A Consideration of Multi-Dimensional Simulation of Nonlinear Acoustic Wave Propagation Using the CIP Method

  • M. Konno
  • K. Okubo
  • T. Tsuchiya
  • N. Tagawa
Conference paper
Part of the Acoustical Imaging book series (ACIM, volume 30)


In this study, numerical simulation of nonlinear sound wave propagation in a time domain is demonstrated using the Constrained Interpolation Profile/ Cubic-Interpolated Pseudo-particle (CIP) method. That novel numerical scheme proposed by Yabe, et al., is a method of characteristics (MOC) and a low-dispersion and stable scheme. Actually, CIP method is suitable for analyses of nonlinear wave propagation including weak shock formation because a rapid pressure change such as a shock front easily causes numerical dispersion error in a conventional numerical scheme. Some of the authors have reported application of CIP method to one-dimensional nonlinear sound wave propagation in air. Furthermore, we demonstrate some numerical calculations of nonlinear sound wave propagation for a two-dimensional acoustic field.


Constrained interpolation profile (CIP) MOC Nonlinear acoustic field analysis Wave propagation Simulation 


  1. 1.
    Frederic, P., Emmanuel, P., Pascal, L.: Jpn. J Appl. Phys. 45, 6496 (2006)CrossRefGoogle Scholar
  2. 2.
    Virieux, J.: Geophysics. 49(11), 1933–1942 (1984)ADSCrossRefGoogle Scholar
  3. 3.
    Botteldooren, D.: J. Acoust. Soc. Am. 98(6), 3302–3308 (1995)ADSCrossRefGoogle Scholar
  4. 4.
    Sato, M.: Jpn. J. Appl. Phys. 45, 4453 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    Sakamoto, S., Seimiya, T., Tachibana, H.: Acoust. Sci. Tech. 23(1), 34–39 (2002)CrossRefGoogle Scholar
  6. 6.
    Yabe, T., Feng, X., Utsumi, T.: J. Comput. Phys. 169, 556 (2001)MathSciNetADSzbMATHCrossRefGoogle Scholar
  7. 7.
    Tsuchiya, T., Okubo, K., Takeuchi, N.: Jpn. J Appl. Phys. 47, 3952 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    Kamakura, T.: Fundamentals of Nonlinear Acoustics, p. 61. Aichi Publishing, Tokyo (1996) [in Japanese]Google Scholar
  9. 9.
    Yanenko, N.N.: The Method of Fractional Steps, p. 42. Springer, New York (1971)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • M. Konno
    • 1
  • K. Okubo
    • 1
  • T. Tsuchiya
    • 2
  • N. Tagawa
    • 1
  1. 1.Faculty of System DesignTokyo Metropolitan UniversityTokyoJapan
  2. 2.Department of Information System DesignDoshisha UniversityKyotoJapan

Personalised recommendations