Inverse Scattering Theory

  • J. WiskinEmail author
  • D. Borup
  • S. Johnson
Conference paper
Part of the Acoustical Imaging book series (ACIM, volume 30)


This paper discuss a fully 3D nonlinear algorithm that results in a 3D quantitative estimate of breast tissue characteristics and a refraction corrected reflection algorithm (RFCR) that utilizes these estimates. The data are obtained from a specially designed clinical ultrasound breast scanner and processed on the device. We discuss the data collection process, a fast solution to the forward problem and a concomitant fast inverse scattering solution for the imaging problem. We show how the resulting 3D tissue map is used in a refraction corrected reflection algorithm.


Full wave Nonlinearity Inverse scattering Ultrasound Breast cancer Helmholtz wave equation Ribiere-Polak coefficient Whole breast ultrasound 


  1. 1.
    André, M.P., Barker, C.H., Sekhon, N., Wiskin, J., Borup, D., Callahan, K.: Pre-clinical experience with full wave inverse scattering for breast imaging. In: Akiyama, I. (ed.) Acoustical Imaging, vol. 29. Springer, Dordrecht (2008)Google Scholar
  2. 2.
    Wiskin, J., Borup, D.T., Johnson, S.A., Berggren, M., et al.: Full wave non-linear inverse scattering. In: André, M. (ed.) Acoustical Imaging, vol. 28, p. 183. Springer, Dordrecht (2007)Google Scholar
  3. 3.
    Bailin, D., Love, A.: Introduction to Gauge Field Theory, Ch. 2, eqn. 2.18. Institute of Physics Publishing, Bristol (1993)Google Scholar
  4. 4.
    Johnson, et al.: Acoustic imaging using inverse scattering techniques, US Patent #6,636,584Google Scholar
  5. 5.
    Born, M., Wolf, E.: Principles of Optics, 7th edn. Cambridge University Press, Cambridge (1999)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Techniscan Medical Systems, Inc.Salt Lake CityUSA
  2. 2.Department of BioengineeringUniversity of UtahSalt Lake CityUSA

Personalised recommendations