Skip to main content

Chemical and Mechanical Micro-Diversity of the Extracellular Matrix

  • Conference paper
  • First Online:
IUTAM Symposium on Cellular, Molecular and Tissue Mechanics

Part of the book series: IUTAM Bookseries ((IUTAMBOOK,volume 16))

Abstract

Interaction with the extracellular matrix (ECM) triggers multiple physiological responses in living cells, affecting their structure, function and fate. Recent studies have demonstrated that cells can sense a wide variety of chemical and physical features of the ECM, and differentially respond to them. Thus, cells cultured on flat surfaces coated with two different integrin-reactive adhesive proteins, fibronectin and vitronectin, display varying degrees of spreading on these matrices, and form morphologically distinct types of matrix adhesions, with variable prominence and spatial distribution of both focal and fibrillar adhesions. It was further shown, using labeling with different antibodies which bind to distinct sites on the fibronectin molecule, that even a “molecularly homogeneous” matrix displays spatial micro-heterogeneity, exposing distinct epitopes at different locations. Diversification of the adhesive surface can be induced by the application of mechanical force to the elastic fibronectin matrix, resulting in the formation of different patterns of fibrillar ECM arrays. Time-lapse monitoring of matrix fibrillogenesis by cells expressing fluorescently tagged fibronectin demonstrated that the assembly of fibrils in such cell cultures occurs when the leading lamella of the cell advances, attaches to the substrate-bound fibronectin, and then retracts backwards, thus applying tensile forces to the attached fibronectin. These results indicate that the ECM is a highly complex cellular environment, whose chemical and physical properties are directly regulated by the attached cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Geiger B, Bershadsky A, Pankov R, Yamada KM (2001) Transmembrane crosstalk between the extracellular matrix–cytoskeleton crosstalk. Nat Rev Mol Cell Biol 2:793–805

    Article  CAS  Google Scholar 

  2. Ayad S, Boot-Handford RP, Humphries MJ, Kadler KE, Shuttleworth CA (1998) The extracellular matrix factsbook. Academic, Elsevier, New York

    Google Scholar 

  3. Vogel V, Baneyx G (2003) The tissue engineering puzzle: A molecular perspective. Annu Rev Biomed Eng 5:441–463

    Article  CAS  Google Scholar 

  4. Katsumi A, Orr AW, Tzima E, Schwartz MA (2004) Integrins in mechanotransduction. J Biol Chem 279:12001–12004

    Article  CAS  Google Scholar 

  5. Bershadsky AD, Balaban NQ, Geiger B (2003) Adhesion-dependent cell mechanosensitivity. Annu Rev Cell Dev Biol 19:677–695

    Article  CAS  Google Scholar 

  6. Miyamoto S, Katz BZ, Lafrenie RM, Yamada KM (1998) Morphogenesis: Cellular Interactions. Annals of the New York Academy of Sciences 857:119–129

    Article  CAS  Google Scholar 

  7. Miao H, Li S, Hu YL, Yuan S, Zhao Y et al (2002) Differential regulation of Rho GTPases by beta1 and beta3 integrins: The role of an extracellular domain of integrin in intracellular signaling. J Cell Sci 115:2199–2206

    CAS  Google Scholar 

  8. Danen EH, Sonneveld P, Brakebusch C, Fassler R, Sonnenberg A (2002) The fibronectin-binding integrins alpha5beta1 and alphavbeta3 differentially modulate RhoA-GTP loading, organization of cell matrix adhesions, and fibronectin fibrillogenesis. J Cell Biol 159:1071–1086

    Article  CAS  Google Scholar 

  9. Yang JT, Hynes RO (1996) Fibronectin receptor functions in embryonic cells deficient in alpha 5 beta 1 integrin can be replaced by alpha V integrins. Mol Biol Cell 7:1737–1748

    CAS  Google Scholar 

  10. Yang JT, Rando TA, Mohler WA, Rayburn H, Blau HM et al (1996) Genetic analysis of alpha 4 integrin functions in the development of mouse skeletal muscle. J Cell Biol 135:829–835

    Article  CAS  Google Scholar 

  11. Mould AP, Askari JA, Aota S, Yamada KM, Irie A et al (1997) Defining the topology of integrin alpha5beta1-fibronectin interactions using inhibitory anti-alpha5 and anti-beta1 monoclonal antibodies. Evidence that the synergy sequence of fibronectin is recognized by the amino-terminal repeats of the alpha5 subunit. J Biol Chem 272:17283–17292

    Article  CAS  Google Scholar 

  12. Zamir E, Katz BZ, Aota S, Yamada KM, Geiger B et al (1999) Molecular diversity of cell-matrix adhesions. J Cell Sci 112 (Pt 11):1655–1669

    CAS  Google Scholar 

  13. Zaidel-Bar R, Ballestrem C, Kam Z, Geiger B (2003) Early molecular events in the assembly of matrix adhesions at the leading edge of migrating cells. J Cell Sci 116:4605–4613

    Article  CAS  Google Scholar 

  14. Hirata H, Tatsumi H, Sokabe M (2008) Mechanical forces facilitate actin polymerization at focal adhesions in a zyxin-dependent manner. J Cell Sci 121:2795–2804

    Article  CAS  Google Scholar 

  15. Zamir E, Geiger B (2001) Molecular complexity and dynamics of cell-matrix adhesions. J Cell Sci 114:3583–3590

    CAS  Google Scholar 

  16. Zaidel-Bar R, Milo R, Kam Z, Geiger B (2007) A paxillin tyrosine phosphorylation switch regulates the assembly and form of cell-matrix adhesions. J Cell Sci 120:137–148

    Article  CAS  Google Scholar 

  17. Ulmer J, Geiger B, Spatz JP (2008) Force-induced fibronectin fibrillogenesis in vitro. Soft Matter 4:1998–2007

    Article  CAS  Google Scholar 

  18. Baneyx G, Baugh L, Vogel V (2001) Coexisting conformations of fibronectin in cell culture imaged using fluorescence resonance energy transfer. Proc Natl Acad Sci U S A 98:14464–14468

    Article  CAS  Google Scholar 

  19. Baneyx G, Baugh L, Vogel V (2002) Fibronectin extension and unfolding within cell matrix fibrils controlled by cytoskeletal tension. Proc Natl Acad Sci USA 99:5139–5143

    Article  CAS  Google Scholar 

  20. Smith ML, Gourdon D, Little WC, Kubow KE, Eguiluz RA et al (2007) Force-induced unfolding of fibronectin in the extracellular matrix of living cells. PLoS Biol 5:e268

    Article  CAS  Google Scholar 

  21. Guarnieri D, Battista S, Borzacchiello A, Mayol L, De Rosa E et al (2007) Effects of fibronectin and laminin on structural, mechanical and transport properties of 3D collageneous network. J Mater Sci Mater Med 18:245–253

    Article  CAS  Google Scholar 

  22. McDonald J (1988) Extracellular matrix assembly. Annu Rev Cell Biol 4:183–207

    Article  CAS  Google Scholar 

  23. Birkedalhansen H, Moore WGI, Bodden MK, Windsor LJ, Birkedalhansen B et al (1993) Matrix metalloproteinases – A review. Crit Rev Oral Biol Med 4:197–250

    CAS  Google Scholar 

  24. Vogel V, Sheetz M (2006) Local force and geometry sensing regulate cell functions. Nat Rev Mol Cell Biol 7:265–275

    Article  CAS  Google Scholar 

  25. Ohashi T, Kiehart DP, Erickson HP (2002) Dual labeling of the fibronectin matrix and actin cytoskeleton with green fluorescent protein variants. J Cell Sci 115:1221–1229

    CAS  Google Scholar 

  26. Hynes RO (1990). Fibronectins. Springer, New York

    Google Scholar 

  27. Mao Y, Schwarzbauer JE (2005) Fibronectin fibrillogenesis, a cell-mediated matrix assembly process. Matrix Biol 24:389–399

    Article  CAS  Google Scholar 

  28. Sechler JL, Rao HW, Cumiskey AM, Vega-Colon I, Smith MS et al (2001) A novel fibronectin binding site required for fibronectin fibril growth during matrix assembly. J Cell Biol 154:1081–1088

    Article  CAS  Google Scholar 

  29. Schwarzbauer JE (1991) Identification of the fibronectin sequences required for assembly of a fibrillar matrix. J Cell Biol 113:1463–1473

    Article  CAS  Google Scholar 

  30. Baneyx G, Vogel V (1999) Self-assembly of fibronectin into fibrillar networks underneath dipalmitoyl phosphatidylcholine monolayers: Role of lipid matrix and tensile forces. Proceedings of the national academy of sciences of the United States of America 96:12518–12523

    Article  CAS  Google Scholar 

  31. Halliday NL, Tomasek JJ (1995) Mechanical-properties of the extracellular-matrix influence fibronectin fibril assembly in-vitro. Exper Cell Res 217:109–117

    Article  CAS  Google Scholar 

  32. Wu CY, Keivens VM, Otoole TE, McDonald JA, Ginsberg MH (1995) Integrin activation and cytoskeletal interaction are essential for the assembly of a fibronectin matrix. Cell 83:715–724

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Volkswagen Stiftung, by the National Institutes of Health, through the NIH Roadmap for Medical Research (PN2 EY016586), by the Jeanne and Joseph Nissim Family Foundation for Life Sciences, and by the Max Planck Society. Jens Ulmer was supported by a Fellowship from the Minerva Foundation. BG is the incumbent of the Erwin Neter Professorial Chair in Cell and Tumor Biology. JS holds a Weston Visiting Professorship at the Weizmann Institute of Science. The overall collaboration between the groups of BG and JS is supported by the Landesstiftung Baden-Württemberg, within the framework of the program, “Spitzenforschung Baden-Württemberg”. We would like to express our gratitude to Barbara Morgenstern for her expert assistance in editing this manuscript.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Volberg, T., Ulmer, J., Spatz, J., Geiger, B. (2010). Chemical and Mechanical Micro-Diversity of the Extracellular Matrix. In: Garikipati, K., Arruda, E. (eds) IUTAM Symposium on Cellular, Molecular and Tissue Mechanics. IUTAM Bookseries, vol 16. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3348-2_6

Download citation

Publish with us

Policies and ethics