Skip to main content

Mechano-Chemical Coupling in Shell Adhesion

  • Conference paper
  • First Online:
  • 788 Accesses

Part of the book series: IUTAM Bookseries ((IUTAMBOOK,volume 16))

Abstract

The coupling between cell deformation and chemical segregation during the early stages of cell adhesion is investigated by studying the equilibrium of thin shells adhered to rigid substrates that are either flat or have topography. A finite-range adhesion law is taken to depend on the local shell-substrate separation and on the local concentrations of segregating chemical species. Nonlinear shell kinematics accounting for finite rotations of both closed spherical shells and open spherical caps are coupled with the equilibrium equations for axisymmetric deformations and linearly elastic material response. Representative solutions demonstrate the thermodynamic coupling that results in nonuniform mechanical and chemical fields, effects of substrate topography, and the influence of finite-range adhesive interactions. Strong coupling is predicted between shell deformation and the level of chemical activation which is measured by the total adhesive energy at equilibrium.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Molecular biology of the cell, 4th edn. Garland Science, New York, NY

    Google Scholar 

  2. Bell GI, Dembo M, Bongrand P (1984) Cell adhesion. Competition between nonspecific repulsion and specific bonding. Biophys J 45(5):1051–1064

    CAS  Google Scholar 

  3. Boulbitch A, Simson R, Simson DA, Merkel R, Hackl W, Barmann M, Sackmann E (2000) Shape instability of a biomembrane driven by a local softening of the underlying actin cortex. Phys Rev E 62(3):3974–3985

    Article  CAS  Google Scholar 

  4. Budiansky B (1959) Buckling of clamped shallow spherical shells. Proceedings of the IUTAM symposium on the theory of thin elastic shells, pp 64–94

    Google Scholar 

  5. Christian JW (2002) The theory of transformations in metals and alloys, Part I, 3rd edn. Pergamon, the Netherlands

    Google Scholar 

  6. Discher DE, Janmey P, Wang Y (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310(5751):1139–1143

    Article  CAS  Google Scholar 

  7. Dobereiner HG, Dubin-Thaler B, Giannone G, Xenias HS, Sheetz MP (2004) Dynamic phase transitions in cell spreading. Phys Rev Lett 93(10):108105–108101

    Article  CAS  Google Scholar 

  8. Dubin-Thaler BJ, Giannone G, Dobereiner HG, Sheetz MP (2004) Nanometer analysis of cell spreading on matrix-coated surfaces reveals two distinct cell states and STEPs. Biophys J 86(3):1794–1806

    Article  CAS  Google Scholar 

  9. Elsner N, Dubreuil F, Fery A (2004) Tuning of microcapsule adhesion by varying the capsule-wall thickness. Phys Rev E 69(3):031802–1

    Article  CAS  Google Scholar 

  10. Freund LB, Lin Y, (2004) The role of binder mobility in spontaneous adhesive contact and implications for cell adhesion. J Mech Phys Solids 52(11):2455–2472

    Article  Google Scholar 

  11. Georges PC, Janmey PA (2005) Cell type-specific response to growth on soft materials. J Appl Physiol 98(4):1547–1553

    Article  Google Scholar 

  12. Israelachvili JN (1994) Strength of Van-Der-Waals attraction between lipid bilayers. Langmuir 10(9):3369–3370

    Article  CAS  Google Scholar 

  13. Komura S, Tamura K, Kato T (2005) Buckling of spherical shells adhering onto a rigid substrate. Eur Phys J E 18(3):343–358

    Article  CAS  Google Scholar 

  14. Lang T, Wacker I, Wunderlich I, Rohrbach A, Giese G, Soldati T, Almers W (2000) Role of actin cortex in the subplasmalemmal transport of secretory granules in PC-12 cells. Biophys J 78(5):2863–2877

    Article  CAS  Google Scholar 

  15. Leckband DE, Schmitt FJ, Israelachvili JN, Knoll W (1994) Direct force measurements of specific and nonspecific protein interactions. Biochemistry 33(15):4611–4624

    Article  CAS  Google Scholar 

  16. Leckband DE, Israelachvili JN, Schmitt FJ, Knoll W (1992) Long-range attraction and molecular rearrangements in receptor–ligand interactions. Science 255(505):1419

    Article  CAS  Google Scholar 

  17. Leckband D, Israelachvili J (2001) Intermolecular forces in biology. Q Rev Biophys 34(02):105–267

    Article  CAS  Google Scholar 

  18. Lim JY, Donahue HJ (2007) Cell sensing and response to micro- and nanostructured surfaces produced by chemical and topographic patterning. Tissue Eng 13(7):1879–1891

    Article  CAS  Google Scholar 

  19. Mishin Y, Sofronis P, Bassani JL (2002) Thermodynamic and kinetic aspects of interfacial decohesion. Acta Mater 50(14):3609–3622

    Article  CAS  Google Scholar 

  20. Noppl-Simson DA, Needham D (1996) Avidin–biotin interactions at vesicle surfaces: Adsorption and binding, cross-bridge formation, and lateral interactions. Biophys J 70(3):1391–1401

    Article  CAS  Google Scholar 

  21. Pesen D, Hoh JH (2005) Micromechanical architecture of the endothelial cell cortex. Biophys J 88(1):670–679

    Article  CAS  Google Scholar 

  22. Pierres A, Eymeric P, Baloche E, Touchard D, Benoliel AM, Bongrand P (2003) Cell membrane alignment along adhesive surfaces: Contribution of active and passive cell processes. Biophys J 84(3):2058–2070

    Article  CAS  Google Scholar 

  23. Reinhart-King CA, Dembo M, Hammer DA (2005) The dynamics and mechanics of endothelial cell spreading. Biophys J 89(1):676–689

    Article  CAS  Google Scholar 

  24. Reissner E (1958) Symmetric bending of shallow shells of revolutions. J Math Mech 7(March):121

    Google Scholar 

  25. Sackmann E, Bruinsma RF (2002) Cell adhesion as wetting transition? Chemphyschem 3 (3):262–269

    Article  CAS  Google Scholar 

  26. Sanders Jr JL (1963) Nonlinear theories for thin shells. Q Appl Math 21(1):21–36

    Google Scholar 

  27. Sengupta K, Aranda-Espinoza H, Smith L, Janmey P, Hammer D (2006) Spreading of neutrophils: From activation to migration. Biophys J 91(12):4638–4648

    Article  CAS  Google Scholar 

  28. Springman RM (2009) Mechanical and chemical effects in adhesion of thin shell structures with applications in wafer bonding and living cells. PhD Thesis in progress, University of Pennsylvania

    Google Scholar 

  29. Springman RM, Bassani JL (2008) Snap transitions in adhesion. J Mech Phys Solids 56(5):2358–2380

    Article  CAS  Google Scholar 

  30. Springman RM, Bassani JL (2008) Mechano-chemical coupling in the adhesion of thin shell structures. J Mech Phys Solids DOI: 10.1016/j.jmps.2009.02.002 (in press)

    Google Scholar 

  31. Suresh S (2007) Biomechanics and biophysics of cancer cells. Acta Mater 55(12):3989–4014

    Article  CAS  Google Scholar 

  32. Tamura K, Komura S, Kato T (2004) Adhesion induced buckling of spherical shells. J Phys (Condensed Matter) 16(39):421–428

    Article  CAS  Google Scholar 

  33. Uttayarat P, Chen M, Li M, Allen FD, Composto RJ, Lelkes PI (2008) Microtopography and flow modulate the direction of endothelial cell migration. Am J Physiol Heart Circ Physiol 294(2):H1027–H1035

    Article  CAS  Google Scholar 

  34. Wong JY, Kuhl TL, Israelachvili JN, Mullah N, Zalipsky S (1997) Direct measurement of a tethered ligand–receptor interaction potential. Science 275(5301):820–822

    Article  CAS  Google Scholar 

  35. Yeung T, Georges PC, Flanagan LA, Marg B, Ortiz M, Funaki M, Zahir N, Ming W, Weaver V, Janmey PA (2005) Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil Cytoskeleton 60 (1), 24–34.

    Article  Google Scholar 

Download references

Acknowledgments

Support of the National Science Foundation Grant CTS-04–04259, the DOE GAANN Fellowship Department of Education GAANN Grant P200A060275, and the Ashton Foundation is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. Bassani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Springman, R.M., Bassani, J.L. (2010). Mechano-Chemical Coupling in Shell Adhesion. In: Garikipati, K., Arruda, E. (eds) IUTAM Symposium on Cellular, Molecular and Tissue Mechanics. IUTAM Bookseries, vol 16. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3348-2_18

Download citation

Publish with us

Policies and ethics