Skip to main content

Polymeric Monoliths: Novel Materials for Separation Science, Heterogeneous Catalysis and Regenerative Medicine

  • Conference paper
New Smart Materials via Metal Mediated Macromolecular Engineering

Abstract

The chemistry of metathesis polymerization-derived monolithic supports is summarized. Since ring-opening metathesis polymerization (ROMP) triggered by well-defined transition metal alkylidenes is a living polymerization method, it allows for the controlled and highly reproducible synthesis of stationary phases in terms of both the nature and total content of the functional group(s) of interest. In addition, the high functionality tolerance of ROMP allows for creating monolithic supports with an unprecedented diversity in terms of functional groups that may be introduced. Applications in various areas of chemistry such as separation science heterogeneous catalysis and tissue engineering are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Penczek, S., Kubisa, P., Szymanski, R., 1991, Makromol. Chem. Rapid Commun., 12: 77–80.

    Article  CAS  Google Scholar 

  2. Matyjaszewski, K., 1993, Macromolecules, 26: 1787–1788.

    Article  CAS  Google Scholar 

  3. Peters, E. C., Švec, F., Fréchet, J. M. J., Viklund, C., Irgum, K., 1999, Macromolecules, 32: 6377–6379.

    Article  CAS  Google Scholar 

  4. Schrock, R. R., 1990, Acc. Chem. Res., 23: 158–165.

    Article  CAS  Google Scholar 

  5. Schrock, R. R., 1993, Ring-Opening Polymerization, 1st ed., Hanser, Munich, pp. 129–156.

    Google Scholar 

  6. Švec, F., Tennikova, T. B., Deyl, Z., 2003, Monolithic Materials: Preparation, Properties and Application (In: J. Chromatogr. Libr., Ed.), Elsevier, Amsterdam, Vol. 67, pp. 1–773.

    Book  Google Scholar 

  7. Švec, F., 2004, LC-GC: LC Column Technol. Suppl., June: 18.

    Google Scholar 

  8. Švec, F., 2005, LC-GC Europe, 18: 17–20.

    Google Scholar 

  9. Švec, F., Huber, C. G., 2006, Anal. Chem., 78: 2100–2107.

    Article  Google Scholar 

  10. Švec, F., Geiser, L., 2006, LCGC North America, 24(S4): 22–27.

    Google Scholar 

  11. Buchmeiser, M. R., 2007, Polymer, 48: 2187–2198.

    Article  CAS  Google Scholar 

  12. Sinner, F., Buchmeiser, M. R., 2000, Angew. Chem., 112: 1491–1494.

    Article  Google Scholar 

  13. Mayr, B., Tessadri, R., Post, E., Buchmeiser, M. R., 2001, Anal. Chem., 73: 4071–4078.

    Article  CAS  Google Scholar 

  14. Buchmeiser, M. R., 2004, New. J. Chem., 28: 549–557.

    Article  CAS  Google Scholar 

  15. Buchmeiser, M. R., 2003, Metathesis-Based Polymers for Organic Synthesis and Catalysis, In: Polymeric Materials in Organic Synthesis and Catalysis, 1st ed., Wiley-VCH, Weinheim, pp. 1–559.

    Google Scholar 

  16. Buchmeiser, M. R., 2005, Metathesis Polymerization from and to Surfaces, In: Adv. Polym. Sci. (Surface-Initiated Polymerization I), Springer, Berlin/Heidelberg/ New York, Vol. 197, pp. 137–172.

    Google Scholar 

  17. Love, J. A., Morgan, J. P., Trnka, T. M., Grubbs, R. H., 2002, Angew. Chem., 114: 4207–4209.

    Article  Google Scholar 

  18. Halász, I., Martin, K., 1978, Angew. Chem., 90: 954–961.

    Article  Google Scholar 

  19. Bandari, R., Prager-Duschke, A., Kühnel, C., Decker, U., Schlemmer, B., Buchmeiser, M. R., 2006, Macromolecules, 39: 5222–5229.

    Article  CAS  Google Scholar 

  20. Lubbad, S., Mayr, B., Huber, C. G., Buchmeiser, M. R., 2002, J. Chromatogr. A, 959: 121–129.

    Article  CAS  Google Scholar 

  21. Mayr, B., Hölzl, G., Eder, K., Buchmeiser, M. R., Huber, C. G., 2002, Anal. Chem., 74: 6080–6087.

    Article  CAS  Google Scholar 

  22. Gatschelhofer, C., Magnes, C., Pieber, T. R., Buchmeiser, M. R., Sinner, F. M., 2005, J. Chromatogr. A, 1090: 81–89.

    Article  CAS  Google Scholar 

  23. Sinner, F. M., Gatschelhofer, C., Mautner, A., Magnes, C., Buchmeiser, M. R., Pieber, T. R., 2008, J. Chromatogr. A., 1191: 274–281.

    Article  CAS  Google Scholar 

  24. Sedláková, P., Miksik, I., Gatschelhofer, C., Sinner, F. M., Buchmeiser, M. R., 2007, Electrophoresis, 28: 2219–2222.

    Article  CAS  Google Scholar 

  25. Buchmeiser, M. R., Lubbad, S., Mayr, M., Wurst, K., 2003, Inorg. Chim. Acta, 345: 145–153.

    Article  CAS  Google Scholar 

  26. Lubbad, S., Buchmeiser, M. R., 2003, Macromol. Rapid Commun., 24: 580–584.

    Article  CAS  Google Scholar 

  27. Eder, K., 2007, Macromol. Rapid Commun., 28: 2029–2032.

    Article  CAS  Google Scholar 

  28. Eder, K., Reichel, E., Schottenberger, H., Huber, C. G., Buchmeiser, M. R., 2001, Macromolecules, 34: 4334–4341.

    Article  CAS  Google Scholar 

  29. Bandari, R., Knolle, W., Prager-Duschke, A., Buchmeiser, M. R., 2007, Macromol. Chem. Phys., 208: 1428–1436.

    Article  CAS  Google Scholar 

  30. Bandari, R., Knolle, W., Buchmeiser, M. R., 2007, Macromol. Symp., 254: 87–92.

    CAS  Google Scholar 

  31. Bandari, R., Elsner, C., Knolle, W., Kühnel, C., Decker, U., Buchmeiser, M. R., 2007, J. Sep. Sci., 30: 2821–2827.

    Article  CAS  Google Scholar 

  32. Bandari, R., Knolle, W., Buchmeiser, M. R., 2008, J. Chromatogr. A., 1191: 268–273.

    Article  CAS  Google Scholar 

  33. Bandari, R., Knolle, W., Buchmeiser, M. R., 2007, Macromol. Rapid Commun., 28: 2090–2094.

    Article  CAS  Google Scholar 

  34. Sinner, F., Buchmeiser, M. R., 2000, Macromolecules, 33: 5777–5786.

    Article  CAS  Google Scholar 

  35. Mayr, M., Mayr, B., Buchmeiser, M. R., 2001, Angew. Chem., 113: 3957–3960.

    Article  Google Scholar 

  36. Krause, J. O., Lubbad, S., Mayr, M., Nuyken, O., Buchmeiser, M. R., 2003, Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.), 44: 790–791.

    CAS  Google Scholar 

  37. Krause, J. O., Lubbad, S., Nuyken, O., Buchmeiser, M. R., 2003, Adv. Synth. Catal., 345: 996–1004.

    Article  CAS  Google Scholar 

  38. Krause, J. O., Wurst, K., Nuyken, O., Buchmeiser, M. R., 2004, Chem. Eur. J., 10: 777–784.

    Article  CAS  Google Scholar 

  39. Krause, J. O., Lubbad, S. H., Nuyken, O., Buchmeiser, M. R., 2003, Macromol. Rapid Commun., 24: 875–878.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Financial support provided by the Deutsche Forschungsgemeinschaft (DFG), the Free State of Saxony and the Federal Government of Germany is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this paper

Cite this paper

Buchmeiser, M.R. (2009). Polymeric Monoliths: Novel Materials for Separation Science, Heterogeneous Catalysis and Regenerative Medicine. In: Khosravi, E., Yagci, Y., Savelyev, Y. (eds) New Smart Materials via Metal Mediated Macromolecular Engineering. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3278-2_16

Download citation

Publish with us

Policies and ethics