, Vitousek PM (2005) Remote analysis of biological invasion and biogeochemical change. PNAS 102:4383–4386

    CrossRef  CAS  Google Scholar 

  • Balesdent J, Mariotti A, Guillet B (1987) Natural 13C abundances as a tracer for studies of soil organic matter dynamics. Soil Biol Biochem 19:25–30

    CrossRef  CAS  Google Scholar 

  • Biggs TH, Quade J, Webb RH (2002) δ13C values of soil organic matter in semiarid grassland with mesquite (Prosopis) encroachment in southeastern Arizona. Geoderma 110:109–130

    CrossRef  CAS  Google Scholar 

  • Bond WJ, Stock WD, Hoffman MT (1994) Has the Karoo spread? A test for desertification using carbon isotopes from soils. S Afr J Sci 90:391–397

    CAS  Google Scholar 

  • Bowling DR, SS D, TB D, EJ R (2003) Tunable diode laser absorption spectroscopy for stable isotope studies of ecosystem-atmosphere CO2 exchange. Agric For Meteorol 118:1–19

    CrossRef  Google Scholar 

  • Brooker PI (1991) A geostatistical primer. World Scientific Publishing, Singapore

    CrossRef  Google Scholar 

  • Bustamante MMC et al (2004) 15N natural abundance in woody plants and soils of central Brazilian savannas (cerrado). Ecol Appl 14:200–213

    CrossRef  Google Scholar 

  • Card DH, Peterson DL, Matson PA, Aber JD (1988) Prediction of leaf chemistry by the use of visible and near infrared reflectance spectroscopy. Remote Sens Environ 26:123–147

    CrossRef  Google Scholar 

  • Caylor KK (2003) The structure and function of Kalahari transect vegetation. Ph.D. dissertation, University of Virginia, Charlottesville, VA

    Google Scholar 

  • Curran PJ, Dungan JL, Macler BA, Plummer SE, Peterson DL (1992) Reflectance spectroscopy of fresh whole leaves for the estimation of chemical concentration. Remote Sens Environ 39:153–166

    CrossRef  Google Scholar 

  • Curran PJ, Dungan JL, Peterson DL (2001) Estimating the foliar biochemical concentration of leaves with reflectance spectrometry: testing the Kokaly and Clark methodologies. Remote Sens Environ 76:349–359

    CrossRef  Google Scholar 

  • Davidson EA et al (2007) Recuperation of nitrogen cycling in Amazonian forests following agricultural abandonment. Nature 447:995–998

    CrossRef  CAS  Google Scholar 

  • Farquhar G, Ehleringer J, Hubick K (1989) Carbon isotope discrimination and photosynthesis. Ann Rev Plant Physiol Mol Biol 40:503–537

    CrossRef  CAS  Google Scholar 

  • Fung I et al (1997) Carbon 13 exchanges between the atmosphere and biosphere. Global Biogeochem Cycles 11:507–534

    CrossRef  CAS  Google Scholar 

  • Griffis TJ, Lee X, Baker JM, Sargent S, King JY (2005) Feasibility of quantifying ecosystem-atmosphere C18O16O exchange using laser spectroscopy and the flux-gradient method. Agric For Meteorol 135:44–60

    CrossRef  Google Scholar 

  • Guo G, Xie G (2006) The relationship between plant stable carbon isotope composition, precipitation and satellite data, Tibet Plateau, China. Quatern Int 144:68–71

    CrossRef  Google Scholar 

  • Hobbie EA, Macko SA, Williams M (2000) Correlations between foliar δ15N and nitrogen concentrations may indicate plant-mycorrhizal interactions. Oecologia 122:273–283

    CrossRef  Google Scholar 

  • Hogberg P (1986) Nitrogen fixation and nutrient relations in savanna woodland trees (Tanzania). J Appl Ecol 23:675–688

    CrossRef  Google Scholar 

  • Hogberg P (1990) 15N natural abundance as a possible marker of the ectomycorrhizal habit of trees in mixed African woodlands. New Phytol 115:483–486

    CrossRef  Google Scholar 

  • Hogberg P (1997) 15N natural abundance in soil-plant systems. New Phytol 137:179–203

    Google Scholar 

  • Hogberg P, Alexander I (1995) Role of root symbioses in African woodland and forest: evidence from 15N abundance and foliar analysis. J Ecol 83:217–224

    CrossRef  Google Scholar 

  • Houghton RA (2005) Aboveground forest biomass and the global carbon balance. Global Change Biol 11:945–958

    CrossRef  Google Scholar 

  • Huisman JA, Snepvangers JJJC, Bouten W, Heuvelink GBM (2003) Monitoring temporal development of spatial soil water content variation: comparison of ground penetrating radar and time domain reflectometry. Vadose Zone J 2:519–529

    Google Scholar 

  • Hyde P, Dubayah R, Walker W, Blair JB, Hofton M, Hunsaker C (2006) Mapping forest structure for wildlife habitat analysis using multi-sensor (LiDAR, SAR/InSAR, ETM plus, Quickbird) synergy. Remote Sens Environ 102:63–73

    CrossRef  Google Scholar 

  • Kennicutt MCI, Bidigare RR, Macko SA, Keeney-Kennicutt WL (1992) The stable isotopic composition of photosynthetic pigments and related biochemicals. Chemical Geology 101: 235–245

    CrossRef  Google Scholar 

  • Koch GW, Scholes RJ, Steffen WL, Vitousek PM, Walker BH (1995) The IGBP terrestrial transects: science plan, report No. 36. International Geosphere–Biosphere Programme, Stockholm

    Google Scholar 

  • Koerner W, Dambrine E, Dupouey JL, Benoît M (1999) δ15N of forest soil and understorey vegetation reflect the former agricultural land use. Oecologia 121:421–425

    CrossRef  Google Scholar 

  • Kreitler C (1979) Nitrogen isotope ratio studies of soils and groundwater nitrate from alluvial fan aquifers in Texas. J Hydrol 42:147–170

    CrossRef  CAS  Google Scholar 

  • Levizou E, Drilias P, Psaras GK, Maneras Y (2005) Nondestructive assessment of leaf chemisty and physiology through spectral reflectance measurements may be misleading hen changes in trichome density co-occur. New Phytol 165:463–472

    CrossRef  CAS  Google Scholar 

  • Li HR, Reynolds JF (1995) On the quantification of spatial heterogeneity. Oikos 73:280–284

    CrossRef  Google Scholar 

  • Ma YZ, Jones TA (2001) Teacher’s aide Modeling hole-effect variograms of lithology-indicator variables. Math Geol 33:631–648

    CrossRef  Google Scholar 

  • Martin ME, Aber JD (1997) High spectral resolution remote sensing of forest canopy ligin, nitrogen and ecosystem process. Ecol Appl 7:431–443

    Google Scholar 

  • Martinelli LA et al (1999) Nitrogen stable isotopic composition of leaves and soil: tropical versus temperate forests. Biogeochemistry 46:45–65

    CAS  Google Scholar 

  • O’Leary MH (1981) Carbon isotope fractionation in plants. Phytochemistry 20:553–567

    CrossRef  Google Scholar 

  • Pardo-Iguzquiza E, Dowd P (2001) Variance-covariance matrix of the experimental variogram: assessing variogram uncertainty. Math Geol 33:397–419

    CrossRef  Google Scholar 

  • Pardo LH et al (2006) Regional assessment of N saturation using foliar and root δ15N. Biogeochemistry 80:143–171

    CrossRef  Google Scholar 

  • Pataki DE et al (2003) The application and interpretation of Keeling plots in terrestrial carbon cycle research. Global Biogeochem Cycles 17:1022. doi:1010.1029/2001GB001850

    CrossRef  Google Scholar 

  • Peterson DL et al (1988) Remote sensing of forest canopy and leaf biochemical contents. Remote Sens Environ 24:85–108

    CrossRef  Google Scholar 

  • Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in C: the art of scientific computing, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Rau GH, Ohman MD, Pierrot-Bults A (2003) Linking nitrogen dynamics to climate variability off central California: a 51 year record based on 15N/14N in CalCOFI zooplankton. Deep Sea Res II: Topical Stud Oceanogr 50:2431–2447

    CrossRef  CAS  Google Scholar 

  • Robinson D (2001) δ15N as an integrator of the nitrogen cycle. Trends Ecol Evol 16:153–162

    CrossRef  Google Scholar 

  • Sachs P (1997) Nitrogen isotopes in Chlorophyll and the origin of Eastern Mediterranean sapropels. PhD dissertation, Massachusetts Institute of Technology, Cambridge, MA, USA

    CrossRef  Google Scholar 

  • Schlesinger WH (1997) Biogeochemistry: an analysis of global change, 2nd edn. Academic, New York

    Google Scholar 

  • Schlesinger WH, Raikes JA, Hartley AE, Cross AF (1996) On the spatial pattern of soil nutrients in desert ecosystems. Ecology 77:364–374

    CrossRef  Google Scholar 

  • Scholes RJ, Dowty PR, Caylor K, Parsons DAB, Frost PGH, Shugart HH (2002) Trends in savanna structure and composition along an aridity gradient in the Kalahari. J Veg Sci 13:419–428

    CrossRef  Google Scholar 

  • Schulze E-D, Gebauer G, Ziegler H, Lange OL (1991) Estimates of nitrogen fixation by trees on an aridity gradient in Namibia. Oecologia 88:451–455

    CrossRef  Google Scholar 

  • Shafer JM, Varljen MD (1990) Approximation of confidence-limits on sample semivariograms from single realizations of spatially correlated random-fields. Water Resour Res 26:1787–1802

    CrossRef  Google Scholar 

  • Shaner P-J, Michael B, Stephen M (2007) Giving-up density and dietary shifts in the white-footed mouse, peromyscus leucopus. Ecology 88:87–95

    Google Scholar 

  • Shugart HH et al (2004) The SAFARI 2000-Kalahari transect wet season campaign of year 2000. Global Change Biol 10:273–280

    CrossRef  Google Scholar 

  • Smith BN, Epstein S (1971) Two categories of 13C/12C ratios for higher plants. Plant Physiol 47:380–384

    CrossRef  CAS  Google Scholar 

  • Still C, Berry J, Collatz G, DeFries R (2003) Global distribution of C-3 and C-4 vegetation: carbon cycle implications. Global Biogeochem Cycles 17:1006. doi:1010.1029/2001GB001807

    CrossRef  Google Scholar 

  • Su Y, Li Y, Zhao H (2006) Soil properties and their spatial pattern in a degraded sandy grassland under post-grazing restoration, Inner Mongolia, northern China. Biogeochemistry 79:297–314

    CrossRef  Google Scholar 

  • Tateno R et al (2003) Use of foliar N-15 and C-13 abundance to evaluate effects of microbiotic crust on nitrogen and water utilization in Pinus massoniana in deteriorated pine stands of south China. Ecol Res 18:279–286

    CrossRef  CAS  Google Scholar 

  • Treuhaft RN, Law BE, Asner GP (2004) Forest attributes from radar Interferometric structure and its fusion with optical remote sensing. BioScience 54:561–571

    CrossRef  Google Scholar 

  • Wang L, Shaner P-JL, Macko S (2007a) Foliar δ15N patterns along successional gradients at plant community and species levels. Geophys Res Lett 34:L16403. doi:16410.11029/12007GL030722

    CrossRef  Google Scholar 

  • Wang L, Okin GS, Wang J, Epstein H, Macko SA (2007b) Predicting leaf and canopy 15N compositions from reflectance spectra. Geophys Res Lett 34:L02401. doi:02410.01029/02006GL028506

    CrossRef  Google Scholar 

  • Wang L, Mou PP, Huang J, Wang J (2007c) Spatial variation of nitrogen availability in a subtropical evergreen broadleaved forest of southwestern China. Plant Soil 295:137–150

    CrossRef  CAS  Google Scholar 

  • Wang L, D’Odorico P, Ringrose S, Coetzee S, Macko S (2007d) Biogeochemistry of Kalahari sands. J Arid Environ 71:259–279. doi:210.1016/j.jaridenv.2007.1003.1016

    CrossRef  Google Scholar 

  • Wang L, D’Odorico P, Ries L, Caylor K, Macko S (2009a) Combined effects of soil moisture and nitrogen availability variations on grass productivity in African savannas. Plant and Soil doi 10.1007/s11104-009-0085-z

    Google Scholar 

  • Wang L, D’Odorico P, Ries L, Macko S (2009b) Patterns and implications of plant-soil δ13C and δ15N values in African savanna ecosystems. Quaternary Research doi:10.1016/j.yqres.2008.11.

    Google Scholar 

  • Wessman CA, Aber JD, Peterson DL, Melillo JM (1988) Foliar analysis using near infrared reflectance spectroscopy. Can J For Res 18:6–11

    CrossRef  Google Scholar 

  • Wilson P, Norris R (2001) Warm tropical ocean surface and global anoxia during the mid-Cretaceous period. Nature 412:425–429

    CrossRef  CAS  Google Scholar 

  • Yoder B, Pettigrew-Crosby R (1995) Predicting nitrogen and chlorophyll content and concentrations from reflectance spectra (400–2500 nm) at leaf and canopy scales. Remote Sens Environ 53:199–211

    CrossRef  Google Scholar 

  • Yoshida N, Toyoda S (2000) Constraining the atmospheric N2O budget from intramolecular site preference in N2O isotopomers. Nature 405:330–334

    CrossRef  CAS  Google Scholar 

  • Zhou J, Wu Y, Zhang J, Kang Q, Liu Z (2006) Carbon and nitrogen composition and stable isotope as potential indicators of source and fate of organic matter in the salt marsh of the Changjiang Estuary, China. Chemosphere 65:310–317

    CrossRef  CAS  Google Scholar 

Download references

Acknowledgements

The project was supported by NASA-IDS2 (NNG-04-GM71G) and a research fund from the Blandy Experimental Farm of University of Virginia. We are grateful for field assistance and earlier contributions from Paolo D’Odorico, Kelly Caylor, Howie Epstein and Jin Wang. We thank Dr. Linda Pardo from USDA Forest Service for providing raw data of her published work. Lixin Wang thanks Dr. Gengsuo Jia and Dr. Domingo Alcaraz for the technical support of ENVI. The clarity of this chapter greatly benefited from the comments provided by Dr. Brenden E. McNeil and one anonymous reviewer. This manuscript is based in part on IR/D support by the National Science Foundation, to SAM while working at the Foundation. Any opinion, finding, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lixin Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Wang, L., Okin, G.S., Macko, S.A. (2010). Remote Sensing of Nitrogen and Carbon Isotope Compositions in Terrestrial Ecosystems. In: West, J., Bowen, G., Dawson, T., Tu, K. (eds) Isoscapes. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3354-3_3

Download citation