Advertisement

Automatic Regions of Interest Segmentation for Computer Aided Classification of Prostate Trus Images

  • M. Scebran
  • A. Palladini
  • S. Maggio
  • L. De Marchi
  • N. Speciale
Conference paper
Part of the Acoustical Imaging book series (ACIM, volume 30)

Abstract

Transrectal ultrasound (TRUS) plays two central roles in prostate cancer diagnosis, prostate examination and measurement and biopsy guidance, but its sensitivity and specificity need improvement. This paper presents one possible method to improve TRUS detection and biopsy guidance using computer-aided diagnosis techniques for ultrasound images. The method uses automated segmentation of regions of interest followed by a supervised classifier. It was tested on a database of 37 prostate TRUS RF scans (22 with cancer). Average sensitivity was 78%, average specificity was 92% and average accuracy was 90% in discriminating normal from cancerous tissue.

Keywords

Ultrasound Segmentation Tissue characterization Computer aided diagnosis (CAD) Prostate cancer Transrectal ultrasound (TRUS) 

References

  1. 1.
    Noble, J.A., Boukerroui, D.: Ultrasound image segmentation: A survey. IEEE Trans. Med. Imag. 25(8), 987 (2006)CrossRefGoogle Scholar
  2. 2.
    Pham, D.L., Xu, C., Prince, J.L.: Current methods in medical image segmentation. Annu. Rev. Biomed. Eng. 2(1), 315–337 (2000)CrossRefGoogle Scholar
  3. 3.
    Wagner, T.: Texture Analysis. Handbook of Computer Vision and Application, pp. 275–308. Academic Press, San Diego (1999)Google Scholar
  4. 4.
    Shankar, P.M., Dumane, V.A., Piccoli, C.W., Reid, J.M, Forsberg, F., Goldberg, B.B.: Classification of breast masses in ultrasonic B-mode images using a compounding technique in the Nakagami distribution domain. Ultrasound Med. Biol. 28(10), 1295–300 (2002)CrossRefGoogle Scholar
  5. 5.
    Theodoridis, S., Koutroumbas, K.: Pattern Recognition. Academic Press, San Diego, CA (2006)Google Scholar
  6. 6.
    Pappas, T.N.: An adaptive clustering algorithm for image segmentation. Signal Processing. IEEE Trans. Acoust. Speech Signal Process. 40(4), 901–914 (1992)ADSGoogle Scholar
  7. 7.
    Varanasi, M.K., Aazhang, B.: Parametric generalized Gaussian density estimation. J. Acoust. Soc. Am. 86, 1404 (1989)ADSCrossRefGoogle Scholar
  8. 8.
    Lizzi, F.L., Feleppa, E.J., Alam, S.K., Deng, C.X.: Ultrasonic spectrum analysis for tissue evaluation. Pattern Recogn. Lett. 24(4–5), 637–658 (2003)CrossRefGoogle Scholar
  9. 9.
    Masotti, L., Biagi, E., Granchi, S., Breschi, L., Magrini, E., Di Lorenzo, F.: Tissue differentiation based on radiofrequency echographic signal local spectral content. Ultrasonics, 2003 IEEE Symposium on, 1, pp. 1030–1033 vol. 1, October 2003Google Scholar
  10. 10.
    Liu, H., Yu, L.: Toward integrating feature selection algorithms for classification and clustering. IEEE Trans. Knowl. Data Eng. 17(4), 491–502 (2005)CrossRefGoogle Scholar
  11. 11.
    Tibshirani, R., Walther, G., Hastie, T.: Estimating the number of clusters in a dataset via the gap statistic. J. Roy. Stat. Soc. B 63(2), 411–423 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Joachims, T.: SVMLight: Support Vector Machine. SVM-Light Support Vector Machine http://svmlight.joachims.org/, University of Dortmund (1999)
  13. 13.
    Besag, J.: On the statistical analysis of dirty pictures. J. Roy. Stat. Soc. B 48(3), 259–302 (1986)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • M. Scebran
    • 1
  • A. Palladini
    • 1
  • S. Maggio
    • 1
  • L. De Marchi
    • 1
  • N. Speciale
    • 1
  1. 1.ARCES-DEISUniversity of BolognaBolognaItaly

Personalised recommendations