Skip to main content

Basement Membrane in Pancreatic Islet Function

  • Chapter
  • First Online:
The Islets of Langerhans

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 654))

Abstract

Clinical treatment of diabetic patients by islet transplantation faces various complications. At present, in vitro expansion of islets occurs at the cost of their essential features, which are insulin production and release. However, the recent discovery of blood vessel/β-cell interactions as an important aspect of insulin transcription, secretion, and proliferation might point us to ways of how this problem could be overcome.

The correct function of β-cells depends on the presence of a basement membrane, a specialized extracellular matrix located around the blood vessel wall in mouse and human pancreatic islets. In this chapter, we summarize how the vascular basement membrane influences insulin transcription, insulin secretion, and β-cell proliferation. In addition, a brief overview about basement membrane components and their interactions with cell surface receptors is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vracko R. Significance of basal lamina for regeneration of injured lung. Virchows Arch A Pathol Pathol Anat 1972;355:264–74.

    PubMed  CAS  Google Scholar 

  2. Vracko R. Basal lamina scaffold-anatomy and significance for maintenance of orderly tissue structure. Am J Pathol 1974;77:314–46.

    PubMed  CAS  Google Scholar 

  3. Vracko R, Benditt EP. Capillary basal lamina thickening. Its relationship to endothelial cell death and replacement. J Cell Biol 1970;47:281–5.

    PubMed  CAS  Google Scholar 

  4. Vracko R, Benditt EP. Basal lamina: the scaffold for orderly cell replacement. Observations on regeneration of injured skeletal muscle fibers and capillaries. J Cell Biol 1972;55:406–19.

    PubMed  CAS  Google Scholar 

  5. Paulsson M. Basement membrane proteins: structure, assembly, and cellular interactions. Crit Rev Biochem Mol Biol 1992;27:93–127.

    PubMed  CAS  Google Scholar 

  6. Schittny JC, Yurchenco PD. Basement membranes: molecular organization and function in development and disease. Curr Opin Cell Biol 1989;1:983–8.

    PubMed  CAS  Google Scholar 

  7. Aumailley M, Timpl R. Attachment of cells to basement membrane collagen type IV. J Cell Biol 1986;103:1569–75.

    PubMed  CAS  Google Scholar 

  8. Yurchenco PD, Schittny JC. Molecular architecture of basement membranes. Faseb J 1990;4:1577–90.

    PubMed  CAS  Google Scholar 

  9. Cheng YS, Champliaud MF, Burgeson RE, Marinkovich MP, Yurchenco PD. Self-assembly of laminin isoforms. J Biol Chem 1997;272:31525–32.

    PubMed  CAS  Google Scholar 

  10. Colognato H, Yurchenco PD. Form and function: the laminin family of heterotrimers. Dev Dyn 2000;218:213–34.

    PubMed  CAS  Google Scholar 

  11. Hudson BG, Reeders ST, Tryggvason K. Type IV collagen: structure, gene organization, and role in human diseases. Molecular basis of Goodpasture and Alport syndromes and diffuse leiomyomatosis. J Biol Chem 1993;268:26033–36.

    PubMed  CAS  Google Scholar 

  12. Kalluri R. Basement membranes: structure, assembly and role in tumour angiogenesis. Nat Rev Cancer 2003;3:422–33.

    PubMed  CAS  Google Scholar 

  13. Kaido T, Yebra M, Cirulli V, Montgomery AM. Regulation of human beta-cell adhesion, motility, and insulin secretion by collagen IV and its receptor alpha1beta1. J Biol Chem 2004;279:53762–9.

    PubMed  CAS  Google Scholar 

  14. Nikolova G, Jabs N, Konstantinova I, Domogatskaya A, Tryggvason K, Sorokin L, Fassler R, Gu G, Gerber HP, Ferrara N, Melton DA, Lammert E. The vascular basement membrane: a niche for insulin gene expression and Beta cell proliferation. Dev Cell 2006;10:397–405.

    PubMed  CAS  Google Scholar 

  15. Timpl R, Wiedemann H, van Delden V, Furthmayr H, Kuhn K. A network model for the organization of type IV collagen molecules in basement membranes. Eur J Biochem 1981;120. 203–11.

    PubMed  CAS  Google Scholar 

  16. Yurchenco PD, Furthmayr H. Self-assembly of basement membrane collagen. Biochemistry 1984;23:1839–50.

    PubMed  CAS  Google Scholar 

  17. Boutaud A, Borza DB, Bondar O, Gunwar S, Netzer KO, Singh N, Ninomiya Y, Sado Y, Noelken ME, Hudson BG. Type IV collagen of the glomerular basement membrane. Evidence that the chain specificity of network assembly is encoded by the noncollagenous NC1 domains. J Biol Chem 2000;275:30716–24.

    PubMed  CAS  Google Scholar 

  18. Yurchenco PD, Smirnov S, Mathus T. Analysis of basement membrane self-assembly and cellular interactions with native and recombinant glycoproteins. Methods Cell Biol 2002;69:111–44.

    PubMed  CAS  Google Scholar 

  19. Poschl E, Schlotzer-Schrehardt U, Brachvogel B, Saito K, Ninomiya Y, Mayer U. Collagen IV is essential for basement membrane stability but dispensable for initiation of its assembly during early development. Development 2004;131:1619–28.

    PubMed  Google Scholar 

  20. Borchiellini C, Coulon J, Le Parco Y. The function of type IV collagen during Drosophila muscle development. Mech Dev 1996;58:179–91.

    PubMed  CAS  Google Scholar 

  21. Gupta MC, Graham PL, Kramer JM. Characterization of alpha1(IV) collagen mutations in Caenorhabditis elegans and the effects of alpha1 and alpha2(IV) mutations on type IV collagen distribution. J Cell Biol 1997;137:1185–96.

    PubMed  CAS  Google Scholar 

  22. Kaido T, Yebra M, Cirulli V, Rhodes C, Diaferia G, Montgomery AM. Impact of defined matrix interactions on insulin production by cultured human beta-cells: effect on insulin content, secretion, and gene transcription. Diabetes 2006;55:2723–9.

    PubMed  CAS  Google Scholar 

  23. Chung AE, Jaffe R, Freeman IL, Vergnes JP, Braginski JE, Carlin B. Properties of a basement membrane-related glycoprotein synthesized in culture by a mouse embryonal carcinoma-derived cell line. Cell 1979;16:277–87.

    PubMed  CAS  Google Scholar 

  24. Miner JH, Yurchenco PD. Laminin functions in tissue morphogenesis. Annu Rev Cell Dev Biol 2004;20:255–84.

    PubMed  CAS  Google Scholar 

  25. Timpl R, Rohde H, Robey PG, Rennard SI, Foidart JM, Martin GR. Laminin—a glycoprotein from basement membranes. J Biol Chem 1979;254:9933–7.

    PubMed  CAS  Google Scholar 

  26. Aumailley M, Bruckner-Tuderman L, Carter WG, Deutzmann R, Edgar D, Ekblom P, Engel J, Engvall E, Hohenester E, Jones JC, Kleinman HK, Marinkovich MP, Martin GR, Mayer U, Meneguzzi G, Miner JH, Miyazaki K, Patarroyo M, Paulsson M, Quaranta V, Sanes JR, Sasaki T, Sekiguchi K, Sorokin LM, Talts JF, Tryggvason K, Uitto J, Virtanen I, von der Mark K, Wewer UM, Yamada Y, Yurchenco PD. A simplified laminin nomenclature. Matrix Biol 2005;24:326–32.

    PubMed  CAS  Google Scholar 

  27. Chen MS, Almeida EA, Huovila AP, Takahashi Y, Shaw LM, Mercurio AM, White JM. Evidence that distinct states of the integrin alpha6beta1 interact with laminin and an ADAM. J Cell Biol 1999;144:549–61.

    PubMed  CAS  Google Scholar 

  28. Sasaki T, Timpl R. Domain IVa of laminin alpha5 chain is cell-adhesive and binds beta1 and alphaVbeta3 integrins through Arg-Gly-Asp. FEBS Lett 2001;509:181–85.

    PubMed  CAS  Google Scholar 

  29. Timpl R, Brown JC. Supramolecular assembly of basement membranes. Bioessays 1996;18:123–32.

    PubMed  CAS  Google Scholar 

  30. Yurchenco PD, Cheng YS, Colognato H. Laminin forms an independent network in basement membranes. J Cell Biol 1992;117:1119–33.

    PubMed  CAS  Google Scholar 

  31. Ettner N, Gohring W, Sasaki T, Mann K, Timpl R. The N-terminal globular domain of the laminin alpha1 chain binds to alpha1beta1 and alpha2beta1 integrins and to the heparan sulfate-containing domains of perlecan. FEBS Lett 1998;430:217–21.

    PubMed  CAS  Google Scholar 

  32. Mayer U, Kohfeldt E, Timpl R. Structural and genetic analysis of laminin-nidogen interaction. Ann N Y Acad Sci 1998;857:130–42.

    PubMed  CAS  Google Scholar 

  33. Willem M, Miosge N, Halfter W, Smyth N, Jannetti I, Burghart E, Timpl R, Mayer U. Specific ablation of the nidogen-binding site in the laminin gamma1 chain interferes with kidney and lung development. Development 2002;129:2711–22.

    PubMed  CAS  Google Scholar 

  34. Schittny JC, Yurchenco PD. Terminal short arm domains of basement membrane laminin are critical for its self-assembly. J Cell Biol 1990;110:825–32.

    PubMed  CAS  Google Scholar 

  35. Fukumoto S, Miner JH, Ida H, Fukumoto E, Yuasa K, Miyazaki H, Hoffman MP, Yamada Y. Laminin alpha5 is required for dental epithelium growth and polarity and the development of tooth bud and shape. J Biol Chem 2006;281:5008–16.

    PubMed  CAS  Google Scholar 

  36. Li J, Tzu J, Chen Y, Zhang YP, Nguyen NT, Gao J, Bradley M, Keene DR, Oro AE, Miner JH, Marinkovich MP. Laminin-10 is crucial for hair morphogenesis. Embo J 2003;22:2400–10.

    PubMed  CAS  Google Scholar 

  37. Miner JH, Li C. Defective glomerulogenesis in the absence of laminin alpha5 demonstrates a developmental role for the kidney glomerular basement membrane. Dev Biol 2000;217:278–89.

    PubMed  CAS  Google Scholar 

  38. Patton BL, Cunningham JM, Thyboll J, Kortesmaa J, Westerblad H, Edstrom L, Tryggvason K, Sanes JR. Properly formed but improperly localized synaptic specializations in the absence of laminin alpha4. Nat Neurosci 2001;4:597–604.

    PubMed  CAS  Google Scholar 

  39. Thyboll J, Kortesmaa J, Cao R, Soininen R, Wang L, Iivanainen A, Sorokin L, Risling M, Cao Y, Tryggvason K. Deletion of the laminin alpha4 chain leads to impaired microvessel maturation. Mol Cell Biol 2002;22:1194–1202.

    PubMed  CAS  Google Scholar 

  40. Wallquist W, Plantman S, Thams S, Thyboll J, Kortesmaa J, Lannergren J, Domogatskaya A, Ogren SO, Risling M, Hammarberg H, Tryggvason K, Cullheim S. Impeded interaction between Schwann cells and axons in the absence of laminin alpha4. J Neurosci 2005;25:3692–3700.

    PubMed  CAS  Google Scholar 

  41. Carlin B, Jaffe R, Bender B, Chung AE. Entactin, a novel basal lamina-associated sulfated glycoprotein. J Biol Chem 1981;256:5209–14.

    PubMed  CAS  Google Scholar 

  42. Fox JW, Mayer U, Nischt R, Aumailley M, Reinhardt D, Wiedemann H, Mann K, Timpl R, Krieg T, Engel J, et al.. Recombinant nidogen consists of three globular domains and mediates binding of laminin to collagen type IV. Embo J 1991;10:3137–46.

    PubMed  CAS  Google Scholar 

  43. Kimura N, Toyoshima T, Kojima T, Shimane M. Entactin-2: a new member of basement membrane protein with high homology to entactin/nidogen. Exp Cell Res 1998;241:36–45.

    PubMed  CAS  Google Scholar 

  44. Kohfeldt E, Sasaki T, Gohring W, Timpl R. Nidogen-2: a new basement membrane protein with diverse binding properties. J Mol Biol 1998;282:99–109.

    PubMed  CAS  Google Scholar 

  45. Irving-Rodgers HF, Ziolkowski AF, Parish CR, Sado Y, Ninomiya Y, Simeonovic CJ, Rodgers RJ. Molecular composition of the peri-islet basement membrane in NOD mice: a barrier against destructive insulitis. Diabetologia 2008;51:1680–8.

    PubMed  CAS  Google Scholar 

  46. Aumailley M, Battaglia C, Mayer U, Reinhardt D, Nischt R, Timpl R, Fox JW. Nidogen mediates the formation of ternary complexes of basement membrane components. Kidney Int 1993;43:7–12.

    PubMed  CAS  Google Scholar 

  47. Aumailley M, Wiedemann H, Mann K, Timpl R. Binding of nidogen and the laminin-nidogen complex to basement membrane collagen type IV. Eur J Biochem 1989;184:241–8.

    PubMed  CAS  Google Scholar 

  48. Murshed M, Smyth N, Miosge N, Karolat J, Krieg T, Paulsson M, Nischt R. The absence of nidogen 1 does not affect murine basement membrane formation. Mol Cell Biol 2000;20:7007–12.

    PubMed  CAS  Google Scholar 

  49. Schymeinsky J, Nedbal S, Miosge N, Poschl E, Rao C, Beier DR, Skarnes WC, Timpl R, Bader BL. Gene structure and functional analysis of the mouse nidogen-2 gene: nidogen-2 is not essential for basement membrane formation in mice. Mol Cell Biol 2002;22:6820–30.

    PubMed  CAS  Google Scholar 

  50. Bader BL, Smyth N, Nedbal S, Miosge N, Baranowsky A, Mokkapati S, Murshed M, Nischt R. Compound genetic ablation of nidogen 1 and 2 causes basement membrane defects and perinatal lethality in mice. Mol Cell Biol 2005;25:6846–56.

    PubMed  CAS  Google Scholar 

  51. Hacker U, Nybakken K, Perrimon N. Heparan sulphate proteoglycans: the sweet side of development. Nat Rev Mol Cell Biol 2005;6:530–41.

    PubMed  Google Scholar 

  52. Lin X. Functions of heparan sulfate proteoglycans in cell signaling during development. Development 2004;131:6009–21.

    PubMed  CAS  Google Scholar 

  53. Strigini M. Mechanisms of morphogen movement. J Neurobiol 2005;64:324–33.

    PubMed  CAS  Google Scholar 

  54. Iozzo RV. Matrix proteoglycans: from molecular design to cellular function. Annu Rev Biochem 1998;67:609–52.

    PubMed  CAS  Google Scholar 

  55. Whitelock JM, Graham LD, Melrose J, Murdoch AD, Iozzo RV, Underwood PA. Human perlecan immunopurified from different endothelial cell sources has different adhesive properties for vascular cells. Matrix Biol 1999;18:163–78.

    PubMed  CAS  Google Scholar 

  56. Arikawa-Hirasawa E, Watanabe H, Takami H, Hassell JR, Yamada Y. Perlecan is essential for cartilage and cephalic development. Nat Genet 1999;23:354–8.

    PubMed  CAS  Google Scholar 

  57. Costell M, Gustafsson E, Aszodi A, Morgelin M, Bloch W, Hunziker E, Addicks K, Timpl R, Fassler R. Perlecan maintains the integrity of cartilage and some basement membranes. J Cell Biol 1999;147:1109–22.

    PubMed  CAS  Google Scholar 

  58. Brissova M, Shostak A, Shiota M, Wiebe PO, Poffenberger G, Kantz J, Chen Z, Carr C, Jerome WG, Chen J, Baldwin HS, Nicholson W, Bader DM, Jetton T, Gannon M, Powers AC. Pancreatic islet production of vascular endothelial growth factor–a is essential for islet vascularization, revascularization, and function. Diabetes 2006;55:2974–85.

    PubMed  CAS  Google Scholar 

  59. Lammert E, Gu G, McLaughlin M, Brown D, Brekken R, Murtaugh LC, Gerber HP, Ferrara N, Melton DA. Role of VEGF-A in vascularization of pancreatic islets. Curr Biol 2003;13:1070–4.

    PubMed  CAS  Google Scholar 

  60. Hart AW, Baeza N, Apelqvist A, Edlund H. Attenuation of FGF signalling in mouse beta-cells leads to diabetes. Nature 2000;408:864–8.

    PubMed  CAS  Google Scholar 

  61. Kilkenny DM, Rocheleau JV. Fibroblast growth factor receptor-1 signaling in pancreatic islet beta-cells is modulated by the extracellular matrix. Mol Endocrinol 2008;22:196–205.

    PubMed  CAS  Google Scholar 

  62. Wente W, Efanov AM, Brenner M, Kharitonenkov A, Koster A, Sandusky GE, Sewing S, Treinies I, Zitzer H, Gromada J. Fibroblast growth factor-21 improves pancreatic beta-cell function and survival by activation of extracellular signal-regulated kinase 1/2 and Akt signaling pathways. Diabetes 2006;55:2470–8.

    PubMed  CAS  Google Scholar 

  63. Dai C, Huh CG, Thorgeirsson SS, Liu Y. Beta-cell-specific ablation of the hepatocyte growth factor receptor results in reduced islet size, impaired insulin secretion, and glucose intolerance. Am J Pathol 2005;167:429–36.

    PubMed  CAS  Google Scholar 

  64. Lopez-Talavera JC, Garcia-Ocana A, Sipula I, Takane KK, Cozar-Castellano I, Stewart AF. Hepatocyte growth factor gene therapy for pancreatic islets in diabetes: reducing the minimal islet transplant mass required in a glucocorticoid-free rat model of allogeneic portal vein islet transplantation. Endocrinology 2004;145:467–74.

    PubMed  CAS  Google Scholar 

  65. Aumailley M, Specks U, Timpl R. Cell adhesion to type-VI collagen. Biochem Soc Trans 1991;19:843–7.

    PubMed  CAS  Google Scholar 

  66. Aumailley M, Timpl R, Risau W. Differences in laminin fragment interactions of normal and transformed endothelial cells. Exp Cell Res 1991;196:177–83.

    PubMed  CAS  Google Scholar 

  67. Hynes RO. Integrins: versatility, modulation, and signaling in cell adhesion. Cell 1992;69:11–25.

    PubMed  CAS  Google Scholar 

  68. Sheppard D. In vivo functions of integrins: lessons from null mutations in mice. Matrix Biol 2000;19:203–9.

    PubMed  CAS  Google Scholar 

  69. Hynes RO. Integrins: bidirectional, allosteric signaling machines. Cell 2002;110:673–87.

    PubMed  CAS  Google Scholar 

  70. ffrench-Constant C, Colognato H. Integrins: versatile integrators of extracellular signals. Trends Cell Biol 2004;14:678–86.

    PubMed  CAS  Google Scholar 

  71. Legate KR, Montanez E, Kudlacek O, Fassler R. ILK, PINCH and parvin: the tIPP of integrin signalling. Nat Rev Mol Cell Biol 2006;7:20–31.

    PubMed  CAS  Google Scholar 

  72. Fassler R, Meyer M. Consequences of lack of beta 1 integrin gene expression in mice. Genes Dev 1995;9:1896–1908.

    PubMed  CAS  Google Scholar 

  73. Li S, Bordoy R, Stanchi F, Moser M, Braun A, Kudlacek O, Wewer UM, Yurchenco PD, Fassler R. PINCH1 regulates cell-matrix and cell-cell adhesions, cell polarity and cell survival during the peri-implantation stage. J Cell Sci 2005;118:2913–21.

    PubMed  CAS  Google Scholar 

  74. Liang X, Zhou Q, Li X, Sun Y, Lu M, Dalton N, Ross J, Jr., Chen J. PINCH1 plays an essential role in early murine embryonic development but is dispensable in ventricular cardiomyocytes. Mol Cell Biol 2005;25:3056–62.

    PubMed  CAS  Google Scholar 

  75. Sakai T, Li S, Docheva D, Grashoff C, Sakai K, Kostka G, Braun A, Pfeifer A, Yurchenco PD, Fassler R. Integrin-linked kinase (ILK) is required for polarizing the epiblast, cell adhesion, and controlling actin accumulation. Genes Dev 2003;17:926–40.

    PubMed  CAS  Google Scholar 

  76. Stephens LE, Sutherland AE, Klimanskaya IV, Andrieux A, Meneses J, Pedersen RA, Damsky CH. Deletion of beta 1 integrins in mice results in inner cell mass failure and peri-implantation lethality. Genes Dev 1995;9:1883–95.

    PubMed  CAS  Google Scholar 

  77. Durbeej M, Henry MD, Ferletta M, Campbell KP, Ekblom P. Distribution of dystroglycan in normal adult mouse tissues. J Histochem Cytochem 1998;46:449–57.

    PubMed  CAS  Google Scholar 

  78. Ibraghimov-Beskrovnaya O, Ervasti JM, Leveille CJ, Slaughter CA, Sernett SW, Campbell KP. Primary structure of dystrophin-associated glycoproteins linking dystrophin to the extracellular matrix. Nature 1992;355:696–702.

    PubMed  CAS  Google Scholar 

  79. Ibraghimov-Beskrovnaya O, Milatovich A, Ozcelik T, Yang B, Koepnick K, Francke U, Campbell KP. Human dystroglycan: skeletal muscle cDNA, genomic structure, origin of tissue specific isoforms and chromosomal localization. Hum Mol Genet 1993;2:1651–7.

    PubMed  CAS  Google Scholar 

  80. Ervasti JM, Campbell KP. A role for the dystrophin-glycoprotein complex as a transmembrane linker between laminin and actin. J Cell Biol 1993;122:809–23.

    PubMed  CAS  Google Scholar 

  81. Rudenko G, Hohenester E, Muller YA. LG/LNS domains: multiple functions – one business end? Trends Biochem Sci 2001;26:363–8.

    PubMed  CAS  Google Scholar 

  82. Gee SH, Blacher RW, Douville PJ, Provost PR, Yurchenco PD, Carbonetto S. Laminin-binding protein 120 from brain is closely related to the dystrophin-associated glycoprotein, dystroglycan, and binds with high affinity to the major heparin binding domain of laminin. J Biol Chem 1993;268:14972–80.

    PubMed  CAS  Google Scholar 

  83. Matsumura K, Yamada H, Shimizu T, Campbell KP. Differential expression of dystrophin, utrophin and dystrophin-associated proteins in peripheral nerve. FEBS Lett 1993;334:281–5.

    PubMed  CAS  Google Scholar 

  84. Yamada H, Shimizu T, Tanaka T, Campbell KP, Matsumura K. Dystroglycan is a binding protein of laminin and merosin in peripheral nerve. FEBS Lett 1994;352:49–53.

    PubMed  CAS  Google Scholar 

  85. Jung D, Yang B, Meyer J, Chamberlain JS, Campbell KP. Identification and characterization of the dystrophin anchoring site on beta-dystroglycan. J Biol Chem 1995;270:27305–10.

    PubMed  CAS  Google Scholar 

  86. Rentschler S, Linn H, Deininger K, Bedford MT, Espanel X, Sudol M. The WW domain of dystrophin requires EF-hands region to interact with beta-dystroglycan. Biol Chem 1999;380:431–42.

    PubMed  CAS  Google Scholar 

  87. James M, Nuttall A, Ilsley JL, Ottersbach K, Tinsley JM, Sudol M, Winder SJ. Adhesion-dependent tyrosine phosphorylation of (beta)-dystroglycan regulates its interaction with utrophin. J Cell Sci 113 (Pt 2000;10):1717–26.

    Google Scholar 

  88. Cavaldesi M, Macchia G, Barca S, Defilippi P, Tarone G, Petrucci TC. Association of the dystroglycan complex isolated from bovine brain synaptosomes with proteins involved in signal transduction. J Neurochem 1999;72:1648–55.

    PubMed  CAS  Google Scholar 

  89. Sotgia F, Lee H, Bedford MT, Petrucci T, Sudol M, Lisanti MP. Tyrosine phosphorylation of beta-dystroglycan at its WW domain binding motif, PPxY, recruits SH2 domain containing proteins. Biochemistry 2001;40:14585–92.

    PubMed  CAS  Google Scholar 

  90. Sotgia F, Lee JK, Das K, Bedford M, Petrucci TC, Macioce P, Sargiacomo M, Bricarelli FD, Minetti C, Sudol M, Lisanti MP. Caveolin-3 directly interacts with the C-terminal tail of beta-dystroglycan. Identification of a central WW-like domain within caveolin family members. J Biol Chem 2000;275:38048–58.

    PubMed  CAS  Google Scholar 

  91. Spence HJ, Chen YJ, Batchelor CL, Higginson JR, Suila H, Carpen O, Winder SJ. Ezrin-dependent regulation of the actin cytoskeleton by beta-dystroglycan. Hum Mol Genet 2004;13:1657–68.

    PubMed  CAS  Google Scholar 

  92. Spence HJ, Dhillon AS, James M, Winder SJ. Dystroglycan, a scaffold for the ERK-MAP kinase cascade. EMBO Rep 2004;5:484–9.

    PubMed  CAS  Google Scholar 

  93. Jiang FX, Georges-Labouesse E, Harrison LC. Regulation of laminin 1-induced pancreatic beta-cell differentiation by alpha6 integrin and alpha-dystroglycan. Mol Med 2001;7:107–14.

    PubMed  CAS  Google Scholar 

  94. Durbeej M, Campbell KP. Muscular dystrophies involving the dystrophin-glycoprotein complex: an overview of current mouse models. Curr Opin Genet Dev 2002;12:349–61.

    PubMed  CAS  Google Scholar 

  95. Haliloglu G, Topaloglu H. Glycosylation defects in muscular dystrophies. Curr Opin Neurol 2004;17:521–7.

    PubMed  CAS  Google Scholar 

  96. Michele DE, Campbell KP. Dystrophin-glycoprotein complex: post-translational processing and dystroglycan function. J Biol Chem 2003;278:15457–60.

    PubMed  CAS  Google Scholar 

  97. Moore SA, Saito F, Chen J, Michele DE, Henry MD, Messing A, Cohn RD, Ross-Barta SE, Westra S, Williamson RA, Hoshi T, Campbell KP. Deletion of brain dystroglycan recapitulates aspects of congenital muscular dystrophy. Nature 2002;418:422–5.

    PubMed  CAS  Google Scholar 

  98. Eyler CE, Telen MJ. The Lutheran glycoprotein: a multifunctional adhesion receptor. Transfusion 2006;46:668–77.

    PubMed  CAS  Google Scholar 

  99. Kikkawa Y, Miner JH. Review: Lutheran/B-CAM: a laminin receptor on red blood cells and in various tissues. Connect Tissue Res 2005;46:193–9.

    PubMed  CAS  Google Scholar 

  100. Kikkawa Y, Moulson CL, Virtanen I, Miner JH. Identification of the binding site for the Lutheran blood group glycoprotein on laminin alpha 5 through expression of chimeric laminin chains in vivo. J Biol Chem 2002;277:44864–9.

    PubMed  CAS  Google Scholar 

  101. Otonkoski T, Banerjee M, Korsgren O, Thornell LE, Virtanen I. Unique basement membrane structure of human pancreatic islets: implications for beta-cell growth and differentiation. Diabetes Obes Metab 10 Suppl 2008;4:119–27.

    Google Scholar 

  102. Virtanen I, Banerjee M, Palgi J, Korsgren O, Lukinius A, Thornell LE, Kikkawa Y, Sekiguchi K, Hukkanen M, Konttinen YT, Otonkoski T. Blood vessels of human islets of Langerhans are surrounded by a double basement membrane. Diabetologia 2008;51:1181–91.

    PubMed  CAS  Google Scholar 

  103. Parsons SF, Lee G, Spring FA, Willig TN, Peters LL, Gimm JA, Tanner MJ, Mohandas N, Anstee DJ, Chasis JA. Lutheran blood group glycoprotein and its newly characterized mouse homologue specifically bind alpha5 chain-containing human laminin with high affinity. Blood 2001;97:312–20.

    PubMed  CAS  Google Scholar 

  104. Parsons SF, Mallinson G, Holmes CH, Houlihan JM, Simpson KL, Mawby WJ, Spurr NK, Warne D, Barclay AN, Anstee DJ. The Lutheran blood group glycoprotein, another member of the immunoglobulin superfamily, is widely expressed in human tissues and is developmentally regulated in human liver. Proc Natl Acad Sci U S A 1995;92:5496–5500.

    PubMed  CAS  Google Scholar 

  105. Konstantinova I, Lammert E. Microvascular development: learning from pancreatic islets. Bioessays 2004;26:1069–75.

    PubMed  CAS  Google Scholar 

  106. Jabs N, Franklin I, Brenner MB, Gromada J, Ferrara N, Wollheim CB, Lammert E. Reduced insulin secretion and content in VEGF-a deficient mouse pancreatic islets. Exp Clin Endocrinol Diabetes 2008;116 Suppl 1:S46–49.

    PubMed  CAS  Google Scholar 

  107. Bosco D, Meda P, Halban PA, Rouiller DG. Importance of cell-matrix interactions in rat islet beta-cell secretion in vitro: role of alpha6beta1 integrin. Diabetes 2000;49:233–43.

    PubMed  CAS  Google Scholar 

  108. Bosco DA, Kern D. Catalysis and binding of cyclophilin A with different HIV-1 capsid constructs. Biochemistry 2004;43:6110–9.

    PubMed  CAS  Google Scholar 

  109. Hammar E, Tomas A, Bosco D, Halban PA. Role of the Rho-Rock (Rho-associated kinase) signaling pathway in the regulation of pancreatic beta cell function. Endocrinology 2008.

    Google Scholar 

  110. Hammar EB, Irminger JC, Rickenbach K, Parnaud G, Ribaux P, Bosco D, Rouiller DG, Halban PA. Activation of NF-kappaB by extracellular matrix is involved in spreading and glucose-stimulated insulin secretion of pancreatic beta cells. J Biol Chem 2005;280:30630–7.

    PubMed  CAS  Google Scholar 

  111. Parnaud G, Hammar E, Rouiller DG, Armanet M, Halban PA, Bosco D. Blockade of beta1 integrin-laminin-5 interaction affects spreading and insulin secretion of rat beta-cells attached on extracellular matrix. Diabetes 2006;55:1413–20.

    PubMed  CAS  Google Scholar 

  112. Miyazaki J, Araki K, Yamato E, Ikegami H, Asano T, Shibasaki Y, Oka Y, Yamamura K. Establishment of a pancreatic beta cell line that retains glucose-inducible insulin secretion: special reference to expression of glucose transporter isoforms. Endocrinology 1990;127:126–32.

    PubMed  CAS  Google Scholar 

  113. Meier JJ, Lin JC, Butler AE, Galasso R, Martinez DS, Butler PC. Direct evidence of attempted beta cell regeneration in an 89-year-old patient with recent-onset type 1 diabetes.Diabetologia 2006;49:1838–44.

    PubMed  CAS  Google Scholar 

  114. Ott HC, Matthiesen TS, Goh SK, Black LD, Kren SM, Netoff TI, Taylor DA. Perfusion-decellularized matrix: using nature's platform to engineer a bioartificial heart. Nat Med 2008;14:213–21.

    PubMed  CAS  Google Scholar 

  115. Danen EH, Yamada KM. Fibronectin, integrins, and growth control. J Cell Physiol 2001;189:1–13.

    PubMed  CAS  Google Scholar 

  116. Miranti CK, Brugge JS. Sensing the environment: a historical perspective on integrin signal transduction. Nat Cell Biol 2002;4:E83–90.

    PubMed  CAS  Google Scholar 

  117. Schwartz MA, Ginsberg MH. Networks and crosstalk: integrin signalling spreads. Nat Cell Biol 2002;4:E65–8.

    PubMed  CAS  Google Scholar 

  118. Wu C, Dedhar S. Integrin-linked kinase (ILK) and its interactors: a new paradigm for the coupling of extracellular matrix to actin cytoskeleton and signaling complexes. J Cell Biol 2001;155:505–10.

    PubMed  CAS  Google Scholar 

  119. Haenggi T, Fritschy JM. Role of dystrophin and utrophin for assembly and function of the dystrophin glycoprotein complex in non-muscle tissue. Cell Mol Life Sci 2006;63:1614–31.

    PubMed  CAS  Google Scholar 

  120. Sgambato A, Brancaccio A. The dystroglycan complex: from biology to cancer. J Cell Physiol 2005;205:163–9.

    PubMed  CAS  Google Scholar 

  121. Winder SJ. The complexities of dystroglycan. Trends Biochem Sci 2001;26:118–24.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eckhard Lammert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Kragl, M., Lammert, E. (2010). Basement Membrane in Pancreatic Islet Function. In: Islam, M. (eds) The Islets of Langerhans. Advances in Experimental Medicine and Biology, vol 654. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3271-3_10

Download citation

Publish with us

Policies and ethics