Skip to main content

Perspectives on Bioenergy and Biofuels

  • Chapter
  • First Online:
Sustainable Biotechnology

Abstract

Alternative and renewable sources of energy have received much attention and there are a number of approaches: wind, hydro, solar nuclear and the use of biomass. Here discussion will focus on the use of biomass, however there are a number of alternative methods in applying this as a source of “energy”. For example incineration (to generate heat and electricity), production of biodiesel and biomass to liquids (BTL) by chemical and thermal based processes respectively and the production of bioethanol and biogas using biotechnology. However the use of biomass for non-food applications raises a number of important issues which need to be considered for any conversion process such as: food production and price increases, destruction of the rainforest and greenhouse gases. Strategies which circumvent these should be explored and one potential route is the use of waste lignocellulose biomass (derived from primary agricultural practice) and its application for energy and fuels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Calorific value of ca. 24 GJ per tonne

  2. 2.

    600 kg × 0.8 = 480 kg C, combustion of C results in 480 kg × 44/12 = 1,776 kg CO2

  3. 3.

    usually expressed as currency per British thermal unit (Btu), 2007 figures

  4. 4.

    Calorific value of ca. 30 GJ per tonne

References

  1. http://www.iea.org(IEA Energy stastistics –Energy Balance for Netherlands 2005)

  2. http://ec.europa.eu/energy/res/legislation/doc/biofuels/en_final.pdf

  3. Searchinger, T., Heimlich, R., Houghton, R.A., Dong, F., Elobeid, A., Fabiosa, J., Tokgoz, S., Hayes, D., and Yu, T.H. (2008) Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319(5867), 1238–1240.

    Article  CAS  PubMed  Google Scholar 

  4. Fargione, J., Hill, J., Tilman, D., Polasky, S., and Hawthorne, P. (2008) Land clearing and the biofuel carbon debt. Science 319(5867), 1235–1238.

    Article  CAS  PubMed  Google Scholar 

  5. http://www.biofuelstp.eu/btl.html

  6. Wooley, R., Ruth, M., Sheehan, J., Ibsen, K., Majdeski, H., and Galvez, A. (1999). Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing Co-current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis Current and Future Scenarios. NREL Report No. TP-580-26157.

    Google Scholar 

  7. Lloyd, T.A. and Wyman, C.E. (2005) Combined sugar yields for dilute sulphuric acid pretreatment of cornstover followed by enzymatic hydrolysis of the remaining solids. Bioresour Technol 96, 1967.

    Article  CAS  PubMed  Google Scholar 

  8. Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y.Y., Holtzapple, M., and Ladisch, M. (2005) Features of promising Technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96, 673.

    Article  CAS  PubMed  Google Scholar 

  9. Wyman, C.E., Dale, B.E., Elander, R.T., Holtzapple, M., Ladisch, M.R., and Lee, Y.Y. (2005) Coordinated development of leading biomass pretreatment technologies. Bioresour Technol 96, 1959.

    Article  CAS  PubMed  Google Scholar 

  10. Maas, R.H.W., Bakker, R.R., Boersma, A.R., Bisschops, I., Pels, J.R., de Jong, E., Weusthuis, R.A., and Reith, H. (2008) Pilot-scale conversion of lime treated wheat straw into bioethanol: quality assessment of bioethanol and valorisation of side streams by anerobic digestion and combustion. Biotechnol Biofuels 1, 14.

    Article  PubMed  Google Scholar 

  11. Dunlop, A.P. (1948) Furfural formation and behaviour. Ind Eng Chem 40, 204.

    Article  CAS  Google Scholar 

  12. McKibbins, S.W., Harris, J.F., Saeman, J.F., and Neill, W.K. (1962) Kinetics of the acid catalyzed conversion of glucose to 5-hydroxymethyl-2-furaldehyde and levulinic acid. Forest Prod 5, 17.

    Google Scholar 

  13. Palmqvist, E. and Hahn-Hagerdal, B. (2000) Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanism of inhibition. Bioresour Technol 74, 25.

    Article  CAS  Google Scholar 

  14. Klinke, H.B., Thomsen, A.B., and Ahring, B.K. (2004) Inhibition of ethanol producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol 66, 10.

    Article  CAS  PubMed  Google Scholar 

  15. http://www.arkenol.com/Arkenol%20Inc/tech02.html

  16. Bakker, R.R.C., Hazewinkel, J.H.O., and Groenestijn, J.W van (2006) Process and apparatus for the conversion of biomass. WO 2006085762.

    Google Scholar 

  17. Groenestijn, J.W van, Hazewinkel, J.H.O., Creusen, R.J.M., and Meesters, K.P.H. (2006) Recovery of sulphuric acid. WO 2006085764.

    Google Scholar 

  18. Hazewinkel, J.H.O., Groenestijn, J.W van, and Meesters, K.P.H. (2006) Process and apparatus for the production of sulphur oxides. EP1866240.

    Google Scholar 

  19. Novozymes reduces cost of cellulose twelvefold Focus on Catalysts (April 2004) 4, 6.

    Google Scholar 

  20. Kuyper, M., Harhangi, H.R., Stave, A.K., Winkler, A.A., Jetten, M.S.M., De Laat, W.T.A.M., Den Ridder, J.J.J., Op den Cam, H.J.M., Van Dijken, J.P, and Pronk, J.T. (2003) High level finctional expression of a fungal xylose isomerase: the key to efficient ethanol fermentation of xylose by Saccharomyces cerevisiae. FEMS Yeast Res 4, 69.

    Article  CAS  PubMed  Google Scholar 

  21. Kuyper, M., Hartog, M.M.P., Toirkens, M.J., Almering, M.J.H., Winkler, A.A., van Dijken, J.P., and Pronk, J.T. (2005) Metabolic engineering of a xylose isomerase expressing Saccharomyces cerevisia strain for rapid anaerobic xylose fermentation. FEMS Yeast Res 5, 399.

    Article  CAS  PubMed  Google Scholar 

  22. Kuyper, M., Toirkens, M.J., Diderich, J.A., Winkler, A.A., van Dijken, J.P., and Pronk, J.T. (2005) Evolutionary engineering of mixed sugar utilization by a xylose fermenting Saccharomyces cerevisia. FEMS Yeast Research 5, 925.

    Article  CAS  PubMed  Google Scholar 

  23. http://www.biofuelsb2b.com/useful_info.php?page=Typic

  24. http://www.engineeringtoolbox.com/co2-emission-fuels-d_1085.html

  25. http://www.eia.doe.gov/neic/infosheets/coalprice.html

  26. Schenk, E., Scott, E.L., and Sanders, J.P.M. (2005) Unpublished results.

    Google Scholar 

  27. Kootstra, A.M.J., Beeftink, H.H., Scott, E.L., and Sanders, J.P.M.. Comparison of dilute mineral and organic acid pretreatment for enzymatic hydrolysis of wheat straw. Biochem Eng J (Submitted).

    Google Scholar 

  28. Beauchemin, K.A. and McGinn, S.M. (2006) Methane emissions from beef cattle: effects of fumaric acid, essential oil and canola oil. J Anim Sci 84, 1489.

    CAS  PubMed  Google Scholar 

  29. Carro, M.D. and Ranilla, M.J. (2003) Influence of different concentration of disodium fumarate on methane production and fermentation of concentrate feeds by rumen micro-organisms in vitro. Br J Nutr 90, 617.

    Article  CAS  PubMed  Google Scholar 

  30. http://www.moneyweek.com/investment-advice/why-the-world-is-crying-out-for-sulphuric-acid.aspx

  31. http://www.parliament.uk

  32. http://services.parliament.uk/bills/2007-08/climatechangehl.html

  33. http://www.diligent.nl

  34. http://blogs.wsj.com/environmentalcapital/2008/09/17/bill-gates-goes-for-algae-invests-in-biofuel-maker-sapphire-energy/

  35. http://online.wsj.com/public/us

  36. http://www.cellulosicroundtable.com

  37. Fernandes, T., Klaasse Bos, G.J., Sanders, J.P.M., and Lier van, J.B. (2007) Effects of thermochemical pretreatment on anaerobic biodegradability and hydrolysis of lignocellulosic biomass. Proceedings of 11th 1WA World Congress on Anaerobic Digesition 2007-09-23/2007-09-27.

    Google Scholar 

  38. Hendriks, A.T.W.M. and Zeeman, G. (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Biores Tech 100, 10–18.

    Article  CAS  Google Scholar 

  39. Banholzer, W.F., Watson, K.J., and Jones, M.E. (March 2008) How might biofuels impact the chemical industry? http://www.aiche.org/cep

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elinor L. Scott .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Scott, E.L., Kootstra, A.M.J., Sanders, J.P. (2010). Perspectives on Bioenergy and Biofuels. In: Singh, O., Harvey, S. (eds) Sustainable Biotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3295-9_9

Download citation

Publish with us

Policies and ethics