Skip to main content

Fundamentals and Applications of Entrapped Cell Bioaugmentation for Contaminant Removal

  • Chapter
  • First Online:
Emerging Environmental Technologies, Volume II

Abstract

Entrapped cell bioaugmentation is an addition of gel or rubber matrices embedded with microorganisms to increase biological activities. The technology is an integration of cell entrapment and cell bioaugmentation techniques. In the last decade, this technology has been frequently studied for its applications in the environmental field for removing collective and specific contaminants. The technology not only provides sufficient contaminant-degrading cultures but also prevents them from environmental stresses and being transported out of the target systems. This paper provides a review on the uses of entrapped cell bioaugmentation for contaminant removal including background of the technology, principles of cell entrapment techniques, types and preparation procedures of selected cell entrapment matrices, and studies on the applications of the technology for wastewater treatment and site remediation. Future perspectives of the technology are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Torres, L.G., Vega, A.S., Beltran, N.A., Jimenez, B.E. (1998) Production and characterization of a Ca-alginate biocatalyst for removal of phenol and chlorophenols from wastewaters. Process Biochemistry, 33, 625–634.

    Article  CAS  Google Scholar 

  2. Pepper, I.L., Gentry, T.J., Newby, D.T., Roane, T.M., Josephson, K.L. (2002) The role of cell bioaugmentation and gene bioaugmentation in the remediation of co-contaminated soils. Environmental Health Perspectives, 110, 943–946.

    CAS  Google Scholar 

  3. Boon, N., Top, E.M., Verstraete, W., Siciliano, S.D. (2003) Bioaugmentation as a tool to protect the structure and function of an activated-sludge microbial community against a 3-chloroaniline shock load. Applied and Environmental Microbiology, 69(3), 1511–1520.

    Article  CAS  Google Scholar 

  4. Gentry, T.J., Rensing, C., Pepper, I.L. (2004) New approach for bioaugmentation as a remediation technology. Critical Reviews in Environmental Science and Technology, 34, 447–494.

    Article  CAS  Google Scholar 

  5. Braud, A., Jezequel, K., Lebeau, T. (2007) Impact of substrates and cell immobilization on siderophore activity by Pseudomonads in a Fe and/or Cr, Hg, Pb containing-medium. Journal of Hazardous Materials, 144, 229–239.

    Article  CAS  Google Scholar 

  6. Jittawattanarat, R., Kostarelos, K., Khan, E. (2007a) Immobilized cell augmented activated sludge process for treating wastewater containing hazardous compounds. Water Environment Research, 79, 461–471.

    Article  CAS  Google Scholar 

  7. Siripattanakul, S., Wirojanagud, W., McEvoy, J.M., Casey, F.X.M., Khan, E. (2009) Atrazine removal in agricultural infiltrate by bioaugmented polyvinyl alcohol immobilized and free Agrobacterium radiobacter J14a: a sand column study. Chemosphere, 74, 308–313.

    Article  CAS  Google Scholar 

  8. Jamai, L., Sendide, K., Ettayebi, K., Errachidi, F., Hamdouni-Alami, O., Tahri-Jouti, M. A., McDermott, T., Ettayebi, M. (2001) Physiological difference during ethanol fermentation between calcium alginate-immobilized Candida tropicalis and Saccharomyces cerevisiae. FEMS Microbiology Letters, 204, 375–379.

    Article  CAS  Google Scholar 

  9. Najafpour, G., Younesi, H., Ismail, K.K.S. (2004) Ethanol fermentation in an immobilized cell reactorusing Saccharomyces cerevisiae. Bioresource Technology, 92, 251–260.

    Article  CAS  Google Scholar 

  10. McLoughlin, A.J. (1994) Controlled release of immobilized cells as a strategy to regulate ecological competence of inocula. Advances in Biochemical Engineering/ Biotechnology, 51, 1–45.

    Article  Google Scholar 

  11. van Veen, J.A., van Overbeek, L.S., van Elsas, J.D. (1997) Fate and activity of microorganism introduced into soil. Microbiology and Molecular Biology Reviews, 61, 121–135.

    Google Scholar 

  12. Khan, E. Yang, P.Y., Kinoshita, C.M. (1994) Bioethanol production from dilute feedstock. Bioresource Technology, 4, 29–38.

    Article  Google Scholar 

  13. Yang, P.Y., Ma, T., Chen, H.J. (1997a) The PEMMC process for land-limited small wastewater-treatment plants. Bioresource Technology, 60, 35–42.

    Article  CAS  Google Scholar 

  14. Yang, P.Y., Zhang, Z.Q., Jeong, B.G. (1997b) Simultaneous removal of carbon and nitrogen using an entrapped-mixed-microbial-cell process. Water Research, 31, 2617–2625.

    Article  CAS  Google Scholar 

  15. Chen, K.C., Lee, S.C., Chin, S.C., Houng, J.Y. (1998) Simultaneous carbon-nitrogen removal in wastewater using phosphorylated PVA-immobilized microorganisms. Enzyme and Microbial Technology, 23, 311–320.

    Article  CAS  Google Scholar 

  16. An, M., Lo, K.V. (2001) Acitivated sludge immobilization using the PVA-alginate-borate method. Journal of Environmental Science and Health Part A-Toxic/Hazardous Substances and Environmental Engineering, 36, 101–115.

    CAS  Google Scholar 

  17. Wu, S.Y., Lin, C.N., Chang, J.S., Lee, K.S., Lin, P.J. (2002) Microbial hydrogen production with immobilized sewage sludge. Biotechnology Progress, 18, 921–926.

    Article  CAS  Google Scholar 

  18. Ha, J., Engler, C.R., Wild, J.R. (2009) Biodegradation of coumaphos, chlorferon, and diethylthiophosphate using bacteria immobilized in Ca-alginate gel beads. Bioresource Technology, 100, 1138–1142.

    Article  CAS  Google Scholar 

  19. Li, H., Li, P., Hua, T., Zhang, Y., Xiong, X., Gong, Z. (2005a) Bioremediation of contaminated surface water by immobilized Micrococcus roseus. Environmental Technology, 26, 931–939.

    Article  CAS  Google Scholar 

  20. Pramanik, S., Khan, E. (2008) Effects of cell entrapment on growth rate and metabolic activity of mixed cultures in biological wastewater treatment. Enzyme and Microbial Technology, 43, 245–251.

    Article  CAS  Google Scholar 

  21. Chen, K.C., Lin, Y.F. (1994) Immobilization of microorganisms with phosphorylated polyvinyl alcohol (PVA) gel. Enzyme and Microbial Technology, 16, 79–83.

    Article  CAS  Google Scholar 

  22. Yang, P.Y., Nitisoravut, S., Wu, J.S. (1995) Nitrate removal using a mixed-culture entrapped microbial cell immobilization process under high salt conditions. Water Research, 29, 1525–1532.

    Article  CAS  Google Scholar 

  23. Chen, K.C., Chen, S.J., Houng, J.Y. (1996) Improvement of gas permeability of denitrifying PVA gel beads. Enzyme and Microbial Technology, 18, 502–506.

    Article  CAS  Google Scholar 

  24. Yang, C.F., Lee, C.M. (2008) Pentachlorophenol contaminated groundwater bioremediation using immobilized Sphingomonas cells inoculation in the bioreactor system. Journal of Hazardous Materials, 152, 159–165.

    Article  CAS  Google Scholar 

  25. Rostron, W.M., Stuckey, D.C., Young, A.A. (2001) Nitrification of high strength ammonia wastewaters: comparative study of immobilisation media. Water Research, 35, 1169–1178.

    Article  CAS  Google Scholar 

  26. Tal, Y., Nussinovitch, A., van Rijn, J. (2003) Nitrate removal in aquariums by immobilized Pseudomonas. Biotechnology Progress, 19, 1019–1021.

    Article  CAS  Google Scholar 

  27. Song, S.H., Choi, S.S., Park, K., Yoo, Y.J. (2005) Novel hybrid immobilization of microorganisms and its applications to biological denitrification. Enzyme and Microbial Technology, 37, 567–573.

    Article  CAS  Google Scholar 

  28. Chen, K.C., Wu, J.Y., Huang, C.C., Liang, Y.M., Hwang, S.C. (2003) Decolorization of azo dye using PVA-immobilized microorganisms. Journal of Biotechnology, 101, 241–252.

    Article  CAS  Google Scholar 

  29. Fang, H., Wenrong, H., Yuezhong, L. (2004) Investigation of isolation and immobilization of a microbial consortium for decoloring of azo dye 4BS. Water Research, 38, 3596–3604.

    Article  CAS  Google Scholar 

  30. Moutaouakkil, A., Zeroual, Y., Dzayri, F.Z., Talbi, M., Lee, K., Blaghen, M. (2004) Decolorization of azo dyes with Enterobacter agglomerans immobilized in different supports by using fluidized bed bioreactor. Current Microbiology, 48, 124–129.

    Article  CAS  Google Scholar 

  31. Chen, B., Chen, S., Chang, J. (2005) Immobilized cell fixed-bed bioreactor for wastewater decolorization. Process Biochemistry, 40, 3434–3440.

    Article  CAS  Google Scholar 

  32. Zhou, X.Y., Liu, L.X., Chen, Y.P., Xu, S.F., Chen, J. (2007) Efficient biodegradation of cyanide and ferrocyanide by Na-alginate beads immobilized with fungal cells of Trichoderma koningii. Canadian Journal of Microbiology, 53(9), 1033–1037.

    Article  CAS  Google Scholar 

  33. Vancov, T., Jury, K., van Zwieten, L. (2005) Atrazine degrading Rhodococcus erythropolis NI86/21 cells encapsulated in alginate beads. Journal of Applied Microbiology, 99, 767–775.

    Article  CAS  Google Scholar 

  34. Jittawattanarat, R., Kostarelos, K., Khan, E. (2007b) Immobilized cell augmented activated sludge process for enhanced nitrogen removal from wastewater. Water Environment Research, 79, 2325–2335.

    Article  CAS  Google Scholar 

  35. Jen, A.C., Wake, M.C., Mikos, A.G. (1996) Review: hydrogels for cell immobilization. Biotechnology and Bioengineering, 50, 357–364.

    Article  CAS  Google Scholar 

  36. Kok, F.N., Hasirci, V. (2000) in: Wise, D.L., Trantolo, D.J., Cichon, E.J., Inyang, H.I., Stottmeieter U. (Eds.), Bioremediation of Contaminated Soils, Marcel Dekker, New York, 465–535.

    Google Scholar 

  37. Park, J.K. Chang, H.N. (2000) Microencapsulation of microbial cells. Biotechnology Advances, 18, 303–319.

    Article  CAS  Google Scholar 

  38. Dulieu, C., Poncelet, D., Neufeld, R.J. (1999) in: Kuhtreiber, W.M., Lanza, R.P., Chick, W.L. (Eds.), Cell Encapsulation Technology and Therapeutics, Birkhauser, Boston, MA, 3–17.

    Google Scholar 

  39. Bickerstaff, G.F. (1997) in: Bickerstaff G.F. (Ed.), Immobilization of Enzymes and Cells, Humana Press, Totowa NJ, 1–11.

    Google Scholar 

  40. Smidsrod, O., Skjak-Braek, G. (1990) Alginate as immobilization matrix for cells. Trends in Biotechnology, 8, 71–78.

    Article  CAS  Google Scholar 

  41. Fraser, J.E., Bickerstaff, G.F. (1997) in: Bickerstaff, G.F. (Ed.), Immobilization of Enzymes and Cells, Humana Press, Totowa, NJ.

    Google Scholar 

  42. Yang, H., Wright, J.R. (1999) in: Kuhtreiber, W.M., Lanza, R.P., Chick, W.L. (Eds.), Cell Encapsulation Technology and Therapeutics, Birkhauser, Boston, MA, 79–89, Humana Press, New Jersey, 61–66.

    Google Scholar 

  43. Gemeiner, P., Rexova-Benkova, L., Svec, F., Norrlow, O. (1994) in: Veliky, I.A., Mclean, R.J.C. (Eds.), Immobilized Biosystems: Theory and Practical Applications, Blackie Academic & Professional, Glasgow, 1–128.

    Google Scholar 

  44. Hill, C.B., Khan, E. (2008) A comparative study of immobilized nitrifying and co-immobilized nitrifying and denitrifying bacteria for ammonia removal of sludge digester supertanant. Water, Air, and Soil Pollution, 195, 23–33.

    Article  CAS  Google Scholar 

  45. Siripattanakul, S., Pochant, C.J., Khan, E. (2008a) Immobilized Cell Bioaugmentation for Nitrate Removal from Agricultural Infiltrate: A Sand Column Study. IWA World Water Congress 2008, Vienna, Austria.

    Google Scholar 

  46. Roukus, T. (1996) Ethanol production from non-sterilized beet molasses by free and immobilized Saccharomyces cerevisiae cells using fed-batch culture. Journal of Food Engineering, 21, 87–96.

    Article  Google Scholar 

  47. Iborra, J.L., Manjon, A., Canovas, M. (1997) in: Bickerstaff, G.F. (Ed.), Immobilization of Enzymes and Cells, Humana Press, Totowa, NJ, 53–60.

    Google Scholar 

  48. Guiseley, K.B. (1989) Chemical and physical properties of algal polysaccharides used for cell immobilization. Enzyme and Microbial Technology, 11, 706–716.

    Article  CAS  Google Scholar 

  49. Nigam, J.N. (2000) Continuous ethanol production from pineapple cannery waste using immobilized yeast cells. Journal of Biotechnology, 80, 189–193.

    Article  CAS  Google Scholar 

  50. Chang, C.C., Tseng, S.K. (1998) Immobilization of Alcaligenes eutrophus using PVA crosslinked with sodium nitrate. Biotechnology Techniques, 12, 865–868.

    Article  CAS  Google Scholar 

  51. Chang, I.S., Kim, C.I., Nam, B.U. (2005) The influence of poly-vinyl-alcohol (PVA) characteristics on the physical stability of encapsulated immobilization media for advanced wastewater treatment. Process Biochemistry, 40, 3050–3054.

    Article  CAS  Google Scholar 

  52. Hashimoto, S., Furukawa, K. (1987) Immobilization of activated sludge by PVA-boric acid method. Biotechnology and Bioengineering, 30, 52–59.

    Article  CAS  Google Scholar 

  53. Wu, K.A., Wisecarver, K.D. (1992) Cell immobilization using PVA crosslinked with boric acid. Biotechnology and Bioengineering, 39, 447–449.

    Article  CAS  Google Scholar 

  54. Li, P., Wang, X., Stagnitti, F., Li, L., Gong, Z., Zhang, H., Xiong, X., Austin, C. (2005b) Degradation of phenanthrene and pyrene in soil slurry reactors with immobilized bacteria Zoogloea sp. Environmental Engineering Science, 22, 390–399.

    Article  CAS  Google Scholar 

  55. Lozinsky, V.I., Plieva, F.M. (1998) Poly(vinyl alcohol) cryogels employed as matrices for cell immobilization. 3. overview of recent research and developments. Enzyme and Microbial Technology, 23, 227–242.

    Article  CAS  Google Scholar 

  56. Sreenivasan, K. (2004) Enhanced drug uptake and retention by surface phosphorylated polyvinyl alcohol. Journal of Applied Polymer Science, 94, 651–656.

    Article  CAS  Google Scholar 

  57. Siripattanakul, S., Wirojanagud, W., McEvoy, J., Khan, E. (2008b) Effect of cell-to-matrix ratio in polyvinyl alcohol immobilized pure and mixed cultures for atrazine degradation. Water, Air, and Soil Pollution: Focus, 8, 257–266.

    Article  CAS  Google Scholar 

  58. Kolarik, M.J., Chen, B.J., Emery, A.H., Lim, H.C. (1974) in: Olsen, A.C., Cooney, C.L. (Eds.), Immobilized Enzymes in Food and Microbial Processes, Plenum, New York, 71–83.

    Google Scholar 

  59. Yang, P.Y., See, T.S. (1991) Packed-entrapped microbial cell process for removal of phenol and its compounds. Journal of Environmental Science and Health, A26, 1491–1512.

    Article  CAS  Google Scholar 

  60. Cochet, N., Lebeault, J.M., Vijayalakshmi, M.A. (1990) in: Tyagi, R.D., Vembu, K. (Eds.), Wastewater Treatment by Immobilized Cells, CRC Press, Boca Rotan, FL, 1–28.

    Google Scholar 

  61. Dervakos, G.A., Webb, C. (1991) On the merits of viable-cell immobilization. Biotechnology Advances, 9, 559–612.

    Article  CAS  Google Scholar 

  62. Uchiyama, H., Oguri, K., Nishibayashi, M., Kokufuta, E., Yagi, O. (1995) Trichloroethylene degradation by cells of a methane-utilizing bacterium, Methylocystis sp. M, immobilized in calcium alginate. Journal of Fermentation and Bioengineering, 79, 608–618.

    Article  CAS  Google Scholar 

  63. Murakami-Nitta, T., Kirimura, K., Kino, K. (2003) Degradation of dimethyl sulfoxide by the immobilized cells of Hyphomicrobium denitrificans WU-K217. Biochemical Engineering Journal, 15, 199–204.

    Article  CAS  Google Scholar 

  64. Cunningham, C.J., Ivshina, I.B., Lozinsky, V.I., Kuyukina, M.S., Philp, J.C. (2004) Bioremediation of diesel-contaminated soil by microorganisms immobilized in polyvinyl alcohol. International Biodeterioration and Biodegradation, 54, 167–174.

    Article  CAS  Google Scholar 

  65. Kourkoutas, Y., Bekatorou, A., Banat, I.M., Marchant, R., Koutinas, A.A. (2004) Immobilization technologies and support materials suitable in alcohol beverages production: a review. Food Microbiology, 21, 377–397.

    Article  CAS  Google Scholar 

  66. Guiot, S.R., Tawfiki-Hajji, K., Lepine, F. (2000) Immobilization strategies for bioaugmentation of anaerobic reactors treating phenolic compounds. Water Science and Technology, 42, 245–250.

    CAS  Google Scholar 

  67. Chung, Y.C., Liu, C.H., Huang, C.P. (2001) Feasibility of fluidized-bed bioreactor for remediating waste gas containing H2S or NH3. Journal of Environmental Science and Health Part A-Toxic/Hazardous Substances and Environmental Engineering, 36, 509–520.

    CAS  Google Scholar 

  68. Takeno, K., Yamaoka, Y., Sasaki, K. (2005) Treatment of oil-containing sewage wastewater using immobilized photosynthetic bacteria. World Journal of Microbiology and Biotechnology, 21, 1385–1391.

    Article  CAS  Google Scholar 

  69. Godia, F., Casas, C., Castellane, B., Sola, C. (1987) Immobilized cells: behavior of carrageenan entrapped yeast during continuous ethanol fermentation. Applied Microbiology and Biotechnology, 26, 342–346.

    Article  CAS  Google Scholar 

  70. Cassidy, M.B., Leung, K.T., Lee, H., Trevors, J.T. (1995) Survival of lac-lux marked Pseudomonas aeroginosa UG2Lr cells encapsulated in κ carrageenan and alginate. Journal of Microbiological Methods, 23, 281–290.

    Article  Google Scholar 

  71. Chen, K.C., Chen, J.J., Houng, J.Y. (2000) Improvement of nitrogen-removal efficiency using immobilized microorganisms with oxidation-reduction potential monitoring. Journal of Industrial Microbiology and Biotechnology, 25, 229–234.

    Article  CAS  Google Scholar 

  72. Sharanagouda, U., Karegoudar, T.B. (2002) Degradation of 2-methylnaphthalene by free and immobilized cells of Pseudomonas sp. strain NGK1. World Journal of Microbiology and Biotechnology, 18, 225–230.

    Article  CAS  Google Scholar 

  73. Wang, Y., Tian, Y., Han, B., Zhao, H.B., Bi, J.N., Cai, B.L. (2007) Biodegradation of phenol by free and immobilized Acinetobacter sp. Strain PD12. Journal of Environmental Sciences-China, 19, 222–225.

    Article  CAS  Google Scholar 

  74. Hunt, P.G., Matheny, T.A., Ro, K.S., Stone, K.C., Vanotti, M.B. (2008) Denitrification of agricultural drainage line water via immobilized denitrification sludge. Journal of Environmental Science and Health Part A-Toxic/Hazardous Substances and Environmental Engineering, 43, 1077–1084.

    CAS  Google Scholar 

  75. Siripattanakul, S., Wirojanagud, W., McEvoy, J., Casey, F., and Khan, E. (2009) Bioaugmentation of immobilized and free mixed cultures for removing atrazine in agricultural infiltrate and its bacterial community structural change. Journal of Hazardous Materials, 168, 1373–1379.

    Google Scholar 

  76. Cassidy, M.B., Shaw, K.W., Lee H., Trevors, J.T. (1997a) Enhanced mineralization of pentachlorophenol by κ-carrageenan-encapsulated Pseudomonas sp UG30. Applied Microbiology and Biotechnology, 47, 108–113.

    Article  CAS  Google Scholar 

  77. Cassidy, M.B., Mullineers, H., Lee, H., Trevors, J.T. (1997b) Mineralization of pentachlorophenol in a contaminated soil by Pseudomonas sp UG30 cells encapsulated in κ-carrageenan. Journal of Industrial Microbiology and Biotechnology, 19, 43–48.

    Article  CAS  Google Scholar 

  78. Hajji, K.T., Lepine, F., Bisaillon, J.G., Beaudet, R., Hawari, J., Guiot, S.R. (2000) Effects of bioaugmentation strategies in UASB reactors with a methanogenic consortium for removal of phenolic compounds. Biotechnology and Bioengineering, 67, 417–423.

    Article  CAS  Google Scholar 

  79. Leenen, E.J., Dos, S.V., Grolle, K.C., Tramper, J., Wijffels, R.H. (1996) Characteristics of and selection criteria for support materials for cell immobilization in wastewater treatment. Water Research, 30, 2985–2996.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eakalak Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Siripattanakul, S., Khan, E. (2010). Fundamentals and Applications of Entrapped Cell Bioaugmentation for Contaminant Removal. In: Shah, V. (eds) Emerging Environmental Technologies, Volume II. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3352-9_7

Download citation

Publish with us

Policies and ethics