Advertisement

Light Induced Processes for the Synthesis of Polymers With Complex Structures

  • Yasemin Y. Durmaz
  • M. Atilla Tasdelen
  • Binnur Aydogan
  • Muhammet U. Kahveci
  • Yusuf Yagci
Conference paper
Part of the NATO Science for Peace and Security Series A: Chemistry and Biology book series (NAPSA)

Abstract

Light induced reactions are based on the absorption of light that excites the electrons of a molecule and can, under favorable circumstances, lead to dissociation, isomerization, abstraction, electron or energy transfer, and bond formation. These reactions have been the subject of many studies in various fields including organic chemistry, molecular biology, electronics etc. Light induced reactions can advantageously be utilized in the field of polymer chemistry. Among them, light induced polymerization is of enormous commercial importance. Techniques such as curing of coatings on wood, metal and paper, adhesives, printing inks and photoresists are based on photopolymerization. There are some other interesting applications, including production of laser video discs and curing of acrylate dental fillings. In this chapter, general methods for the light induced polymerization processes involving radical and ionic reactions are described. Special emphasize is devoted to their application to more complex macromolecular structures such as block, graft and star copolymers, and polymer nanocomposites based on clay and metal.

Keywords

Photoinitiated free radical polymerization Photoinitiated cationic polymerization Block copolymers Graft copolymers Polymer/metal nanocomposites Polymer/clay nanocomposites 

References

  1. [1]
    Hageman, H. J. Prog. Org. Coat. 1985, 13, 123–150.CrossRefGoogle Scholar
  2. [2]
    Gruber, H. F. Prog. Polym. Sci. 1992, 17, 953–1044.CrossRefGoogle Scholar
  3. [3]
    Vazquez, B., Levenfeld, B., Roman, J. S. Polym. Int. 1998, 46, 241–250.CrossRefGoogle Scholar
  4. [4]
    Karasu, F., Arsu, N., Yagci, Y. J. Appl. Polym. Sci. 2007, 103, 3766–3770.CrossRefGoogle Scholar
  5. [5]
    Cokbaglan, L., Arsu, N., Yagci, Y., Jockusch, S., Turro, N. J. Macromolecules 2003, 36, 2649–2653.CrossRefGoogle Scholar
  6. [6]
    Aydin, M., Arsu, N., Yagci, Y., Jockusch, S., Turro, N. J. Macromolecules 2005, 38, 4133–4138.CrossRefGoogle Scholar
  7. [7]
    Aydin, M., Arsu, N., Yagci, Y. Macromol. Rapid Commun. 2003, 24, 718–723.CrossRefGoogle Scholar
  8. [8]
    Balta, D. K., Arsu, N., Yagci, Y., Jockusch, S., Turro, N. J. Macromolecules 2007, 40, 4138–4141.CrossRefGoogle Scholar
  9. [9]
    Temel, G., Arsu, N., Yagci, Y. Polym. Bull. 2006, 57, 51–56.CrossRefGoogle Scholar
  10. [10]
    Gacal, B., Akat, H., Balta, D. K., Arsu, N., Yagci, Y. Macromolecules 2008, 41, 2401–2405.CrossRefGoogle Scholar
  11. [11]
    Yagci, Y. Macromol. Symp. 2000, 161, 19–35.CrossRefGoogle Scholar
  12. [12]
    Yagci, Y. Macromol. Symp. 2004, 215, 267–280.CrossRefGoogle Scholar
  13. [13]
    Durmaz, Y. Y., Moszner, N., Yagci, Y. Macromolecules 2008, 41, 6714–6718.CrossRefGoogle Scholar
  14. [14]
    Aydogan, B., Gundogan, A. S., Ozturk, T., Yagci, Y. Macromolecules 2008, 41, 3468–3471.CrossRefGoogle Scholar
  15. [15]
    Kahveci, M. U., Tasdelen, M. A., Yagci, Y. Macromol. Rapid Commun. 2008, 29, 202–206.CrossRefGoogle Scholar
  16. [16]
    Kahveci, M. U., Tasdelen, M. A., Yagci, Y. Polymer 2007, 48, 2199–2202.CrossRefGoogle Scholar
  17. [17]
    Kahveci, M. U., Tasdelen, M. A., Cook, W. D., Yagci, Y. Macromol. Chem. Phys. 2008, 209, 1881–1886.CrossRefGoogle Scholar
  18. [18]
    Muftuoglu, A. E., Yagci, Y., Se, K. Turk. J. Chem. 2004, 28, 469–476.Google Scholar
  19. [19]
    Yagci, Y., Schnabel, W. Prog. Polym. Sci. 1990, 15, 551–601.CrossRefGoogle Scholar
  20. [20]
    Muftuoglu, A. E., Tasdelen, M. A., Yagci, Y. Photoinduced Synthesis of Block Copolymers, in: Photochemistry and UV Curing: New Trends, J. P. Fouassier (Ed.), Research Signpost, Trivandrum, Ch. 29, pp. 343–353, 2006.Google Scholar
  21. [21]
    Durmaz, Y. Y., Karagoz, B., Bicak, N., Yagci, Y. Polym. Int. 2008, 57, 1182–1187.CrossRefGoogle Scholar
  22. [22]
    Tasdelen, M. A., Moszner, N., Yagci, Y. Prog. Org. Coat. 2009, in submitted.Google Scholar
  23. [23]
    Tasdelen, M. A., Demirel, A. L., Yagci, Y. Eur. Polym. J. 2007, 43, 4423–4430.CrossRefGoogle Scholar
  24. [24]
    Watson, K. J., Zhu, J., Nguyen, S. T., Mirkin, C. A. Pure Appl. Chem. 2000, 72, 67–72.CrossRefGoogle Scholar
  25. [25]
    Park, J. H., Lim, Y. T., Park, O. O., Kim, J. K., Yu, J. W., Kim, Y. C. Chem. Mat. 2004, 16, 688–692.CrossRefGoogle Scholar
  26. [26]
    Shenhar, R., Norsten, T. B., Rotello, V. M. Adv. Mater. 2005, 17, 657–669.CrossRefGoogle Scholar
  27. [27]
    de Loos, F., Reynhout, I. C., Cornelissen, J., Rowan, A. E., Nolte, R. J. M. Chem. Commun. 2005, 60–62.Google Scholar
  28. [28]
    Sangermano, M., Yagci, Y., Rizza, G. Macromolecules 2007, 40, 8827–8829.CrossRefGoogle Scholar
  29. [29]
    Yagci, Y., Sangermano, M., Rizza, G. Polymer 2008, 49, 5195–5198.CrossRefGoogle Scholar
  30. [30]
    Yagci, Y., Sangermano, M., Rizza, G. Chem. Commun. 2008, 2771–2773.Google Scholar
  31. [31]
    Yagci, Y., Sangermano, M., Rizza, G. Macromolecules 2008, 41, 7268–7270.CrossRefGoogle Scholar
  32. [32]
    Alexandre, M., Dubois, P. Mater. Sci. Eng. R. 2000, 28, 1–63.CrossRefGoogle Scholar
  33. [33]
    Okamoto, M. Mater. Sci. Tech-Lond. 2006, 22, 756–779.CrossRefGoogle Scholar
  34. [34]
    Ray, S. S., Okamoto, M. Prog. Polym. Sci. 2003, 28, 1539–1641.CrossRefGoogle Scholar
  35. [35]
    Nese, A., Sen, S., Tasdelen, M. A., Nugay, N., Yagci, Y. Macromol. Chem. Phys. 2006, 207, 820–826.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Yasemin Y. Durmaz
    • 1
  • M. Atilla Tasdelen
    • 1
  • Binnur Aydogan
    • 1
  • Muhammet U. Kahveci
    • 1
  • Yusuf Yagci
    • 1
  1. 1.Department of ChemistryIstanbul Technical UniversityIstanbulTurkey

Personalised recommendations