Bonan GB (1994) Comparison of 2 land-surface process models using prescribed forcings. J Geophys Res-Atmos 99:25803–25818
CrossRef
Google Scholar
Bonan GB, Davis KJ, Baldocchi D, Fitzjarrald D, Neumann H (1997) Comparison of the NCAR LSM1 land surface model with BOREAS aspen and jack pine tower fluxes. J Geophys Res-Atmos 102:29065–29075
CrossRef
CAS
Google Scholar
Bony S, Risi C, Vimeux F 2008, Influence of convective processes on the isotopic composition (δ18O and δD) of precipitation and water vapor in the tropics: 1. Radiative-convective equilibrium and Tropical Ocean-Global Atmosphere-Coupled Ocean Ocean-Atmosphere Response Experiment (TOGA-COARE) simulations, J. Geophys Res. doi:10.1029/2008JD009942
Google Scholar
Bosilovich MG, Schubert SD (2002) Water vapor tracers as diagnostics of the regional hydrologic cycle. J Hydrometeorol 3:149–165
CrossRef
Google Scholar
Brown J, Simmonds I, Noone D (2006) Modeling delta O-18 in tropical precipitation and the surface ocean for present-day climate. J Geophys Res-Atmos 111:D05105. doi:10.1029/2004JD005611
CrossRef
Google Scholar
Buenning N, Noone D 2009: An evaluation of annual mean and seasonal timing of local and non-local processes controlling the isotopic composition of precipitation from observations and comprehensive models. Journal of Geophysical Research-Atmospheres, Submitted, May, 2009
Google Scholar
Cappa CD, Hendricks MB, DePaolo DJ, Cohen RC (2003) Isotopic fractionation of water during evaporation. J Geophys Res-Atmos 108:4525. doi:4510.1029/2003JD003597
CrossRef
Google Scholar
Charles CD, Rind D, Healy R, Webb R (2001) Tropical cooling and the isotopic composition of precipitation in general circulation model simulations of the ice age climate. Clim Dyn 17:489–502
CrossRef
Google Scholar
Ciais P, Jouzel J (1994) Deuterium and oxygen 18 in precipitation: an isotopic model including mixed cloud processes. J. Geophys Res 99:19783–16803
CrossRef
Google Scholar
Cole JE, Rind D, Webb RS, Jouzel J, Healy R (1999) Climatic controls on interannual variability of precipitation δ18O: simulated influence of temperature, precipitation amount, and vapor source region. J Geophys Res 104:14223–14235
CrossRef
Google Scholar
Craig H, Gordon LI (1965) Deuterium and oxygen-18 variations in the ocean and marine atmosphere. In: Tongiorgi E (ed) Proceedings of conference on stable isotopes in oceanic studies and paleotemperatures. Laboratory of Geology and Nuclear Science, Spoleto, Italy, pp 9–130
Google Scholar
Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16:436–468
CrossRef
Google Scholar
Dongmann G, Nürnberg HW, Förstel H, Wagener K (1974) On the enrichment of H2
18O in the leaves of transpiring plants. Radiat Environ Biophys 11:41–52
CrossRef
CAS
Google Scholar
Federer B, Brichet N, Jouzel J (1982) Stable isotopes in hailstones. Part I: the isotopic cloud model. J Atmos Sci 39:1323–1336
CrossRef
CAS
Google Scholar
Gedzelman SD, Arnold R (1994) Modeling the isotopic composition of precipitation. J. Geophys Res 99:10455–10471
CrossRef
Google Scholar
Helliker B, Noone D (2009) Novel approaches to monitoring of water vapor isotope ratios: plants, satellites and lasers. In: West, J.B.; Bowen, G.J.; Dawson, T.E.; Tu, K.P. (Eds.) 2010, ISBN: 978-90-481-3353-6. Isoscapes: understanding movement, pattern, and process on Earth through isotope mapping. Springer, Berlin
Google Scholar
Hoffmann G (1995) Wasserisotope im allgemeinen Zirkulationsmodell ECHAM. Universitat Hamburg, Hamburg
Google Scholar
Hoffmann G, Heimann M (1997) Water isotope modeling in the Asian monsoon region. Quart Int 37:115–128
CrossRef
Google Scholar
Hoffmann G, Jouzel J, Masson V (2000) Stable water isotopes in atmospheric general circulation models. Hydol Process 14:1385–1406
CrossRef
Google Scholar
Hoffmann G, Werner M, Heimann M (1998) Water isotope module of the ECHAM atmospheric general circulation model: a study on timescales from days to several years. J Geophys Res 103:16871–16896
CrossRef
CAS
Google Scholar
Joussaume S (1983) Mod`elisation des cycles des especes isotopiques de l’eau et des aerosols d’origine de’esertique dans un modele de circulation generale de l’atmosphere. Univeristy of Paris, Paris, France
Google Scholar
Joussaume S (1993) Paleoclimate tracers: an investigation using an atmospheric general circulation model and ice age conditions. 1. Desert dust. J Geophys Res 98:2767–2805
CrossRef
Google Scholar
Joussaume S, Jouzel J (1993) Paleoclimatic tracers: an investigation using an atmospheric general circulation model under ice age conditions. 2. Water isotopes. J Geophys Res 98:2807–2830
CrossRef
CAS
Google Scholar
Joussaume S, Jouzel J, Sadourny R (1984) A general circulation model of water isotope cycles in the atmosphere. Nature 311:24–29
CrossRef
CAS
Google Scholar
Jouzel J (1986) Isotopes in cloud physics: multistep and multistage processes. In: Fritz P, Frontes JC (eds) Handbook of environmental isotope geochemistry, vol.2, The terrestrial environment B. Elsevier, New York, pp 61–112
Google Scholar
Jouzel J, Koster RD, Suozzo RJ, Russel GL, White JW, Broecker WS (1991) Simulations of the HDO and H
182
O atmospheric cycles using the NASA GISS general circulation model: sensitivity experiments for present day conditions. J Geophys Res 96:7495–7507
CrossRef
Google Scholar
Jouzel J, Merlivat L (1984) Deuterium and oxygen 18 in precipitation, modelling of the isotopic effects during snow formation. J Geophys Res 89:11749–11757
CrossRef
CAS
Google Scholar
Jouzel J, Russell GL, Suozzo RJ, Koster RF, White JWC, Broecker WS (1987) Simulation of the HDO and H
182
O atmospheric cycles using the NASA GISS general circulation model: the seasonal cycle for present-day conditions. J Geophys Res 92:14739–14760
CrossRef
CAS
Google Scholar
Koster R, Jouzel J, Suozzo R, Russell G (1986) Global sources of local precipitation as determined by the NASA/GISS GCM. Geophys Res Lett 13:121–124
CrossRef
Google Scholar
Koster RD, DPd V, Jouzel J (1993) Continental water recycling and H
182
O concentrations. Geophys Res Lett 20:2215–2218
CrossRef
CAS
Google Scholar
Lawrence JR, Gedzelman SD, Zhang X, Arnold R (1998) Stable isotope ratios of rain and vapor in 1995 hurricanes. J Geophys Res 103:11381–11400
CrossRef
CAS
Google Scholar
Lee JE (2005) Atmospheric water: perspectives from isotopes and the NCAR climate model. University of California, Berkeley, CA, p 162
Google Scholar
Lee JE, Fung I (2008) “Amount effect” of water isotopes and quantitative analysis of post-condensation processes. Hydrol Process 22:1–8
CrossRef
CAS
Google Scholar
Lee JE, Fung I, DePaolo DJ, Henning CC (2007) Analysis of the global distribution of water isotopes using the NCAR atmospheric general circulation model. J Geophys Res-Atmos 112:D16306. doi:16310.11029/12006JD007657
CrossRef
Google Scholar
Lin SJ, Rood RB (1996) Multidimensional flux-form semi-Lagrangian transport schemes. Mon Weather Rev 124:2046–2070
CrossRef
Google Scholar
Mathieu R, Pollard D, Cole JE, White JWC, Webb RS, Thompson SL (2002) Simulation of stable water isotope variations by the GENESIS GCM for present-day conditions. J Geophys Res 107. doi:10.1029/2001JD900255
McCarthy MC et al (2004) The hydrogen isotopic composition of water vapor entering the stratosphere inferred from high-precision measurements of δ D-CH4 and δ D-H2. J Geophys Res-Atmos 109:D07304. doi:07310.01029/02003JD004003
CrossRef
Google Scholar
Merlivat L, Jouzel J (1979) Global climatic interpretation of the deuterium-oxygen-18 relationship for precipitation. J Geophys Res 84:5029–5033
CrossRef
Google Scholar
Numaguti, A. (1999), Origin and recycling processes of precipitating water over the Eurasian continent: Experiments using an atmospheric general circulation model, J. Geophys. Res., 104, 19571972
Google Scholar
Noone D (2003) Water isotopes in CCSM for studying water cycles in the climate system. Eighth annual CCSM workshop, Breckenridge, CO
Google Scholar
Noone D (2006) Isotopic composition of water vapor modeled by constraining global climate simulations with reanalyes. In: Cote J (ed) Research activities in atmospheric and oceanic modelling. World Meteorological Organization, pp 2–37
Google Scholar
Noone D (2009) An isotopic evaluation of the factors controlling low humidity air in the troposphere. J Clim (in review, June 2008)
Google Scholar
Noone D, Simmonds I (2002a) Annular variations in moisture transport mechanisms and the abundance of δ18O in Antarctic snow. J Geophys Res-Atmos 107:4742. doi:4710.1029/2002JD002262
CrossRef
Google Scholar
Noone D, Simmonds I (2002b) Associations between δ O-18 of water and climate parameters in a simulation of atmospheric circulation for 1979–95. J Clim 15:3150–3169
CrossRef
Google Scholar
Noone D, Still C, Riley W (2002) A global biophysical model of 18O in terrestrial water and CO2 fluxes. In: Ritchie H (ed) Research activities in atmospheric and oceanic modelling. World Meteorological Organization, pp 4.19–14.20
Google Scholar
Noone DC (2001) A physical assessment of variability and climate signals in Antarctic precipitation and the stable water isotope record. Ph.D. thesis, School of Earth Sciences, University of Melbourne, Parkville, Victoria, Australia, p 404
Google Scholar
Prather M (1986) Numerical advection by conservation of second-order moments. J Geophys Res 91:6671–6681
CrossRef
Google Scholar
Riley WJ, Still CJ, Torn MS, Berry JA (2002) A mechanistic model of (H2
18O) and (C18OO) fluxes between ecosystems and the atmosphere: model description and sensitivity analyses. Global Biogeochem Cycles 16:1095. doi:1010.1029/2002GB001878
CrossRef
Google Scholar
Risi C, Bony S, Vimeux F (2008) Influence of convective processes on the isotopic composition (δ18O and δD) of precipitation and atmospheric water in the tropics 2. physical interpretation of the amount effect. J Geophys Res 113, D19309, doi:10.1029/2008ID009943
Google Scholar
Rozanski K, Araguas-Araguas L, Gonfiantini R (1993) Isotopic patterns in modern global precipitation. In: Swart PK, Lohmann KC, McKenzie J, Savin S (eds) Climate change in continental isotopic records. Geophysical Monograph Series. No. 78, American Geophysical Union, Washington, pp 1–63
Google Scholar
Schmidt GA, Hoffmann G, Shindell DT, Hu Y (2005) Modelling atmospheric stable water isotopes and the potential for constraining cloud processes and stratosphere–troposphere water exchange. J Geophys Res 110:D21314. doi:21310.21029/22005JD005790
CrossRef
Google Scholar
Schmidt GA, LeGrande AN, Hoffmann G (2007) Water isotope expressions of intrinsic and forced variability in a coupled ocean-atmosphere model. J Geophys Res-Atmos 112, D10103. doi:10.1029/2006JD007781
Google Scholar
Smith JA, Ackerman AS, Jensen EJ, Toon OB (2006) Role of deep convection in establishing the isotopic composition of water vapor in the tropical transition layer. Geophys Res Lett 33:L06812. doi:06810.01029/02005GL024078
CrossRef
Google Scholar
Stewart MK (1975) Stable isotope fractionation due to evaporation and isotopic exchange of falling waterdrops: applications to atmospheric processes and evaporation of lakes. J Geophys Res 80:1133–1146
CrossRef
CAS
Google Scholar
Still CJ, Riley WJ, Birand SC, Noone D, Buenning NH, Randerson JT, Torn MS, Welker J, White JWC, Vachon R, Farquhar GD, Berry JA (2009) The influence of clouds and diffuse radiation on ecosystem-atmosphere CO2 and C18OO exchanges. Journal of Geophysycal Research-Biogeosciences, 114, G01018, doi:10.1029/2008JG000675
Google Scholar
Sturm C, Langmann B, Hoffmann G, Stichler W (2005) Stable water isotopes in precipitation: a regional circulation modelling approach. Hydrol Process 19:doi: 10.1002/hyp5979
Sturm C, Hoffmann G, Langmann B (2007a) Simulation of the stable water isotopes in precipitation over South America: comparing regional to global circulation models. J Clim 20:3730–3750
CrossRef
Google Scholar
Sturm C, Vimeux F, Krinner G (2007b) Intraseasonal variability in South America recorded in stable water isotopes. J Geophys Res-Atmos 112:D20118. doi:20110.21029/22006JD008298
CrossRef
Google Scholar
Sturm K (2005) Regional modelling of the stable water isotope cycle. Université Joseph Fourier, Grenoble
Google Scholar
Vuille M et al. (2003) Modeling delta O-18 in precipitation over the tropical Americas: 2. Simulation of the stable isotope signal in Andean ice cores. J Geophys Res-Atmos 108. doi:10.1029/2001JD002039
Google Scholar
Webster CR, Heymsfield AJ (2003) Water isotope ratios D/H,
18O/16, 17O/16O in and out of clouds map dehydration pathways. Science 302:1742–1745
CrossRef
CAS
Google Scholar
Werner M, Heimann M (2002) Modeling interannual variability of water isotopes in Greenland and Antarctica. J Geophys Res-Atmos 107:4001. doi:4010.1029/2001JD900253
CrossRef
Google Scholar
Werner M, Heimann M, Hoffmann G (2001) Isotopic composition and origin of polar precipitation in present and glacial climate simulations. Tellus 53B:53–71
CAS
Google Scholar
Williamson DL, Rasch PJ (1989) Two-dimensional semi-Lagrangian transport with shape preserving interpolation. Mon Weather Rev 117:102–129
CrossRef
Google Scholar
Worden J, Noone D, Bowman K (2007) Importance of rain evaporation and continental convection in the tropical water cycle. Nature 445:528–532
CrossRef
CAS
Google Scholar
Yoshimura, K., T. Oki, N. Ohte, and S. Kanae, 2003: A quantitative analysis of short-term 18O variability with a Rayleigh-type isotope circulation model. J. Geophys. Res., 108(D20), 4647, doi:10.1029/2003JD003477
Google Scholar
Yoshimura K, Kanamitsu M, Noone D, Oki T (2008) Historical isotope simulation using reanalysis atmospheric data. J Geophys Res 113:D19108. doi:10.1029/2008JD010074
CrossRef
Google Scholar
Yung YL, Miller CE (1997) Isotopic fractionation of stratospheric nitrous oxide. Science 278:1778–1780
CrossRef
CAS
Google Scholar