Skip to main content

Polymer- and Colloid-Functionalization Using a Combination Of ATRP and Click Chemistry

  • Conference paper
  • 1218 Accesses

Abstract

A straightforward click reaction (i.e. copper catalyzed 1,3 dipolar Huisgen cycloaddition of azides and terminal alkynes) was used as a complementary tool for functionalizing well-defined polymers prepared by atom transfer radical polymerization (ATRP). The bromine chain-ends of polystyrene or poly(acrylate) backbones were first transformed into azide end-groups via nucleophilic substitution and subsequently involved in “click” cycloaddition reactions with various functional alkynes. This efficient ATRP/“click” dual synthetic strategy was employed for preparing a wide variety of tailor-made functional materials such as telechelics, polymer-bioconjugates or shell-functionalized polymeric micelles.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. C. J. Hawker; K. L. Wooley, The convergence of synthetic organic and polymer chemistries, Science 309, 1200–1205 (2005).

    Article  CAS  Google Scholar 

  2. H. C. Kolb; M. G. Finn; K. B. Sharpless, Click chemistry: Diverse chemical function from a few good reactions, Angew. Chem. Int. Ed. 40(11), 2004–2021 (2001).

    Article  CAS  Google Scholar 

  3. A. Michael, Uebr die Einwirkung von Diazobenzolimid auf Acetylendicarbon-säuremethylester, J. Prakt. Chem. 48, 94 (1893).

    Article  Google Scholar 

  4. R. Huisgen, Kinetics and mechanism of 1,3-dipolar cycloadditions, Angew. Chem. Int. Ed. Engl. 2(11), 633–645 (1963).

    Article  Google Scholar 

  5. R. Huisgen, 1,3-dipolar cycloadditions. Past and future, Angew. Chem. Int. Ed. Engl. 2(11), 565–598 (1963).

    Article  Google Scholar 

  6. C. W. Tornoe; C. Christensen; M. Meldal, Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides, J. Org. Chem. 67(9), 3057–3064 (2002).

    Article  CAS  Google Scholar 

  7. V. V. Rostovtsev; L. G. Green; V. V. Fokin; K. B. Sharpless, A stepwise huisgen cycloaddition process: Copper(I)-catalyzed regioselective “Ligation” of azides and terminal alkynes, Angew. Chem. Int. Ed. 41(14), 2596–2599 (2002).

    Article  CAS  Google Scholar 

  8. V. D. Bock; H. Hiemstra; J. H. van Maarseveen, Cu(I)-catalyzed alkyne—azide “Click” cycloadditions from a mechanistic and synthetic perspective, Eur. J. Org. Chem. 2006, 1, 51–68 (2006).

    Article  Google Scholar 

  9. Y. L. Angell; K. Burgess, Peptidomimetics via copper-catalyzed azide—alkyne cycloadditions, Chem. Soc. Rev. 36(10), 1674–1689 (2007).

    Article  CAS  Google Scholar 

  10. P. Wu; V. V. Fokin, Catalytic azide—alkyne cycloaddition: Reactivity and applications, Aldrichimica Acta 40(1), 7–17 (2007).

    CAS  Google Scholar 

  11. P. Wu; A. K. Feldman; A. K. Nugent; C. J. Hawker; A. Scheel; B. Voit; J. Pyun; J. M. J. Frechet; K. B. Sharpless; V. V. Fokin, Efficiency and fidelity in a click-chemistry route to triazole dendrimers by the copper(I)-catalyzed ligation of azides and alkynes, Angew. Chem. Int. Ed. 43(30), 3928–3932 (2004).

    Article  CAS  Google Scholar 

  12. D. D. Díaz; S. Punna; P. Holzer; A. K. McPherson; K. B. Sharpless; V. V. Fokin; M. G. Finn, Click chemistry in materials synthesis. 1. Adhesive polymers from copper-catalyzed azide—alkyne cycloaddition, J. Polym. Sci. Part A: Polym. Chem. 42(17), 4392–4403 (2004).

    Article  Google Scholar 

  13. B. Helms; J. L. Mynar; C. J. Hawker; J. M. J. Frechet, Dendronized linear polymers via “click chemistry”, J. Am. Chem. Soc. 126(46), 15020–15021 (2004).

    Article  CAS  Google Scholar 

  14. J.-F. Lutz, 1,3-dipolar cycloadditions of azides and alkynes: A universal ligation tool in polymer and materials science, Angew. Chem. Int. Ed. 46(7), 1018–1025 (2007).

    Article  CAS  Google Scholar 

  15. J.-F. Lutz; Z. Zarafshani, Efficient construction of therapeutics, bioconjugates, biomaterials and bioactive surfaces using azide-alkyne “click” chemistry, Adv. Drug Del. Rev. 60(9), 958–970 (2008).

    Article  CAS  Google Scholar 

  16. J.-F. Lutz; H. G. Börner; K. Weichenhan, Combining ATRP and click chemistry: A versatile method for preparing end-functional polymers, Macromol. Rapid Commun. 26, 514–518 (2005).

    Article  CAS  Google Scholar 

  17. S. Bräse; C. Gil; K. Knepper; V. Zimmermann, Organic azides: An exploding diversity of a unique class of compounds, Angew. Chem. Int. Ed. 44(33), 5188–5240 (2005).

    Article  Google Scholar 

  18. V. Ladmiral; T. M. Legge; Y. Zhao; S. Perrier, “Click” chemistry and radical polymerization: Potential loss of orthogonality, Macromolecules, 41, 6728–6732 (2008).

    Article  CAS  Google Scholar 

  19. V. Coessens; T. Pintauer; K. Matyjaszewski, Functional polymers by atom transfer radical polymerization, Progr. Polym. Sci. 26(3), 337–377 (2001).

    Article  CAS  Google Scholar 

  20. J.-F. Lutz; H. G. Börner; K. Weichenhan, Combining ATRP and “click” chemistry: A promising platform towards functional biocompatible polymers and polymer bioconjugates, Macromolecules 39(19), 6376–6383 (2006).

    Article  CAS  Google Scholar 

  21. J.-F. Lutz; S. Pfeifer; Z. Zarafshani, In situ functionalization of thermoresponsive polymeric micelles using the “click” cycloaddition of azides and alkynes, QSAR Comb. Sci. 26(11–12), 1151–1158 (2007).

    Article  CAS  Google Scholar 

  22. J.-F. Lutz; K. Matyjaszewski, Kinetic modeling of the chain-end functionality in atom transfer radical polymerization, Macromol. Chem. Phys. 203(10/11), 1385– 1395 (2002).

    Article  CAS  Google Scholar 

  23. J.-F. Lutz; K. Matyjaszewski, Nuclear magnetic resonance monitoring of chain-end functionality in the atom transfer radical polymerization of styrene, J. Polym. Sci. Part A: Polym. Chem. 43(4), 897–910 (2005).

    Article  CAS  Google Scholar 

  24. F. Zeng; Y. Shen; S. Zhu, Atom-transfer radical polymerization of 2-(N,N-Dimethylamino)ethyl acrylate, Macromol. Rapid Commun. 23(18), 1113–1117 (2002).

    Article  CAS  Google Scholar 

  25. H. G. Börner; H. Schlaad, Bioinspired functional block copolymers, Soft Matter, 3, 394–408 (2007).

    Article  Google Scholar 

  26. J.-F. Lutz; H. G. Börner; K. Weichenhan, “Click” bioconjugation of a well-defined synthetic polymer and a protein transduction domain, Aust. J. Chem. 60(6), 410–413 (2007).

    Article  CAS  Google Scholar 

  27. R. K. O'Reilly; M. J. Joralemon; C. J. Hawker; K. L. Wooley, Facile syntheses of surface-functionalized micelles and shell cross-linked nanoparticles, J. Polym Sci. Part A: Polym. Chem. 44(17), 5203–5217 (2006).

    Article  Google Scholar 

  28. R. K. O'Reilly; M. J. Joralemon; C. J. Hawker; K. L. Wooley, Fluorogenic 1,3-dipolar cycloaddition within the hydrophobic core of a shell cross-linked nanoparticle, Chem. Eur. J. 12(26), 6776–6786 (2006).

    Article  Google Scholar 

  29. Z. Zarafshani; Ö. Akdemir; J.-F. Lutz, A “click” strategy for tuning in situ the hydrophilic—hydrophobic balance of AB macrosurfactants, Macromol. Rapid Commun. 29(12–13), 1161–1166 (2008).

    Article  CAS  Google Scholar 

  30. J. A. Opsteen; J. C. M. van Hest, Modular synthesis of block copolymers via cycloaddition of terminal azide and alkyne functionalized polymers, Chem. Commun., 6, 57–59 (2005).

    Article  Google Scholar 

  31. J. A. Opsteen; J. C. M. van Hest, Modular synthesis of ABC type block copolymers by “click” chemistry, J. Polym Sci. Part A: Polym. Chem. 45(14), 2913–2924 (2007).

    Article  CAS  Google Scholar 

  32. A. P. Vogt; B. S. Sumerlin, An efficient route to macromonomers via ATRP and click chemistry, Macromolecules 39(16), 5286–5292 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Fraunhofer society and the German Research Foundation (Sfb 448) are acknowledged for financial support. Moreover, the authors thank Prof. Yusuf Yagci (Istanbul Technical University) and Prof. Ezat Khosravi (Durham University) for the organization of the NATO ASI meeting “New Smart Materials via Metal Mediated Macromolecular Engineering: from Complex to Nanostructures” and for their kind invitation to write the present chapter.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this paper

Cite this paper

Zarafshani, Z., Lutz, JF. (2009). Polymer- and Colloid-Functionalization Using a Combination Of ATRP and Click Chemistry. In: Khosravi, E., Yagci, Y., Savelyev, Y. (eds) New Smart Materials via Metal Mediated Macromolecular Engineering. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3278-2_8

Download citation

Publish with us

Policies and ethics