Skip to main content
Book cover

Isoscapes pp 33–50Cite as

Global Hydrological Isotope Data and Data Networks

Abstract

Isotopes of light elements constitute a set of powerful and widely used environmental tracers that often provide unique information about hydrological, climatological, and ecological processes. Environmental isotopes are extensively used in groundwater and surface water hydrology, palaeoclimatic reconstructions, atmospheric circulation processes, ocean dynamics, archaeology, palaeontology, anthropology, ecology, food webs, forensics and food authentication. Basic data on spatial and temporal distribution of isotopes at varying scales in the different components of the water cycle are required for a meaningful application of these tracers. A major source of isotope data on a global scale has been provided since the 1960s by the International Atomic Energy Agency (IAEA), which collects and disseminates isotope data and related hydrological information obtained as part of global or regional monitoring programmes and isotope hydrology studies. Available isotope data are gathered and compiled through global networks such as the global network of isotopes in precipitation (GNIP); global network of isotopes in rivers (GNIR); and moisture isotopes in biosphere and atmosphere (MIBA) network. In addition, global isotope data from surface waters and groundwaters are also being compiled. Other important hydrological isotope databases not covered by these networks are the Global Seawater Oxygen-18 Database; and GNIP-Antarctica, an extensive data set containing isotope composition of samples collected in Antarctic snow pits and ice cores. This chapter reviews the current status of and the basic information provided by global isotope networks and databases, and includes some examples of how such data are used to understand regional- to global-scale processes.

Keywords

  • Isotope Composition
  • International Atomic Energy Agency
  • Isotope Data
  • World Meteorological Organization
  • Stable Isotope Data

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-90-481-3354-3_2
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-90-481-3354-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 2.1
Fig. 2.2
Fig. 2.3
Fig. 2.4
Fig. 2.5
Fig. 2.6
Fig. 2.7

References

  • Aggarwal PK, Alduchov O, Araguás-Araguás L, Dogramaci S, Katzlberger G, Kriz K, Kulkarni KM, Kurttas T, Newman BD, Pucher A (2007) New capabilities for studies using isotopes in the water cycle. EOS Trans AGU 88(49):537–538

    CrossRef  Google Scholar 

  • Birks SJ, Gibson JJ, Gourcy L, Aggarwal PK, Edwards TWD (2002) Maps and animations offer new opportunities for studying the global water cycle. EOS Trans AGU 83(37):406

    CrossRef  Google Scholar 

  • Bowen GJ (2010) Statistical and geostatistical mapping of precipitation water isotope ratios. In: JB West et al. (eds.), Isoscapes: Understanding movement, pattern, and process on Earth through isotope mapping, Springer Science.

    Google Scholar 

  • Bowen GJ, Revenaugh J (2003) Interpolating the isotopic composition of modern meteoric precipitation. Water Resour Res 39(10):1299

    CrossRef  Google Scholar 

  • Bowen GJ, Wilkinson BH (2002) Spatial distribution of δ18O in meteoric precipitation. Geology 30(4):315–318

    CrossRef  Google Scholar 

  • Bowen GJ, Ehleringer JR, Chesson LA, Stange E, Cerling TE (2007) Stable isotope ratios of tap water in the contiguous United States. Water Resour Res 43:W03419

    Google Scholar 

  • Celle-Jeanton H, Gonfiantini R, Travi Y, Sol B (2004) Oxygen-18 variations of rainwater during precipitation: application of the Rayleigh model to selected rainfalls in Southern France. J Hydrol 289:165–177

    CrossRef  CAS  Google Scholar 

  • Coplen TB, Huang R (2000) Stable hydrogen and oxygen isotope ratios for selected sites of the National Oceanic and Atmospheric Administration’s Atmospheric Integrated Research Monitoring Network (AiRMoN). US Geological Survey Open File Report 00-279 Reston

    Google Scholar 

  • Coplen TB, Kendall C (2000) Stable hydrogen and oxygen isotope ratios for selected sites of the US Geological Survey’s NASQAN and Benchmark surface-water networks. US Geological Survey Open File Report 00-160 Reston

    Google Scholar 

  • Coplen TB, Neiman PJ, White AB, Landwehr JM, Ralph FM, Dettinger MD (2008) Extreme changes in stable hydrogen isotopes and precipitation characteristics in a landfalling Pacific storm. Geophys Res Lett 35:L21808

    CrossRef  Google Scholar 

  • Craig H (1961) Isotopic variations in meteoric waters. Science 133:1702–1703

    CrossRef  CAS  Google Scholar 

  • Craig H, Gordon LI (1965) Deuterium and oxygen-18 variations in the ocean and the marine atmosphere. In: Tongiorgi E (ed) Stable isotopes in oceanographic studies and paleotemperatures. Lab di Geologia Nucleare, Pisa, pp 9–130

    Google Scholar 

  • Criss RE, Davisson ML (1996) Isotopic imaging of surface water/groundwater interactions, Sacramento Valley, California. J Hydrol 178:205–222

    CrossRef  Google Scholar 

  • Dansgaard W (1953) The abundance of 18O in atmospheric water and water vapour. Tellus 5:461–469

    CrossRef  Google Scholar 

  • Dansgaard W (1954) The 18O abundance of fresh water. Geochim Cosmochim Acta 6:241–260

    CrossRef  CAS  Google Scholar 

  • Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16:438–468

    Google Scholar 

  • Davisson ML, Criss RE (1993) Stable isotope imaging of a dynamic groundwater system in the southwestern Sacramento Valley, California, USA. J Hydrol 144:213–246

    CrossRef  CAS  Google Scholar 

  • Doney SC, Glover DM, Jenkins WJ (1992) A model function of the global bomb tritium distribution in precipitation, 1960–1986. J Geophys Res 97(C4):5481–5492

    Google Scholar 

  • Dutton A, Wilkinson BH, Welker JM, Bowen GJ, Lohmann KC (2005) Spatial distribution and seasonal variation in 18O/16O of modern precipitation and river water across the conterminous USA. Hydrol Process 19:4121–4146

    CrossRef  CAS  Google Scholar 

  • Friedman I (1953) Deuterium content of natural waters and other substances. Geochim Cosmochim Acta 4:89–103

    CrossRef  CAS  Google Scholar 

  • Friedman I, Smith GI, Gleason JD, Warden A, Harris JM (1992) Stable isotope composition of waters in southeastern California. 1 Modern precipitation. J Geophys Res 97(D5):5795–5812

    Google Scholar 

  • Gibson JJ, Fekete BM, Bowen, GJ (2010) Stable isotopes in large scale hydrological applications In: JB West et al. (eds.), Isoscapes: Understanding movement, pattern, and process on Earth through isotope mapping, Springer Science.

    Google Scholar 

  • Hoffmann G, Werner M, Heimann M (1998) Water isotope module of the ECHAM atmospheric general circulation model: a study on timescales from days to several years. J Geophys Res 103(D14):16,871–16,896

    Google Scholar 

  • Hoffmann G, Jouzel J, Masson V (2000) Stable water isotopes in atmospheric general circulation models. Hydrol Process 14:1385–1406

    CrossRef  Google Scholar 

  • Gat JR (1996) Oxygen and hydrogen isotopes in the hydrologic cycle. Annu Rev Earth Planet Sci 24:225–262

    CrossRef  CAS  Google Scholar 

  • Gat JR, Dansgaard W (1972) Stable isotope survey of the freshwater occurrences in Israel and the northern Jordan rift valley. J Hydrol 16:177–212

    CrossRef  CAS  Google Scholar 

  • Gat JR, Klein B, Kushnir Y, Roether W, Wernli H, Yam R, Shemesh A (2003) Isotope composition of air moisture over the Mediterranean Sea: an index of the air–sea interaction pattern. Tellus B Chem Phys Meteorol 55(5):953–965

    CrossRef  Google Scholar 

  • Gibson JJ, Aggarwal PK, Hogan J, Kendall C, Martinelli LA, Stichler W, Rank D, Goni I, Choudry M, Gat JR, Bhattacharya S, Sugimoto A, Fekete B, Pietronino A, Maurer T, Panarello H, Stone D, Seyler P, Maurice-Bourgoin L, Herczeg A (2002) Isotope studies in large river basins: a new global research focus. EOS Trans AGU 83(52):613, 616–617

    Google Scholar 

  • Gonfiantini R (1985) On the isotopic composition of precipitation in tropical stations. Acta Amaz 15:121–139

    CAS  Google Scholar 

  • Gourcy L, Groening M, Aggarwal PK (2005) Stable oxygen and hydrogen isotopes. In: Aggarwal PK, Gat JR, Froehlich K (eds) Isotopes in the Water Cycle International Atomic Energy Agency. Springer, Dordrecht, pp 39–51

    Google Scholar 

  • Ingraham NL, Taylor BE (1986) Hydrogen isotope study of large-scale meteoric water transport in northern California and Nevada. J Hydrol 85:183–197

    CrossRef  CAS  Google Scholar 

  • International Atomic Energy Agency (1981) Statistical treatment of environmental isotope data in precipitation. Technical Reports Series No 206 IAEA, Vienna

    Google Scholar 

  • International Atomic Energy Agency (1992) Statistical treatment of data on environmental isotopes in precipitation. Technical Reports Series No 331 IAEA, Vienna

    Google Scholar 

  • International Atomic Energy Agency (2007) Atlas of isotope hydrology – Africa STI-PUB-1302 IAEA, Vienna

    Google Scholar 

  • International Atomic Energy Agency (2008) Atlas of isotope hydrology – Asia and the Pacific STI-PUB-1364 IAEA, Vienna

    Google Scholar 

  • International Atomic Energy Agency/World Meteorological Organization (2008) Global network of isotopes in precipitation. The GNIP Database. http://www.iaea.org/water Accessed date: May 2008

  • Jouzel J, Hoffmann G, Koster RD Masson V (2000) Water isotopes in precipitation: data/model comparison for present-day and past climates. Q Sci Rev 19:363–379

    Google Scholar 

  • Kendall C, Coplen T (2001) Distribution of oxygen-18 and deuterium in river waters across the United States. Hydrol Process 15:1363–1393

    CrossRef  Google Scholar 

  • Kurita N, Yoshida N, Inoue G, Chayanova EA (2004) Modern isotope climatology of Russia: a first assessment. J Geophys Res 109:D03102

    CrossRef  Google Scholar 

  • Lachniet MS, Patterson WP (2002) Stable isotope values of Costa Rica surface waters. J Hydrol 260:135–150

    CrossRef  CAS  Google Scholar 

  • LeGrande AN, Schmidt GA (2006) Global gridded data set of the oxygen isotopic composition in seawater. Geophys Res Lett 33:L12604

    CrossRef  Google Scholar 

  • Longinelli A, Selmo E (2003) Isotopic composition of precipitation in Italy: a first overall map. J Hydrol 270:75–88

    CrossRef  CAS  Google Scholar 

  • Lykoudis SP, Argiriou AA (2007) Gridded data set of the stable isotopic composition of precipitation over the Eastern and central Mediterranean. J Geophys Res 112:D18107

    CrossRef  Google Scholar 

  • Maloszewski P, Zuber A (1996) Lumped parameter models for the interpretation of environmental tracer data. In: Manual on mathematical models in isotope hydrology IAEA TECDOC 910. International Atomic Energy Agency, Vienna, pp 9–58

    Google Scholar 

  • Masson-Delmotte V, Hou S, Ekaykin A, Jouzel J, Aristarain A, Bernardo RT, Bromwhich D, Cattani O, Delmotte M, Falourd S, Frezzotti M, Gallée H, Genoni L, Isaksson E, Landais A, Helsen M, Hoffmann G, Lopez J, Morgan V, Motoyama H, Noone D, Oerter H, Petit JR, Royer A, Uemura R, Schmidt GA, Schlosser E, Simões JC, Steig E, Stenni B, Stievenard M, van den Broeke M, van de Wal R, van den Berg MJ, Vimeux F, White JWC (2008) A review of Antarctic surface snow isotopic composition: observations, atmospheric circulation and isotopic modelling. J Clim 21:3359–3387

    CrossRef  Google Scholar 

  • McKinney CR, McCrea JM, Epstein S, Allen HA, Urey HC (1950) Improvements in mass spectrometers for the measurement of small differences in isotope abundances ratios. Rev Sci Instrum 21:724–756

    CrossRef  CAS  Google Scholar 

  • Michel RL (1992) Residence times in river basins as determined by analysis of long-term tritium records. J Hydrol 130:367–378

    CrossRef  Google Scholar 

  • Michel RL, Aggarwal PK, Kurttas T, Araguás-Araguás L, Kulkarni KM (2006) The use of tritium in river baseflow to understand long-term changes in water quality. EGU Conference, Vienna, April 2006

    Google Scholar 

  • Mook WG (1982) The oxygen-18 content of rivers. Mitt Geol-Paläont Int Univ Hamburg SCOPE/UNEP Sonderbrand 52:565–57

    Google Scholar 

  • Morgan VI (1982) Antarctic ice sheet surface oxygen isotope values. J Glaciol 28(99):315–323

    CAS  Google Scholar 

  • Nier AO (1947) A mass spectrometer for isotope and gas analysis. Rev Sci Instrum 18:398–411

    CrossRef  CAS  Google Scholar 

  • Noone D, Simmonds I (2002) Associations between δ18O of water and climate parameters in a simulation of atmospheric circulation for 1979–95. J Clim 15(22):3150–3169

    CrossRef  Google Scholar 

  • Rindsberger M, Jaffe S, Rahamim S, Gat JR (1990) Patterns of the isotopic composition of precipitation in time and space: data from the Israeli storm water collection program. Tellus B Chem Phys Meteorol 42:263–271

    CrossRef  Google Scholar 

  • Rozanski K, Gonfiantini R, Araguás-Araguás L (1991) Tritium in the global atmosphere: distribution patterns and recent trends. J Phy G: Nucl Part Phys 17:S523–S536

    CrossRef  Google Scholar 

  • Rozanski K, Araguás-Araguás L, Gonfiantini R (1992) Relation between long-term trends of oxygen-18 isotope composition of precipitation and climate. Science 258:981–985

    CrossRef  CAS  Google Scholar 

  • Rozanski K, Araguás-Araguás L, Gonfiantini R (1993) Isotopic patterns in modern global precipitation. In: Swart PK, Lohmann KL, McKenzie J, Savin S (eds) Climate change in continental isotopic records. Geophysical Monograph 78 American Geophysical Union, Washington DC, pp 1–37

    Google Scholar 

  • Salati E, Dall’Olio A, Matsui E, Gat JR (1979) Recycling of water in the Amazon basin: an isotopic study. Water Resour Res 15(5):1250–1258

    CrossRef  CAS  Google Scholar 

  • Schmidt GA, Bigg GR, Rohling EJ (1999) Global seawater oxygen-18 database. http://data.giss.nasa.gov/o18data Accessed date: May 2008

  • Schoch-Fischer H, Rozanski K, Jacob H, Sonntag C, Jouzel J, Östlund G, Geyh MA(1984) Hydrometeorological factors controlling the time variation of D, 18O and 3H in atmospheric water vapour and precipitation in the northern westwind belt. In: Isotope Hydrology 1983, International Atomic Energy Agency, Vienna, pp 3–31

    Google Scholar 

  • Smith GI; Friedman I; Gleason JD, Warden A (1992) Stable isotope composition of waters in southeastern California: 2 groundwaters and their relation to modern precipitation. J Geophys Res 97(D5):5813–5823

    Google Scholar 

  • Sturm K, Hoffmann G, Langmann B, Stichler W (2005) Simulation of δ18O in precipitation by the regional circulation model REMOiso. Hydrol Process 19(17):3425–3444

    CrossRef  CAS  Google Scholar 

  • Vachon RW, White JWC, Gutman E, Welker JM (2007) Amount-weighted annual isotopic (δ18O) values are affected by the seasonality of precipitation. A sensitivity study. Geophys Res Lett 34:L 21707

    Google Scholar 

  • Vitvar T, Aggarwal PK, Herczeg AL (2007) Global Network is launched to monitor isotopes in rivers. Eos Trans AGU 88(33):325–326

    CrossRef  Google Scholar 

  • Yurtsever Y, Gat JR (1981) Atmospheric waters. In: Gat JR, Gonfiantini R (eds) Stable isotope hydrology: deuterium and oxygen-18 in the water cycle. IAEA Technical Reports Series 210. International Atomic Energy Agency, Vienna, pp 103–142

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradeep K. Aggarwal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Aggarwal, P.K. et al. (2010). Global Hydrological Isotope Data and Data Networks. In: West, J., Bowen, G., Dawson, T., Tu, K. (eds) Isoscapes. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3354-3_2

Download citation