Skip to main content

Proteomics and Islet Research

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 654))

Abstract

The complementary disciplines of genomics and proteomics offer better insights into the molecular mechanisms of diseases. While genomics hunts for defining our static genetic substrate, proteomics explores the structure and function of proteins expressed by a cell or tissue type under specified conditions. In the past decade, proteomics has been revolutionized by the application of techniques such as two-dimensional gel electrophoresis (2DGE), mass spectrometry (MS), and protein arrays. These techniques have tremendous potential for biomarker development, target validation, diagnosis, prognosis, and optimization of treatment in medical care, especially in the field of islet and diabetes research. This chapter will highlight the contributions of proteomic technologies toward the dissection of complex network of signaling molecules regulating islet function, the identification of potential biomarkers, and the understanding of mechanisms involved in the pathogenesis of diabetes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Anderson NL, Anderson NG. Proteome and proteomics: new technologies, new concepts, and new words. Electrophoresis 1998;19:1853–61.

    PubMed  CAS  Google Scholar 

  2. Gygi SP, Rochon Y, Franza BR, Aebersold R. Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 19:1720–1730, 1999

    PubMed  CAS  Google Scholar 

  3. Anderson NG, Matheson A, Anderson NL. Back to the future: the human protein index (HPI) and the agenda for post-proteomic biology. Proteomics 2001;1:3–12.

    PubMed  CAS  Google Scholar 

  4. Adam BL, Vlahou A, Semmes OJ, Wright GL, Jr. Proteomic approaches to biomarker discovery in prostate and bladder cancers. Proteomics 2001;1:1264–70.

    PubMed  CAS  Google Scholar 

  5. Petricoin EF, Liotta LA. SELDI-TOF-based serum proteomic pattern diagnostics for early detection of cancer. Curr Opin Biotechnol 2004;15:24–30.

    PubMed  CAS  Google Scholar 

  6. Maurya P, Meleady P, Dowling P, Clynes M. Proteomic approaches for serum biomarker discovery in cancer. Anticancer Res 2007;27:1247–55.

    PubMed  CAS  Google Scholar 

  7. Celis JE, Ostergaard M, Jensen NA, Gromova I, Rasmussen HH, Gromov P. Human and mouse proteomic databases: novel resources in the protein universe. FEBS Lett 1998;430:64–72.

    PubMed  CAS  Google Scholar 

  8. Cahill DJ, Nordhoff E, O’Brien J, Klose J, Eickhoff H, Lehrach H: Bridging genomics and proteomics. In Proteomics: from protein sequence to function Pennington SR, Dunn MJ, Eds. Oxford: BIOS Scientific Publishers Ltd, 2001, p. 1–22.

    Google Scholar 

  9. Ezzell C. Proteins rule. Sci Am 2002;286:40–7.

    PubMed  Google Scholar 

  10. Williams KL, Hochstrasser DF: Introduction to the proteome. In Proteome Research: New Frontiers in Functional Genomics Wilkins MR, Williams KL, Appel RD, Hochstrasser DF, Eds., Springer, 1997, p. 1–12.

    Google Scholar 

  11. Abbott A. A post-genomic challenge: learning to read patterns of protein synthesis. Nature 1999;402:715–20.

    PubMed  CAS  Google Scholar 

  12. Wasinger VC, Cordwell SJ, Cerpa-Poljak A, Yan JX, Gooley AA, Wilkins MR, Duncan MW, Harris R, Williams KL, Humphery-Smith I. Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium. Electrophoresis 1995;16:1090–4.

    PubMed  CAS  Google Scholar 

  13. Wilkins MR, Pasquali C, Appel RD, Ou K, Golaz O, Sanchez JC, Yan JX, Gooley AA, Hughes G, Humphery-Smith I, Williams KL, Hochstrasser DF. From proteins to proteomes: large scale protein identification by two-dimensional electrophoresis and amino acid analysis. Biotechnology (N Y) 1996;14:61–5.

    CAS  Google Scholar 

  14. Hoogland C, Sanchez JC, Walther D, Baujard V, Baujard O, Tonella L, Hochstrasser DF, Appel RD. Two-dimensional electrophoresis resources available from ExPASy. Electrophoresis 1999;20:3568–71.

    PubMed  CAS  Google Scholar 

  15. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell 2009;136:215–33.

    PubMed  CAS  Google Scholar 

  16. Strohman R. Epigenesis: the missing beat in biotechnology? Biotechnology (N Y) 1994;12:156–64.

    CAS  Google Scholar 

  17. Figeys D. Proteomics in 2002: a year of technical development and wide-ranging applications. Anal Chem 2003;75:2891–905.

    PubMed  CAS  Google Scholar 

  18. Molloy MP, Brzezinski EE, Hang J, McDowell MT, VanBogelen RA. Overcoming technical variation and biological variation in quantitative proteomics. Proteomics 2003;3:1912–9.

    PubMed  CAS  Google Scholar 

  19. Domon B, Broder S. Implications of new proteomics strategies for biology and medicine. J Proteome Res 2004;3:253–60.

    PubMed  CAS  Google Scholar 

  20. Graves PR, Haystead TA. A functional proteomics approach to signal transduction. Recent Prog Horm Res 2003;58:1–24.

    PubMed  CAS  Google Scholar 

  21. Yee A, Chang X, Pineda-Lucena A, Wu B, Semesi A, Le B, Ramelot T, Lee GM, Bhattacharyya S, Gutierrez P, Denisov A, Lee CH, Cort JR, Kozlov G, Liao J, Finak G, Chen L, Wishart D, Lee W, McIntosh LP, Gehring K, Kennedy MA, Edwards AM, Arrowsmith CH. An NMR approach to structural proteomics. Proc Natl Acad Sci U S A 2002;99:1825–30.

    PubMed  CAS  Google Scholar 

  22. Sali A, Glaeser R, Earnest T, Baumeister W. From words to literature in structural proteomics. Nature 2003;422:216–25.

    PubMed  CAS  Google Scholar 

  23. Lopez JL. Two-dimensional electrophoresis in proteome expression analysis. J Chromatogr B Analyt Technol Biomed Life Sci 2007;849:190–202.

    PubMed  CAS  Google Scholar 

  24. Gorg A, Weiss W, Dunn MJ. Current two-dimensional electrophoresis technology for proteomics. Proteomics 2004;4:3665–85.

    PubMed  Google Scholar 

  25. Klose J. Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. A novel approach to testing for induced point mutations in mammals. Humangenetik 1975;26:231–43.

    CAS  Google Scholar 

  26. O’Farrell PH. High resolution two-dimensional electrophoresis of proteins. J Biol Chem 1975;250:4007–21.

    PubMed  Google Scholar 

  27. Gorg A, Obermaier C, Boguth G, Harder A, Scheibe B, Wildgruber R, Weiss W. The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 2000;21:1037–53.

    PubMed  CAS  Google Scholar 

  28. Vercauteren FG, Arckens L, Quirion R. Applications and current challenges of proteomic approaches, focusing on two-dimensional electrophoresis. Amino Acids, 2006.

    Google Scholar 

  29. Florens L, Washburn MP. Proteomic analysis by multidimensional protein identification technology. Methods Mol Biol 2006;328:159–75.

    PubMed  CAS  Google Scholar 

  30. Binz PA, Muller M, Hoogland C, Zimmermann C, Pasquarello C, Corthals G, Sanchez JC, Hochstrasser DF, Appel RD. The molecular scanner: concept and developments. Curr Opin Biotechnol 2004;15:17–23.

    PubMed  CAS  Google Scholar 

  31. Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 2002;1:376–86.

    PubMed  CAS  Google Scholar 

  32. Fenselau C. A review of quantitative methods for proteomic studies. J Chromatogr B Analyt Technol Biomed Life Sci 2007;855:14–20.

    PubMed  CAS  Google Scholar 

  33. Aggarwal K, Choe LH, Lee KH. Shotgun proteomics using the iTRAQ isobaric tags. Brief Funct Genomic Proteomic 2006;5:112–20.

    PubMed  CAS  Google Scholar 

  34. Zhu H, Snyder M. Protein chip technology. Curr Opin Chem Biol 2003;7:55–63.

    PubMed  CAS  Google Scholar 

  35. Bertone P, Snyder M. Advances in functional protein microarray technology. Febs J 2005;272:5400–11.

    PubMed  CAS  Google Scholar 

  36. Cretich M, Damin F, Pirri G, Chiari M. Protein and peptide arrays: recent trends and new directions. Biomol Eng 2006;23:77–88.

    PubMed  CAS  Google Scholar 

  37. Uttamchandani M, Yao SQ. Peptide microarrays: next generation biochips for detection, diagnostics and high-throughput screening. Curr Pharm Des 2008;14:2428–38.

    PubMed  CAS  Google Scholar 

  38. Olsen JV, Andersen JR, Nielsen PA, Nielsen ML, Figeys D, Mann M, Wisniewski JR. HysTag – a novel proteomic quantification tool applied to differential display analysis of membrane proteins from distinct areas of mouse brain. Mol Cell Proteomics 2004;3:82–92.

    PubMed  CAS  Google Scholar 

  39. Thiede B, Hohenwarter W, Krah A, Mattow J, Schmid M, Schmidt F, Jungblut PR. Peptide mass fingerprinting. Methods 2005;35:237–47.

    PubMed  CAS  Google Scholar 

  40. Yates JR, III. Mass spectrometry and the age of the proteome. J Mass Spectrom. 1998; 33:1–19.

    PubMed  CAS  Google Scholar 

  41. Aebersold R, Goodlett DR. Mass spectrometry in proteomics. Chem.Rev 2001;101:269–95.

    PubMed  CAS  Google Scholar 

  42. Canas B, Lopez-Ferrer D, Ramos-Fernandez A, Camafeita E, Calvo E. Mass spectrometry technologies for proteomics. Brief Funct Genomic Proteomic 2006;4:295–320.

    PubMed  CAS  Google Scholar 

  43. Zhou M, Veenstra T. Mass spectrometry: m/z 1983-2008. Biotechniques 2008;44:667–668, 670.

    PubMed  CAS  Google Scholar 

  44. Aebersold R, Mann M. Mass spectrometry-based proteomics. Nature 2003;422:198–207.

    PubMed  CAS  Google Scholar 

  45. Mann M, Jensen ON. Proteomic analysis of post-translational modifications. Nat Biotechnol 2003;21:255–61.

    PubMed  CAS  Google Scholar 

  46. Merchant M, Weinberger SR. Recent advancements in surface-enhanced laser desorption/ionization- time of flight-mass spectrometry. Electrophoresis 2000;21:1164–77.

    PubMed  CAS  Google Scholar 

  47. Issaq HJ, Veenstra TD, Conrads TP, Felschow D. The SELDI-TOF MS approach to proteomics: protein profiling and biomarker identification. Biochem Biophys Res Commun. 2002;292:587–92.

    PubMed  CAS  Google Scholar 

  48. Kiehntopf M, Siegmund R, Deufel T. Use of SELDI-TOF mass spectrometry for identification of new biomarkers: potential and limitations. Clin Chem Lab Med 2007;45:1435–49.

    PubMed  CAS  Google Scholar 

  49. Swanson SK, Washburn MP. The continuing evolution of shotgun proteomics. Drug Discov Today 2005;10:719–25.

    PubMed  CAS  Google Scholar 

  50. America AH, Cordewener JH. Comparative LC-MS: a landscape of peaks and valleys. Proteomics 2008;8:731–49.

    PubMed  CAS  Google Scholar 

  51. Old WM, Meyer-Arendt K, Aveline-Wolf L, Pierce KG, Mendoza A, Sevinsky JR, Resing KA, Ahn NG. Comparison of label-free methods for quantifying human proteins by shotgun proteomics. Mol Cell Proteomics 2005;4:1487–1502.

    PubMed  CAS  Google Scholar 

  52. Resing KA, Ahn NG. Proteomics strategies for protein identification. FEBS Lett 2005;579:885–9.

    PubMed  CAS  Google Scholar 

  53. McCafferty J, Griffiths AD, Winter G, Chiswell DJ. Phage antibodies: filamentous phage displaying antibody variable domains. Nature 1990;348:552–4.

    PubMed  CAS  Google Scholar 

  54. Jestin JL. Functional cloning by phage display. Biochimie 2008;90:1273–8.

    PubMed  CAS  Google Scholar 

  55. Fields S. High-throughput two-hybrid analysis. The promise and the peril. Febs J 2005;272:5391–9.

    PubMed  CAS  Google Scholar 

  56. Lalonde S, Ehrhardt DW, Loque D, Chen J, Rhee SY, Frommer WB. Molecular and cellular approaches for the detection of protein-protein interactions: latest techniques and current limitations. Plant J 2008;53:610–35.

    PubMed  CAS  Google Scholar 

  57. Schweitzer B, Predki P, Snyder M. Microarrays to characterize protein interactions on a whole-proteome scale. Proteomics 2003;3:2190–9.

    PubMed  CAS  Google Scholar 

  58. Espina V, Mehta AI, Winters ME, Calvert V, Wulfkuhle J, Petricoin EF, 3rd, Liotta LA. Protein microarrays: molecular profiling technologies for clinical specimens. Proteomics 2003;3:2091–2100.

    PubMed  CAS  Google Scholar 

  59. Kikuchi T, Carbone DP. Proteomics analysis in lung cancer: challenges and opportunities. Respirology 2007;12:22–8.

    PubMed  Google Scholar 

  60. Kusnezow W, Hoheisel JD. Antibody microarrays: promises and problems. Biotechniques 2002;Suppl:14–23.

    Google Scholar 

  61. Wingren C, Borrebaeck CA. Antibody microarrays: current status and key technological advances. Omics 2006;10:411–27.

    PubMed  CAS  Google Scholar 

  62. Zhu H, Bilgin M, Bangham R, Hall D, Casamayor A, Bertone P, Lan N, Jansen R, Bidlingmaier S, Houfek T, Mitchell T, Miller P, Dean RA, Gerstein M, Snyder M. Global analysis of protein activities using proteome chips. Science 2001;293:2101–5.

    PubMed  CAS  Google Scholar 

  63. Speer R, Wulfkuhle JD, Liotta LA, Petricoin EF, 3rd. Reverse-phase protein microarrays for tissue-based analysis. Curr Opin Mol Ther 2005;7:240–5.

    PubMed  CAS  Google Scholar 

  64. Geho D, Lahar N, Gurnani P, Huebschman M, Herrmann P, Espina V, Shi A, Wulfkuhle J, Garner H, Petricoin E, 3rd, Liotta LA, Rosenblatt KP. Pegylated, steptavidin-conjugated quantum dots are effective detection elements for reverse-phase protein microarrays. Bioconjug Chem 2005;16:559–6.

    PubMed  CAS  Google Scholar 

  65. Janzi M, Odling J, Pan-Hammarstrom Q, Sundberg M, Lundeberg J, Uhlen M, Hammarstrom L, Nilsson P. Serum microarrays for large scale screening of protein levels. Mol Cell Proteomics 2005;4:1942–7.

    PubMed  CAS  Google Scholar 

  66. Hutton JC, Penn EJ, Peshavaria M. Isolation and characterisation of insulin secretory granules from a rat islet cell tumour. Diabetologia 1982;23:365–73.

    PubMed  CAS  Google Scholar 

  67. Guest PC, Bailyes EM, Rutherford NG, Hutton JC. Insulin secretory granule biogenesis. Co-ordinate regulation of the biosynthesis of the majority of constituent proteins. Biochem J 274 (Pt 1991;1):73–8.

    Google Scholar 

  68. Brunner Y, Coute Y, Iezzi M, Foti M, Fukuda M, Hochstrasser DF, Wollheim CB, Sanchez JC. Proteomics analysis of insulin secretory granules. Mol Cell Proteomics 2007;6:1007–7.

    PubMed  CAS  Google Scholar 

  69. Sanchez JC, Chiappe D, Converset V, Hoogland C, Binz PA, Paesano S, Appel RD, Wang S, Sennitt M, Nolan A, Cawthorne MA, Hochstrasser DF. The mouse SWISS-2D PAGE database: a tool for proteomics study of diabetes and obesity. Proteomics 2001;1: 136–63.

    PubMed  CAS  Google Scholar 

  70. Nicolls MR, D’Antonio JM, Hutton JC, Gill RG, Czwornog JL, Duncan MW. Proteomics as a tool for discovery: proteins implicated in Alzheimer's disease are highly expressed in normal pancreatic islets. J Proteome Res 2003;2:199–205.

    PubMed  CAS  Google Scholar 

  71. Ahmed M, Bergsten P. Glucose-induced changes of multiple mouse islet proteins analysed by two-dimensional gel electrophoresis and mass spectrometry. Diabetologia 2005;48: 477–85.

    PubMed  CAS  Google Scholar 

  72. Ahmed M, Forsberg J, Bergsten P. Protein profiling of human pancreatic islets by two-dimensional gel electrophoresis and mass spectrometry. J Proteome Res 2005;4:931–40.

    PubMed  CAS  Google Scholar 

  73. Sundsten T, Ortsater H. Proteomics in diabetes research. Mol Cell Endocrinol, 2008.

    Google Scholar 

  74. Petyuk VA, Qian WJ, Hinault C, Gritsenko MA, Singhal M, Monroe ME, Camp DG, 2nd, Kulkarni RN, Smith RD. Characterization of the mouse pancreatic islet proteome and comparative analysis with other mouse tissues. J Proteome Res 2008;7:3114–26.

    PubMed  CAS  Google Scholar 

  75. Metz TO, Jacobs JM, Gritsenko MA, Fontes G, Qian WJ, Camp DG, 2nd, Poitout V, Smith RD. Characterization of the human pancreatic islet proteome by two-dimensional LC/MS/MS. J Proteome Res 2006;5:3345–54.

    PubMed  CAS  Google Scholar 

  76. Maziarz M, Chung C, Drucker DJ, Emili A. Integrating global proteomic and genomic expression profiles generated from islet α cells: opportunities and challenges to deriving reliable biological inferences. Mol Cell Proteomics 2005;4:458–74.

    PubMed  CAS  Google Scholar 

  77. Hunter T, Karin M. The regulation of transcription by phosphorylation. Cell 1992;70: 375–87.

    PubMed  CAS  Google Scholar 

  78. Jones PM, Persaud SJ. Protein kinases, protein phosphorylation, and the regulation of insulin secretion from pancreatic β-cells. Endocr.Rev. 1998;19:429–61.

    PubMed  CAS  Google Scholar 

  79. Hunter T. The age of crosstalk: phosphorylation, ubiquitination, and beyond. Mol Cell 2007;28:730–8.

    PubMed  CAS  Google Scholar 

  80. Steinberg TH, Agnew BJ, Gee KR, Leung WY, Goodman T, Schulenberg B, Hendrickson J, Beechem JM, Haugland RP, Patton WF. Global quantitative phosphoprotein analysis using Multiplexed Proteomics technology. Proteomics 2003;3:1128–44.

    PubMed  CAS  Google Scholar 

  81. Rorsman P. The pancreatic beta-cell as a fuel sensor: an electrophysiologist’s viewpoint. Diabetologia 1997;40:487–95.

    PubMed  CAS  Google Scholar 

  82. van Haeften TW. Early disturbances in insulin secretion in the development of type 2 diabetes mellitus. Mol Cell Endocrinol 2002;197:197–204.

    PubMed  Google Scholar 

  83. Scheen AJ. Pathophysiology of insulin secretion. Ann Endocrinol (Paris) 2004;65:29–36.

    CAS  Google Scholar 

  84. Ling Z, Hannaert JC, Pipeleers D. Effect of nutrients, hormones and serum on survival of rat islet beta cells in culture. Diabetologia 1994;37:15–21.

    PubMed  CAS  Google Scholar 

  85. Tochino Y. The NOD mouse as a model of type I diabetes. Crit Rev Immunol 1987;8:49–81.

    PubMed  CAS  Google Scholar 

  86. Wolf G. Insulin resistance associated with leptin deficiency in mice: a possible model for noninsulin-dependent diabetes mellitus. Nutr Rev 2001;59:177–9.

    PubMed  CAS  Google Scholar 

  87. Bergsten P, Hellman B. Glucose-induced cycles of insulin release can be resolved into distinct periods of secretory activity. Biochem Biophys Res Commun 1993;192:1182–8.

    PubMed  CAS  Google Scholar 

  88. Lin JM, Sternesjo J, Sandler S, Bergsten P. Preserved pulsatile insulin release from prediabetic mouse islets. Endocrinology 1999;140:3999–4004.

    PubMed  CAS  Google Scholar 

  89. Heimberg H, De Vos A, Pipeleers D, Thorens B, Schuit F. Differences in glucose transporter gene expression between rat pancreatic α- and β-cells are correlated to differences in glucose transport but not in glucose utilization. J Biol Chem 1995;270:8971–5.

    PubMed  CAS  Google Scholar 

  90. Liang Y, Najafi H, Smith RM, Zimmerman EC, Magnuson MA, Tal M, Matschinsky FM. Concordant glucose induction of glucokinase, glucose usage, and glucose-stimulated insulin release in pancreatic islets maintained in organ culture. Diabetes 1992;41:792–806.

    PubMed  CAS  Google Scholar 

  91. Chan CB, Saleh MC, Koshkin V, Wheeler MB. Uncoupling protein 2 and islet function. Diabetes 2004;53 Suppl 1:S136–42.

    PubMed  CAS  Google Scholar 

  92. Webb GC, Akbar MS, Zhao C, Steiner DF. Expression profiling of pancreatic β cells: glucose regulation of secretory and metabolic pathway genes. Proc Natl Acad Sci U S A 2000;97:5773–8.

    PubMed  CAS  Google Scholar 

  93. Alge CS, Suppmann S, Priglinger SG, Neubauer AS, May CA, Hauck S, Welge-Lussen U, Ueffing M, Kampik A. Comparative proteome analysis of native differentiated and cultured dedifferentiated human RPE cells. Invest Ophthalmol Vis Sci 2003;44:3629–41.

    PubMed  Google Scholar 

  94. Poland J, Sinha P, Siegert A, Schnolzer M, Korf U, Hauptmann S. Comparison of protein expression profiles between monolayer and spheroid cell culture of HT-29 cells revealed fragmentation of CK18 in three-dimensional cell culture. Electrophoresis 2002; 23: 1174–84.

    PubMed  CAS  Google Scholar 

  95. Ahmed M, Bergsten P, McCarthy M, Rorsman P. Protein profiling of INS-1E cells by two-dimensional gel electrophoresis and mass spectrometry. Diabetologia 48, 2005;A 162.

    Google Scholar 

  96. Collins HW, Buettger C, Matschinsky F. High-resolution two-dimensional polyacrylamide gel electrophoresis reveals a glucose-response protein of 65 kDa in pancreatic islet cells. Proc Natl Acad Sci U S A 1990;87:5494–8.

    PubMed  CAS  Google Scholar 

  97. Collins H, Najafi H, Buettger C, Rombeau J, Settle RG, Matschinsky FM. Identification of glucose response proteins in two biological models of β-cell adaptation to chronic high glucose exposure. J Biol Chem 1992;267:1357–66.

    PubMed  CAS  Google Scholar 

  98. Schubart UK. Regulation of protein phosphorylation in hamster insulinoma cells. Identification of Ca2+-regulated cytoskeletal and cAMP-regulated cytosolic phosphoproteins by two-dimensional electrophoresis. J Biol Chem 1982;257:12231–8.

    PubMed  CAS  Google Scholar 

  99. Schubart UK, Fields KL. Identification of a calcium-regulated insulinoma cell phosphoprotein as an islet cell keratin. J Cell Biol 1984;98:1001–9.

    PubMed  CAS  Google Scholar 

  100. Kasper M, von Dorsche H, Stosiek P. Changes in the distribution of intermediate filament proteins and collagen IV in fetal and adult human pancreas. I. Localization of cytokeratin polypeptides. Histochemistry 1991;96:271–7.

    PubMed  CAS  Google Scholar 

  101. Farina V, Zedda M. On the expression of cytokeratins and their distribution in some rabbit gland tissues. Eur J Histochem 1992;36:479–8.

    PubMed  CAS  Google Scholar 

  102. Francini F, Del Zotto H, Gagliardino JJ. Effect of an acute glucose overload on Islet cell morphology and secretory function in the toad. Gen Comp Endocrinol 2001;122:130–8.

    PubMed  CAS  Google Scholar 

  103. Blessing M, Ruther U, Franke WW. Ectopic synthesis of epidermal cytokeratins in pancreatic islet cells of transgenic mice interferes with cytoskeletal order and insulin production. J Cell Biol 1993;120:743–55.

    PubMed  CAS  Google Scholar 

  104. Dowling P, O’Driscoll L, O’Sullivan F, Dowd A, Henry M, Jeppesen PB, Meleady P, Clynes M. Proteomic screening of glucose-responsive and glucose non-responsive MIN-6 beta cells reveals differential expression of proteins involved in protein folding, secretion and oxidative stress. Proteomics 2006;6:6578–87.

    PubMed  CAS  Google Scholar 

  105. Lu H, Yang Y, Allister EM, Wijesekara N, Wheeler MB. The identification of potential factors associated with the development of type 2 diabetes: a quantitative proteomics approach. Mol Cell Proteomics 2008;7:1434–51.

    PubMed  CAS  Google Scholar 

  106. Jin J, Park J, Kim K, Kang Y, Park SG, Kim JH, Park KS, Jun H, Kim Y. Detection of Differential Proteomes of Human β-Cells During Islet-Like Differentiation Using iTRAQ Labeling. J Proteome Res, 2009.

    Google Scholar 

  107. Minerva L, Clerens S, Baggerman G, Arckens L. Direct profiling and identification of peptide expression differences in the pancreas of control and ob/ob mice by imaging mass spectrometry. Proteomics 2008;8:3763–74.

    PubMed  CAS  Google Scholar 

  108. Sparre T, Reusens B, Cherif H, Larsen MR, Roepstorff P, Fey SJ, Mose Larsen P, Remacle C, Nerup J. Intrauterine programming of fetal islet gene expression in rats – effects of maternal protein restriction during gestation revealed by proteome analysis. Diabetologia 2003;46:1497–1511.

    PubMed  CAS  Google Scholar 

  109. Unger RH, Grundy S. Hyperglycaemia as an inducer as well as a consequence of impaired islet cell function and insulin resistance: implications for the management of diabetes. Diabetologia 1985;28:119–21.

    PubMed  CAS  Google Scholar 

  110. Leahy JL, Cooper HE, Deal DA, Weir GC. Chronic hyperglycemia is associated with impaired glucose influence on insulin secretion. A study in normal rats using chronic in vivo glucose infusions. J Clin Invest 1986;77:908–15.

    PubMed  CAS  Google Scholar 

  111. Eizirik DL, Korbutt GS, Hellerstrom C. Prolonged exposure of human pancreatic islets to high glucose concentrations in vitro impairs the β-cell function. J Clin Invest 1992;90: 1263–8.

    PubMed  CAS  Google Scholar 

  112. Purrello F, Rabuazzo AM, Anello M, Patane G. Effects of prolonged glucose stimulation on pancreatic beta cells: from increased sensitivity to desensitization. Acta Diabetol 1996;33:253–56.

    PubMed  CAS  Google Scholar 

  113. Manco M, Calvani M, Mingrone G. Effects of dietary fatty acids on insulin sensitivity and secretion. Diabetes Obes Metab 2004;6:402–13.

    PubMed  CAS  Google Scholar 

  114. Malaisse WJ, Malaisse-Lagae F. Stimulation of insulin secretion by noncarbohydrate metabolites. J Lab Clin Med 1968;72:438–48.

    PubMed  CAS  Google Scholar 

  115. Goberna R, Tamarit J, Jr., Osorio J, Fussganger R, Tamarit J, Pfeiffer EF. Action of B-hydroxy butyrate, acetoacetate and palmitate on the insulin release in the perfused isolated rat pancreas. Horm Metab Res 1974;6:256–60.

    PubMed  CAS  Google Scholar 

  116. Campillo JE, Luyckx AS, Torres MD, Lefebvre PJ. Effect of oleic acid on insulin secretion by the isolated perfused rat pancreas. Diabetologia 1979;16:267–73.

    PubMed  CAS  Google Scholar 

  117. Gravena C, Mathias PC, Ashcroft SJ. Acute effects of fatty acids on insulin secretion from rat and human islets of Langerhans. J Endocrinol 2002;173:73–80.

    PubMed  CAS  Google Scholar 

  118. Paolisso G, Gambardella A, Amato L, Tortoriello R, D'Amore A, Varricchio M, D'Onofrio F. Opposite effects of short- and long-term fatty acid infusion on insulin secretion in healthy subjects. Diabetologia 1995;38:1295–9.

    PubMed  CAS  Google Scholar 

  119. Carpentier A, Mittelman SD, Lamarche B, Bergman RN, Giacca A, Lewis GF. Acute enhancement of insulin secretion by FFA in humans is lost with prolonged FFA elevation. Am J Physiol 1999;276:E1055–66.

    PubMed  CAS  Google Scholar 

  120. Boden G, Chen X. Effects of fatty acids and ketone bodies on basal insulin secretion in type 2 diabetes. Diabetes 1999;48:577–83.

    PubMed  CAS  Google Scholar 

  121. Boden G, Chen X, Rosner J, Barton M. Effects of a 48-h fat infusion on insulin secretion and glucose utilization. Diabetes 1995;44:1239–42.

    PubMed  CAS  Google Scholar 

  122. Mason TM, Goh T, Tchipashvili V, Sandhu H, Gupta N, Lewis GF, Giacca A. Prolonged elevation of plasma free fatty acids desensitizes the insulin secretory response to glucose in vivo in rats. Diabetes 1999;48:524–30.

    PubMed  CAS  Google Scholar 

  123. Dobbins RL, Szczepaniak LS, Myhill J, Tamura Y, Uchino H, Giacca A, McGarry JD. The composition of dietary fat directly influences glucose-stimulated insulin secretion in rats. Diabetes 2002;51:1825–33.

    PubMed  CAS  Google Scholar 

  124. El-Assaad W, Buteau J, Peyot ML, Nolan C, Roduit R, Hardy S, Joly E, Dbaibo G, Rosenberg L, Prentki M. Saturated fatty acids synergize with elevated glucose to cause pancreatic β-cell death. Endocrinology 2003;144:4154–63.

    PubMed  CAS  Google Scholar 

  125. Briaud I, Harmon JS, Kelpe CL, Segu VB, Poitout V. Lipotoxicity of the pancreatic β-cell is associated with glucose-dependent esterification of fatty acids into neutral lipids. Diabetes 2001;50:315–21.

    PubMed  CAS  Google Scholar 

  126. Poitout V, Robertson RP. Glucolipotoxicity: fuel excess and β-cell dysfunction. Endocr Rev 2008;29:351–66.

    PubMed  CAS  Google Scholar 

  127. Prentki M, Joly E, El-Assaad W, Roduit R. Malonyl-CoA signaling, lipid partitioning, and glucolipotoxicity: role in β-cell adaptation and failure in the etiology of diabetes. Diabetes 51 Suppl 2002;3:S405–13.

    Google Scholar 

  128. Poitout V. Glucolipotoxicity of the pancreatic β-cell: myth or reality? Biochem Soc Trans 2008;36:901–4.

    PubMed  CAS  Google Scholar 

  129. Roche E, Buteau J, Aniento I, Reig JA, Soria B, Prentki M. Palmitate and oleate induce the immediate-early response genes c-fos and nur-77 in the pancreatic β-cell line INS-1. Diabetes 1999;48:2007–14.

    PubMed  CAS  Google Scholar 

  130. Busch AK, Cordery D, Denyer GS, Biden TJ. Expression profiling of palmitate- and oleate-regulated genes provides novel insights into the effects of chronic lipid exposure on pancreatic β-cell function. Diabetes 2002;51:977–87.

    PubMed  CAS  Google Scholar 

  131. Steil GM, Trivedi N, Jonas JC, Hasenkamp WM, Sharma A, Bonner-Weir S, Weir GC. Adaptation of β-cell mass to substrate oversupply: enhanced function with normal gene expression. Am J Physiol Endocrinol Metab 2001;280:E788–96.

    PubMed  CAS  Google Scholar 

  132. Olofsson CS, Collins S, Bengtsson M, Eliasson L, Salehi A, Shimomura K, Tarasov A, Holm C, Ashcroft F, Rorsman P. Long-term exposure to glucose and lipids inhibits glucose-induced insulin secretion downstream of granule fusion with plasma membrane. Diabetes 2007;56:1888–97.

    PubMed  CAS  Google Scholar 

  133. Assimacopoulos-Jeannet F, Thumelin S, Roche E, Esser V, McGarry JD, Prentki M. Fatty acids rapidly induce the carnitine palmitoyltransferase I gene in the pancreatic β-cell line INS-1. J Biol Chem 1997;272:1659–64.

    PubMed  CAS  Google Scholar 

  134. Lameloise N, Muzzin P, Prentki M, Assimacopoulos-Jeannet F. Uncoupling protein 2: a possible link between fatty acid excess and impaired glucose-induced insulin secretion? Diabetes 2001;50:803–9.

    PubMed  CAS  Google Scholar 

  135. Joseph JW, Koshkin V, Saleh MC, Sivitz WI, Zhang CY, Lowell BB, Chan CB, Wheeler MB. Free fatty acid-induced β-cell defects are dependent on uncoupling protein 2 expression. J Biol Chem 2004;279:51049–56.

    PubMed  CAS  Google Scholar 

  136. Kohnke R, Mei J, Park M, York DA, Erlanson-Albertsson C. Fatty acids and glucose in high concentration down-regulates ATP synthase β-subunit protein expression in INS-1 cells. Nutr Neurosci 2007;10:273–8.

    PubMed  Google Scholar 

  137. Bhathena SJ, Timmers KI, Oie HK, Voyles NR, Recant L. Cytosolic insulin-degrading activity in islet-derived tumor cell lines and in normal rat islets. Diabetes 1985;34:121–8.

    PubMed  CAS  Google Scholar 

  138. Schuit F, Flamez D, De Vos A, Pipeleers D. Glucose-regulated gene expression maintaining the glucose-responsive state of β-cells. Diabetes 51 Suppl 2002;3:S326–2.

    Google Scholar 

  139. Nyblom HK, Thorn K, Ahmed M, Bergsten P. Mitochondrial protein patterns correlating with impaired insulin secretion from INS-1E cells exposed to elevated glucose concentrations. Proteomics 2006;6:5193–8.

    PubMed  CAS  Google Scholar 

  140. Roxas BA, Li Q. Significance analysis of microarray for relative quantitation of LC/MS data in proteomics. BMC Bioinformatics 2008;9:187.

    PubMed  Google Scholar 

  141. Fernandez C, Fransson U, Hallgard E, Spegel P, Holm C, Krogh M, Warell K, James P, Mulder H. Metabolomic and proteomic analysis of a clonal insulin-producing β-cell line (INS-1 832/13). J Proteome Res 2008;7:400–11.

    PubMed  CAS  Google Scholar 

  142. Kim HS, Lee MS. Diabetes. Curr Mol Med 2009;9:30–44.

    PubMed  CAS  Google Scholar 

  143. Eizirik DL, Mandrup-Poulsen T. A choice of death – the signal-transduction of immune-mediated beta-cell apoptosis. Diabetologia 2001;44:2115–33.

    PubMed  CAS  Google Scholar 

  144. Mandrup-Poulsen T. β-cell apoptosis: stimuli and signaling. Diabetes 50 Suppl 2001;1: S58–63.

    Google Scholar 

  145. Andersen HU, Larsen PM, Fey SJ, Karlsen AE, Mandrup-Poulsen T, Nerup J. Two-dimensional gel electrophoresis of rat islet proteins. Interleukin 1 beta-induced changes in protein expression are reduced by L-arginine depletion and nicotinamide. Diabetes 1995;44:400–7.

    PubMed  CAS  Google Scholar 

  146. Andersen HU, Fey SJ,Larsen PM, Nawrocki A, Hejnaes KR, Mandrup-Poulsen T, Nerup J. Interleukin-1beta induced changes in the protein expression of rat islets: a computerized database. Electrophoresis 1997;18:2091–2103.

    PubMed  CAS  Google Scholar 

  147. John NE, Andersen HU, Fey SJ, Larsen PM, Roepstorff P, Larsen MR, Pociot F, Karlsen AE, Nerup J, Green IC, Mandrup-Poulsen T. Cytokine- or chemically derived nitric oxide alters the expression of proteins detected by two-dimensional gel electrophoresis in neonatal rat islets of Langerhans. Diabetes 2000;49:1819–29.

    PubMed  CAS  Google Scholar 

  148. Chen MC, Schuit F, Eizirik DL. Identification of IL-1β-induced messenger RNAs in rat pancreatic beta cells by differential display of messenger RNA. Diabetologia 1999;42: 1199–1203.

    PubMed  CAS  Google Scholar 

  149. Larsen PM, Fey SJ, Larsen MR, Nawrocki A, Andersen HU, Kahler H, Heilmann C, Voss MC, Roepstorff P, Pociot F, Karlsen AE, Nerup J. Proteome analysis of interleukin-1β-induced changes in protein expression in rat islets of Langerhans. Diabetes 2001;50: 1056–63.

    PubMed  CAS  Google Scholar 

  150. Karlsen AE, Sparre T, Nielsen K, Nerup J, Pociot F. Proteome analysis – a novel approach to understand the pathogenesis of Type 1 diabetes mellitus. Dis Markers 2001;17:205–16.

    PubMed  CAS  Google Scholar 

  151. Bergholdt R, Storling ZM, Lage K, Karlberg EO, Olason PI, Aalund M, Nerup J, Brunak S, Workman CT, Pociot F. Integrative analysis for finding genes and networks involved in diabetes and other complex diseases. Genome Biol 2007;8:R253.

    PubMed  Google Scholar 

  152. Chapal N, Molina L, Molina F, Laplanche M, Pau B, Petit P. Pharmacoproteomic approach to the study of drug mode of action, toxicity, and resistance: applications in diabetes and cancer. Fundam Clin Pharmacol 2004;18:413–22.

    PubMed  CAS  Google Scholar 

  153. Buckingham RE, Al-Barazanji KA, Toseland CD, Slaughter M, Connor SC, West A, Bond B, Turner NC, Clapham JC. Peroxisome proliferator-activated receptor-γ agonist, rosiglitazone, protects against nephropathy and pancreatic islet abnormalities in Zucker fatty rats. Diabetes 1998;47:1326–34.

    PubMed  CAS  Google Scholar 

  154. Lin CY, Gurlo T, Haataja L, Hsueh WA, Butler PC. Activation of peroxisome proliferator-activated receptor-γ by rosiglitazone protects human islet cells against human islet amyloid polypeptide toxicity by a phosphatidylinositol 3’-kinase-dependent pathway. J Clin Endocrinol Metab 2005;90:6678–86.

    PubMed  CAS  Google Scholar 

  155. Kim EK, Kwon KB, Koo BS, Han MJ, Song MY, Song EK, Han MK, Park JW, Ryu DG, Park BH. Activation of peroxisome proliferator-activated receptor-γ protects pancreatic β-cells from cytokine-induced cytotoxicity via NFκB pathway. Int J Biochem Cell Biol 2007;39:1260–75.

    CAS  Google Scholar 

  156. Sanchez JC, Converset V, Nolan A, Schmid G, Wang S, Heller M, Sennitt MV, Hochstrasser DF, Cawthorne MA. Effect of rosiglitazone on the differential expression of diabetes-associated proteins in pancreatic islets of C57Bl/6 lep/lep mice. Mol Cell Proteomics 2002;1:509–16.

    PubMed  CAS  Google Scholar 

  157. Swenne I, Andersson A. Effect of genetic background on the capacity for islet cell replication in mice. Diabetologia 1984;27:464–7.

    PubMed  CAS  Google Scholar 

  158. Kaku K, Province M, Permutt MA. Genetic analysis of obesity-induced diabetes associated with a limited capacity to synthesize insulin in C57BL/KS mice: evidence for polygenic control. Diabetologia 1989;32:636–43.

    PubMed  CAS  Google Scholar 

  159. Korsgren O, Jansson L, Sandler S, Andersson A. Hyperglycemia-induced B cell toxicity. The fate of pancreatic islets transplanted into diabetic mice is dependent on their genetic background. J Clin Invest 1990;86:2161–8.

    PubMed  CAS  Google Scholar 

  160. Trivedi M, Budihardjo I, Loureiro K, Reid TR, Ma JD. Epothilones: a novel class of microtubule-stabilizing drugs for the treatment of cancer. Future Oncol 2008;4:483–500.

    PubMed  CAS  Google Scholar 

  161. Anchoori RK, Kortenhorst MS, Hidalgo M, Sarkar T, Hallur G, Bai R, Diest PJ, Hamel E, Khan SR. Novel microtubule-interacting phenoxy pyridine and phenyl sulfanyl pyridine analogues for cancer therapy. J Med Chem 2008;51:5953–7.

    PubMed  CAS  Google Scholar 

  162. Jagerbrink T, Lexander H, Palmberg C, Shafqat J, Sharoyko V, Berggren PO, Efendic S, Zaitsev S, Jornvall H. Differential protein expression in pancreatic islets after treatment with an imidazoline compound. Cell Mol Life Sci 2007;64:1310–6.

    PubMed  CAS  Google Scholar 

  163. Efanov AM, Zaitsev SV, Mest HJ, Raap A, Appelskog IB, Larsson O, Berggren PO, Efendic S. The novel imidazoline compound BL11282 potentiates glucose-induced insulin secretion in pancreatic β-cells in the absence of modulation of KATP channel activity. Diabetes 2001;50:797–802.

    PubMed  CAS  Google Scholar 

  164. Jung M, Park M, Lee HC, Kang YH, Kang ES, Kim SK. Antidiabetic agents from medicinal plants. Curr Med Chem 2006;13:1203–18.

    PubMed  CAS  Google Scholar 

  165. Kim SW, Hwang HJ, Baek YM, Lee SH, Hwang HS, Yun JW. Proteomic and transcriptomic analysis for streptozotocin-induced diabetic rat pancreas in response to fungal polysaccharide treatments. Proteomics 2008;8:2344–61.

    PubMed  CAS  Google Scholar 

  166. Park YJ, Ahn HJ, Chang HK, Kim JY, Huh KH, Kim MS, Kim YS. The RhoGDI-α/JNK signaling pathway plays a significant role in mycophenolic acid-induced apoptosis in an insulin-secreting cell line. Cell Signal 2009;21:356–64.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meftun Ahmed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Ahmed, M. (2010). Proteomics and Islet Research. In: Islam, M. (eds) The Islets of Langerhans. Advances in Experimental Medicine and Biology, vol 654. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3271-3_16

Download citation

Publish with us

Policies and ethics