Skip to main content

Global Network Measurements of Atmospheric Trace Gas Isotopes

Abstract

The Earth’s atmosphere is critical to life on Earth and human activities have been altering its composition since at least the industrial revolution. The global climate change during the twenty-first century will very likely be larger than that observed during the twentieth century. Atmospheric monitoring programs provide critical observations with long-term direct measurements of greenhouse gases and their isotopes that help constrain our understanding of that global climate change by driving models that improve our knowledge of biosphere/ocean processes at the heart of the climate system. In this chapter we highlight the importance of global atmospheric monitoring, explore several global measurement programs, and outline the critical elements necessary to operate these observational networks. We revisit the criteria necessary for intercomparison and linking of atmospheric isotopic data sets from the global measurement community, and present some recent data products and results for isotopic models that shed important light on sources and sinks of greenhouse gases.

Keywords

  • International Atomic Energy Agency
  • Tunable Diode Laser Absorption Spectroscopy
  • Tall Tower
  • Data Management Strategy
  • Laboratory Intercomparison

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-90-481-3354-3_1
  • Chapter length: 29 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-90-481-3354-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 1.1
Fig. 1.2
Fig. 1.3
Fig. 1.4
Fig. 1.5
Fig. 1.6
Fig. 1.7

References

  • Allison CE, Francey RJ (1995) High precision stable isotope measurements of atmospheric trace gases. In: Reference and intercomparison materials for stable isotopes of light elements: proceedings of a consultants meeting, Vienna (IAEA-TECDOC-825). International Atomic Energy Agency, Vienna, Austria, pp 131–153

    Google Scholar 

  • Allison CE, Francey RJ, Steele LP (2002) The International Atomic Energy Agency circulation of laboratory air standards for stable isotope comparisons: aims, preparation and preliminary results. In: Isotope aided studies of atmospheric carbon dioxide and other greenhouse gases Phase II (IAEA-TECDOC-1269). International Atomic Energy Agency, Vienna, Austria, pp 5–23

    Google Scholar 

  • Allison CE, Francey RJ, White JWC, Vaughn BH, Wahlen M, Bollenbacher A, Nakazawa T (2003) What have we learnt about stable isotope measurements from the IAEA CLASSIC? In: Report of the eleventh WMO/IAEA meeting of experts on carbon dioxide concentration and related tracer measurement techniques, Tokyo, Japan, 25–28 September 2001, WMO/GAW Report No. 148, Geneva, pp 17–30

    Google Scholar 

  • Allison GB, Barnes CJ, Hughes MW (1983) The distribution of deuterium and 18O in dry soils (2). Exp J Hydrol 64:377–397

    CrossRef  CAS  Google Scholar 

  • Archer D (2005) Fate of fossil fuel CO2 in geologic time. J Geophys Res 110 (C9):C09S05.1-C09S05.6. DOI 10.1029/2004JC002625

    Google Scholar 

  • Assonov SS, Brenninkmeijer CAM (2003) On the 17O correction for CO2 mass spectrometric isotopic analysis. Rapid Commun Mass Spectrom 17:1007–1016

    CrossRef  CAS  Google Scholar 

  • Assonov SS, Brenninkmeijer CAM (2006) On the N2O correction used for mass spectrometric analysis of atmospheric CO2. Rapid Commun Mass Spectrom 20:1809–1819

    CrossRef  CAS  Google Scholar 

  • Battle M, Bender ML, Tans PP, White JWC, Ellis JT, Conway TJ, Francey RJ (2000) Global carbon sinks and their variability inferred from atmospheric CO2 and δ13C. Science 287:2467–2470

    CrossRef  CAS  Google Scholar 

  • Becker JF, Sauket TB, Loewenstein M (1992) Stable isotope analysis using tunable diode laser spectroscopy. Appl Opt 31(12):1921–1927

    CrossRef  CAS  Google Scholar 

  • Boaretto E et al (2002) Summary findings of the fourth international radiocarbon intercomparison (FIRI) (1998–2001). J Q Sci 17(7):633–637

    CrossRef  Google Scholar 

  • Bowling DR, McDowell NG, Bond BJ, Law BE, Ehleringer JR (2002) 13C content of ecosystem respiration is linked to precipitation and vapor pressure deficit. Oecologia 131(1):113–124

    CrossRef  Google Scholar 

  • Bowling DR, Sargent SD, Tanner BD, Ehleringer JR (2003) Tunable diode laser absorption spectroscopy for stable isotope studies of ecosystem–atmosphere CO2 exchange. Agric For Meteorol 118(1–2):1–19

    CrossRef  Google Scholar 

  • Brenninkmeijer CAM, Röckmann T (1998) A rapid method for the preparation of O2 from CO2 for mass spectrometric measurement of 17O/16O ratios. Rapid Commun Mass Spectrom 12:479–483

    CrossRef  CAS  Google Scholar 

  • Brenninkmeijer CAM et al (2007) The CARIBIC aircraft system for detailed, long-term, global-scale measurement trace gases and aerosol changing atmosphere. Int Glob Atmos Chem Newsl 37

    Google Scholar 

  • Broecker WS, Sutherland D, Smethie W (1995) Oceanic radiocarbon: separation of natural and bomb components. Glob Biogeochem Cycles 9(2):263–288

    CrossRef  Google Scholar 

  • Caldeira K, Wickett ME (2005) Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean. J Geophys Res 110(C9):C09S04.1-C09S04.12. DOI 10.1029/2004JC0026

    Google Scholar 

  • Ciais P, Tans PP, White JWC, Trolier M, Francey RJ, Berry JA, Randall DR, Sellers PJ, Collatz JG, Schimel DS (1995) Partitioning of ocean and land uptake of CO2 as inferred by δ13C measurements from the NOAA climate monitoring and diagnostics laboratory global air sampling network. J Geophys Res 100:5051–70

    CrossRef  CAS  Google Scholar 

  • Ciais P et al (1997a) A three-dimensional synthesis study of δ18O in atmospheric CO2. 1. Surface fluxes. J Geophys Res-Atmos 102:5857–5872

    CrossRef  CAS  Google Scholar 

  • Ciais P et al. (1997b) A three-dimensional synthesis study of δ18O in atmospheric CO2 2. Simulations with the TM2 transport model. J Geophys Res-Atmos 102(D5):5873–5883

    Google Scholar 

  • Ciais P et al (2005) Remarks on the use of 13C and 18O isotopes in atmospheric CO2 to quantify biospheric carbon fluxes. In: Flanagan LB, Ehleringer JR, Pataki DE (eds) Stable isotopes and biosphere–atmosphere interactions: processes and biological controls. Elsevier Academic, San Diego, CA

    Google Scholar 

  • Clark HL, Cathala ML, Teyssedre H, Cammas JP, Peuch VH (2007) Cross-tropopause fluxes of ozone using assimilation of MOZAIC observations in a global CTM. Tellus B 59(1):39–49

    CrossRef  Google Scholar 

  • Coplen TB (1994) Reporting of stable carbon, hydrogen and oxygen isotopic abundances. Pure Appl Chem 66:273–276

    CrossRef  CAS  Google Scholar 

  • Coplen TB (1995) Reporting of stable hydrogen, carbon, and oxygen isotopic abundances. Geothermics 24(5–6):707–712

    CrossRef  Google Scholar 

  • Coplen TB (1996) New guidelines for reporting stable hydrogen, carbon, and oxygen isotope-ratio data. Geochim Cosmochim Acta 60(17):3359–3360

    CrossRef  CAS  Google Scholar 

  • Coplen TB, Brand WA, Gehre M, Gröning M, Meijer HAJ, Toman B, Verkouteren RM (2006) New guidelines for δ13C measurements. Anal Chem 78:2439–2441

    CrossRef  CAS  Google Scholar 

  • Craig H (1957) Isotopic standards for carbon and oxygen and correction factors for mass-spectrometric analysis of carbon dioxide. Geochim Cosmochim Acta 12:133–149

    CrossRef  CAS  Google Scholar 

  • Craig H, Gordon LI (1965) Isotopic oceanography; deuterium and oxygen 18 variations in the ocean and the marine atmosphere. In: Symposium on marine geochemistry, 1964, Narragansett Marine Laboratory, University of Rhode Island, Kingston, RI, pp 277–374

    Google Scholar 

  • Craig H, Keeling CD (1963) The effect of atmospheric N2O on the measured isotopic composition of atmospheric CO2. Geochim Cosmochim Acta 27:549–551

    CrossRef  CAS  Google Scholar 

  • Crosson ER, Ricci KN, Richman BA, Chilese FC, Owano TG, Provencal RA, Todd MW, Glasser J, Kachanov AA, Paldus BA (2002) Stable isotope ratios using cavity ring-down spectroscopy: determination of 13C/12C for carbon dioxide. Anal Chem 74:2003–2007

    CrossRef  CAS  Google Scholar 

  • Cuntz M, Ciais P, Hoffmann G, Knorr W (2003a) A comprehensive global three-dimensional model of δ18O in atmospheric CO2: 1. Validation of surface processes. J Geophys Res-Atmos 108(D17):4527. DOI 10.1029/2002JD003153

    Google Scholar 

  • Cuntz M et al. (2003b), A comprehensive global three-dimensional model of δ18O in atmospheric CO2: 2. Mapping the atmospheric signal. J Geophys Res-Atmos 108(D17):4528. DOI 10.1029/2002JD003154

    Google Scholar 

  • Durry G, Megie G (1999) Atmospheric CH4 and H2O monitoring with near-infrared InGaAs laser diodes by the SDLA, a balloonborne spectrometer for tropospheric and stratospheric in situ measurements. Appl Opt 38(36):7342–7354

    CrossRef  CAS  Google Scholar 

  • Esler MB, Griffith DWT, Turatti F, Wilson SR, Rahn T, Zhang H (2000) N2O concentration and flux measurements and complete isotopic analysis by FTIR spectroscopy. Chemosphere – Global Change Sci 2(3–4):445–454

    CrossRef  CAS  Google Scholar 

  • Farquhar GD, Lloyd J, Taylor JA, Flanagan LB, Syvertsen JP, Hubick KT, Wong SC, Ehleringer JR (1993) Vegetation effects on the isotope composition of oxygen in atmospheric CO2. Nature 363:439–443

    CrossRef  CAS  Google Scholar 

  • Ferretti DF, Miller JB, White JWC, Etheridge DM, Lassey KR, Lowe DC, MacFarling Meure CM, Dreier MF, Trudinger CM, van Ommen TD, Langenfelds RL (2005) Unexpected changes to the global methane budget over the past 2000 years. Science 309(5741):1714–1717

    CrossRef  CAS  Google Scholar 

  • Flanagan LB (2005) Ecosystem CO2 exchange and variation in the δ18O of atmospheric CO2. In: Flanagan LB, Ehleringer JR, Pataki DE (eds) Stable isotopes and biosphere–atmosphere interactions: processes and biological controls. Elsevier Academic, San Diego, CA, pp 171–181

    Google Scholar 

  • Flückiger J, Monnin E, Stauffer B, Schwander J, Stocker TF, Chappellaz J, Raynaud D, Barnola JM (2002) High resolution Holocene N2O ice core record and its relationship with CH4 and CO2. Glob Biogeochem Cycles 16(1):1010. doi:10.1029/2001GB001417

    CrossRef  Google Scholar 

  • Francey RJ, Tans PP (1987) Latitudinal variation in oxygen-18 of atmospheric CO2. Nature 327:495–497

    CrossRef  CAS  Google Scholar 

  • Friedli H, Siegenthaler U, Rauber D, Oeschger H (1987) Measurements of concentration, 13C/12C and 18O/16O ratios of tropospheric carbon dioxide over Switzerland. Tellus 39B:80–88

    CrossRef  CAS  Google Scholar 

  • Fung I, Field CB, Berry JA, Thompson MV, Randerson JT, Malmström CM, Vitousek PM, Collatz GJ, Sellers PJ, Randall DA, Denning AS, Badeck F, John J (1997) Carbon 13 exchanges between the atmosphere and biosphere. Glob Biogeochem Cycles 11:507–533. doi:10.1029/97GB01751

    CrossRef  CAS  Google Scholar 

  • Gaudinski JB, Trumbore SE, Davidson EA, Zheng S (2000) Soil carbon cycling in a temperate forest: radiocarbon-based estimates of residence times, sequestration rates and partitioning of fluxes. Biogeochem 51:33–69

    CrossRef  Google Scholar 

  • Gemery PA, Trolier M, White JWC (1996) Oxygen isotope exchange between carbon dioxide and water following atmospheric sampling using glass flasks. J Geophys Res 101(D9):14,415–14,420

    Google Scholar 

  • Ghosh P, Brand W (2004) The effect of N2O on the isotopic composition of air-CO2 samples. Rapid Commun Mass Spectrom 18:1830–1838

    CrossRef  CAS  Google Scholar 

  • Ghosh P, Patecki M, Rothe M, Brand WA (2005) Calcite-CO2 mixed into CO2-free air: a new CO2-in-air stable isotope reference material for the VPDB scale. Rapid Commun Mass Spectrom 19(8):1097–1119

    CrossRef  CAS  Google Scholar 

  • Gierens KM, Schumann U, Smit HG, Helten M, Zängl G (1997) Determination of humidity and temperature fluctuations based on MOZAIC data and parametrisation of persistent contrail coverage for general circulation models. Ann Geophys 15:1057–1066

    CrossRef  Google Scholar 

  • Gillon J, Yakir D (2001) Influence of carbonic anhydrase activity in terrestrial vegetation on the 18O content of atmospheric CO2. Science 291:2584–2587

    CrossRef  CAS  Google Scholar 

  • Godwin H (1962) Half-life of radiocarbon. Nature 195:984

    CrossRef  CAS  Google Scholar 

  • Griffith DW, Leuning R, Denmead OT, Jamie IM (2002) Air-land exchanges of CO2, CH4 and N2O measured by FTIR spectrometry and micrometeorological techniques. Atmos Environ 36(11):1833–1842

    CrossRef  CAS  Google Scholar 

  • Hsueh DY, Krakauer NY, Randerson JT, Xu X, Trumbore SE, Southon JR (2007) Regional patterns of radiocarbon and fossil fuel-derived CO2 in surface air across North America. Geophys Res Lett 34:L02816

    CrossRef  Google Scholar 

  • Indermühle A, Stocker TF, Joos F, Fischer H, Smith HJ, Wahlen M, Deck B, Mastroianni D, Tschumi J, Blunier T, Meyer R, Stauffer B (1999) Holocene carbon-cycle dynamics based on CO2 trapped in ice at Taylor Dome, Antarctica. Nature 398:121–126

    CrossRef  Google Scholar 

  • Ishizawa M, Nakazawa T, Higuchi K (2002) A multi-box model study of the role of the biospheric metabolism in the recent decline of δ18O in atmospheric CO2. Tellus 54B:307–324

    CAS  Google Scholar 

  • Kaiser J (2008) Reformulated 17O correction of mass spectrometric stable isotope measurements in carbon dioxide and a critical appraisal of historic ‘absolute’ carbon and oxygen isotope ratios. Geochim Cosmochim Acta 72(5):1312–1334

    CrossRef  CAS  Google Scholar 

  • Keeling CD, Whorf TP (2005) Atmospheric CO2 records from sites in the SIO air sampling network. In: Trends: a compendium of data on global change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, TN

    Google Scholar 

  • Keeling CD, Bacastow RB, Bainbridge AE, Ekdahl CA, Guenther PR, Waterman LS (1976) Atmospheric carbon dioxide variations at Mauna Loa Observatory, Hawaii. Tellus 28:538–551

    CrossRef  CAS  Google Scholar 

  • Keeling CD, Mook WG, Tans PP (1979) Recent trends in the C-13-C-12 ratio of atmospheric carbon-dioxide. Nature 277(5692):121–123

    CrossRef  CAS  Google Scholar 

  • Keppler F, Hamilton JTG, Bras M, Roeckmann T (2006) Methane emissions from terrestrial plants under aerobic conditions. Nature 439(7073):187–191

    CrossRef  CAS  Google Scholar 

  • Langenfelds RL, Allison CE, Steele LP, Francey RJ, Neubert REM, Meijer HAJ, Machida T, Mukai H, Conway T, Vaughn B, Worthy D (2007) Report on Five Years of International Flask Intercomparison (Sausage ICP). IAEA 2007 report

    Google Scholar 

  • Lee X, Sargent S, Smith R, Tanner B (2005) In situ measurement of the water vapor 18O/16O isotope ratio for atmospheric and ecological applications. J Atmos Oceanic Technol 22:555–565

    CrossRef  Google Scholar 

  • Levin I, Karstens U (2007) Inferring high-resolution fossil fuel CO2 records at continental sites from combined (CO2)-C-14 and CO observations. Tellus B-Chem Phys Meteor 59(2):245–250

    CrossRef  Google Scholar 

  • Levin I, Rödenbeck C (2007) Can the envisaged reductions of fossil fuel CO2 emissions be detected by atmospheric observations? Naturwissenschaften 95(3):203

    CrossRef  Google Scholar 

  • Levin I, Kromer B, Schmidt M, Sartorius H (2003a) A novel approach for independent budgeting of fossil fuel CO2 over Europe by 14CO2 observations. Geophys Res Lett 30(23):2194

    CrossRef  Google Scholar 

  • Levin I et al. (2003b) Eurosiberian Carbonflux – CO2 Intercomparison. In Sasaki Toru (ed) Report of the 11th WMO/IAEA meeting of experts on carbon dioxide concentration and related tracer measurement techniques, Tokyo, Japan, 25–28 September 2001, WMO-Report No. 148

    Google Scholar 

  • Levin I et al. (2007) Five years of international flask intercomparison (sausage flask ICP). 14th WMO/IAEA meeting of experts on carbon dioxide, other greenhouse gases, and related tracer measurement techniques, Helsinki, Finland, 10–13 September 2007

    Google Scholar 

  • Machida T, Matsueda H, Sawa Y, Ikeda H, Kondo N, Yoshida O, Nakazawa T, Oka T (2007) Measurements of atmospheric CO2 using commercial airliners. 14th WMO/IAEA meeting of experts on carbon dioxide, other greenhouse gases, and related tracer measurement techniques, Helsinki, Finland, 10–13 September 2007

    Google Scholar 

  • Masarie KA, Tans PP (1995) Extension and integration of atmospheric carbon dioxide data into a globally consistent measurement record. J Geophys Res 100(D6):11593-11610

    Google Scholar 

  • Masarie KA, Tans PP (2003) Updated guidelines for atmospheric trace gas data management. Global Atmospheric Watch Report Series No. 150, World Meteorological Organization, TD No. 1149, Geneva, 2003

    Google Scholar 

  • Masarie KA, Langenfelds RL, Allison CE, Conway TJ, Dlugokencky EJ, Francey RJ, Novelli PC, Steele LP, Tans PP, Vaughn B, White JWC (2001) NOAA/CSIRO flask air intercomparison experiment: a strategy for directly assessing consistency among atmospheric measurements made by independent laboratories. J Geophys Res 106:20445

    CrossRef  CAS  Google Scholar 

  • McDowell NG, Baldocchi D, Barbour J, Bickford C, Cuntz M, Hanson D, Knohl A, Powers H, Rahn T, Randerson J, Riley WJ, Still C, Walcroft A (2008) Understanding the stable isotope composition of biosphere-atmosphere CO2 exchange. EOS Trans AGU 89(10):94–95

    CrossRef  Google Scholar 

  • Merritt DM, Hayes JM (1994) Factors controlling precision and accuracy in isotope-ratio-monitoring mass spectrometry. Anal Chem 66(14):2336

    CrossRef  CAS  Google Scholar 

  • Mook WG, Jongsma J (1987) Measurement of the N2O correction for 13C/12C ratios of atmospheric CO2 by removal of N2O. Tellus 39B:96–99

    CrossRef  CAS  Google Scholar 

  • Mook WG, van der Hoek S (1983) The N2O correction in the carbon and oxygen isotopic analysis of atmospheric CO2. Isotope Geosci 1:237–242

    CAS  Google Scholar 

  • Ogee J et al. (2004) Partitioning net ecosystem carbon exchange into net assimilation and respiration with canopy-scale isotopic measurements: an error propagation analysis with (CO2)-C-13 and (COO)-O-18 data. Glob Biogeochem Cycles 18(2):GB2019

    Google Scholar 

  • O’Keefe A, Deacon DAG (1988) Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources. Rev Sci Instrum 59:2544

    CrossRef  Google Scholar 

  • Peacock S (2004) Debate over the ocean bomb radiocarbon sink: closing the gap. Glob Biogeochem Cycles 18(2):GB2022

    Google Scholar 

  • Peylin P et al (1999) A 3-dimensional study of δ18O in atmospheric CO2: contribution of different land ecosystems. Tellus 51B:642–667

    CAS  Google Scholar 

  • Randerson JT, Field CB, Fung IY, Tans PP (1999) Increases in early season ecosystem uptake explain recent changes in the seasonal cycle of atmospheric CO2 at high northern latitudes. Geophys Res Lett 26:2765–2769

    CrossRef  CAS  Google Scholar 

  • Randerson JT et al (2002a) Carbon isotope discrimination of arctic and boreal biomes inferred from remote atmospheric measurements and a biosphere-atmosphere model. Glob Biogeochem Cycles 16(3):1028

    CrossRef  Google Scholar 

  • Randerson JT, Chapin FS III, Harden JW, Neff JC, Harmon ME (2002b) Net ecosystem production: a comprehensive measure of net carbon accumulation by ecosystems. Ecol Appl 12:937–947

    CrossRef  Google Scholar 

  • Randerson JT et al (2002c) A possible covariance between terrestrial gross primary production and 13C discrimination: consequences for the atmospheric 13C budget and its response to ENSO. Glob Biogeochem Cycles 16:1136

    CrossRef  Google Scholar 

  • Rayner PJ, Enting IG, Francey RJ, Langenfelds R (1999) Reconstructing the recent carbon cycle from atmospheric CO2 d13C and O2/N2 observations. Tellus 51B:213–228

    Google Scholar 

  • Riley WJ et al (2003) 18O composition of CO2 and H2O ecosystem pools and fluxes in a tallgrass prairie: simulations and comparisons to measurements. Glob Change Biol 9:1567–1581

    CrossRef  Google Scholar 

  • Santrock J, Studely SA, Hayes JM (1985) Isotopic analyses based on the mass spectrum of carbon dioxide. Anal Chem 57(7):1444–1448

    CrossRef  CAS  Google Scholar 

  • Schaeffer SM, Miller JB, Vaughn BH, White JWC, Bowling DR (2008) Long-term field performance of a tunable diode laser absorption spectrometer for analysis of carbon isotopes of CO2 in forest air. Atmos Chem Phys Discuss 8:9531–9568

    CrossRef  Google Scholar 

  • Siegenthaler U, Joos F (1992) Use of a simple model for studying oceanic tracer distributions and the global carbon cycle. Tellus B – Chem Phys Meteor 44B(3):186–207

    CrossRef  CAS  Google Scholar 

  • Sirignano C, Neubert REM, Meijer HAJ (2004) N2O influence on isotopic measurements of atmospheric CO2. Rapid Commun Mass Spectrom 18:1839–1846

    CrossRef  CAS  Google Scholar 

  • Solomon S, Qin D, Manning M, Chen Z, Marquis M, Avery KB, Tignor M, Miller HL (eds) (2007) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Spahni R, Chappellaz J, Stocker TF, Loulergue L, Hausammann G, Kawamura K, Flückiger J, Schwander J, Raynaud D, Masson-Delmotte V, Jouzel J (2005) Atmospheric methane and nitrous oxide of the late Pleistocene from Antarctic ice cores. Science 310:1317–1321

    CrossRef  CAS  Google Scholar 

  • Stern LA, Amundson R, Baisden WT (2001) Influence of soils on oxygen isotope ratio of atmospheric CO2. Glob Biogeochem Cycles 15:753–759

    CrossRef  CAS  Google Scholar 

  • Stouffer RJ, Manabe S (2003) Equilibrium response of thermohaline circulation to large changes in atmospheric CO2 concentration. Clim Dyn 20(7–8):759–773

    CrossRef  Google Scholar 

  • Stuiver M, Polach HA (1977) Discussion; reporting of C-14 data. Radiocarbon 19(3):355–363

    Google Scholar 

  • Sturm P, Leuenberger M, Schmidt M (2005) Atmospheric O2, CO2 and δ13C observations from the remote sites Jungfraujoch, Switzerland, and Puy de Dôme, France. Geophys Res Lett 32:L17811

    CrossRef  Google Scholar 

  • Suess HE (1955) Radiocarbon concentration in modern wood. Science 122:414–417

    CrossRef  Google Scholar 

  • Trumbore SE (2006) Carbon respired by terrestrial ecosystems – recent progress and challenges. Glob Change Biol 12(2):141–153

    CrossRef  Google Scholar 

  • Trolier M, White JWC, Tans PP, Masarie KA, Gemery PA (1996) Monitoring the isotopic composition of atmospheric CO2: measurements from the NOAA global air sampling network. J Geophys Res 101(D20):25,897–25,916

    Google Scholar 

  • Turnbull JC, Miller JB, Lehman SJ, Tans PP, Sparks RJ, Southon JR (2006) Comparison of 14CO2, CO and SF6 as tracers for determination of recently added fossil fuel CO2 in the atmosphere and implications for biological CO2 exchange. Geophys Res Lett 33:L01817

    CrossRef  Google Scholar 

  • Turnbull JC, Miller JB, Lehman SJ, Hurst DF, Peters W, Tans PP, Southon JR, Montzka SA, Elkins JW, Mondeel DJ, Romashkin PA, Elansky NF, Shkorokhod A (2009) Spatial distribution of Δ14CO2 across Eurasia: measurements from the TROICA-8 expedition. Atmos Chem Phys 9:175–187

    CrossRef  CAS  Google Scholar 

  • Vachon RW, White JWC, Gutmann E, Welker JM (2007) Amount-weighted annual isotopic (δ18O) values are affected by the seasonality of precipitation: a sensitivity study. Geophys Res Lett 34:L21707

    CrossRef  Google Scholar 

  • Vaughn B, Ferretti D, Miller J, White JWC (2004) Stable isotope measurements of atmospheric CO2 and CH4. In: Handbook of stable isotope analytical techniques, vol 1. Elsiever, p 1248 Elsevier B.V. Sara Burgerhartstraat 25 Amsterdam, P.O. Box 211, 1000 AE, The Netherlands

    Google Scholar 

  • Walter KM, Edwards ME, Grosse G, Zimov SA, Chapin FS III (2007) Thermokarst lakes as a source of atmospheric CH4 during the last deglaciation. Science 318(5850):633

    CrossRef  CAS  Google Scholar 

  • Welker JM (2000) Isotopic (18O) characteristics of weekly precipitation collected across the USA: An initial analysis with application to water source studies. Hydrol Process 14:1449–1464

    CrossRef  Google Scholar 

  • Wheeler MD, Newman SM, Orr-Ewing AJ, Ashfold MNR (1998) Cavity ring-down spectroscopy. J Chem Soc Faraday Trans 94:337–351. doi:10.1039/a707686j

    CrossRef  CAS  Google Scholar 

  • Welp LR, Randerson JT, Liu HP (2006) Seasonal exchange of CO2 and delta O-18-CO2 varies with postfire succession in boreal forest ecosystems. J Geophys Res-Biogeosci 111(G3):G03007

    Google Scholar 

  • Yakir D, Sternberg LSL (2000) The use of stable isotopes to study ecosystem gas exchange. Oecologia 123(3):297–311

    Google Scholar 

  • Zimov SA, Voropaev YV, Semiletov IP, Davidov SP, Prosiannikov SF, Chapin FS III, Chapin MC, Trumbore S, Tyler S (1997) North Siberian lakes: a methane source fueled by Pleistocene carbon. Science 277:800–802

    CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce H. Vaughn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Vaughn, B.H., Evans, C.U., White, J.W.C., Still, C.J., Masarie, K.A., Turnbull, J. (2010). Global Network Measurements of Atmospheric Trace Gas Isotopes. In: West, J., Bowen, G., Dawson, T., Tu, K. (eds) Isoscapes. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3354-3_1

Download citation