Signal Processing for Time-Lapse Cell Imaging with Vector-Contrast Scanning Acoustic Microscopy

  • M. von Buttlar
  • E.A. Mohamed
  • W. Grill
Conference paper
Part of the Acoustical Imaging book series (ACIM, volume 30)


Non-invasive and marker-free monitoring of living cells can be accomplished by vector contrast scanning acoustic microscopy. In this paper, the signal processing required for creating time-lapse movies of mesenchymal stem cells is discussed. This includes electronic signal processing, autofocusing and image processing. Prior to each recorded image the focusing transducer is moved away from the sample until no echo signal is received. This allows direct measurement of the offset vector caused by internal lens echoes. The offset vector can then be subtracted from the following vector-contrast image. For subsequent autofocusing the transducer is moved closer to the sample until the maximum of the signal in reflection is passed. The transducer position for the maximum reflected signal is determined by respective software and adjusted accordingly. Autofocusing is a requirement for tiled scans where a piezo-scanner and an automatic microscope stage are combined to increase the field of view. As there are typically thousands of images involved in a single movie, batch image processing routines are required. Customized plugins for ImageJ were developed to combine specialized functions for vector contrast data processing with standard image processing capabilities. The motility of a population of ovine mesenchymal stem cells was continuously recorded for 8 h. The detection scheme including experimental details is presented and applications including time-lapse imaging are demonstrated and discussed.


Phase-sensitive Scanning acoustic microscopy Cell imaging Stem cells Time-lapse movies Autofocus Vector-contrast PSAM Stem cells 



We would like to thank Matthias Zscharnak, Claudia Pösel and Frank Peinemann for providing the cells and the Federal Ministry of Education and Research (BMBF grant 0313836, MS CartPro) for financial support.


  1. 1.
    Hildebrand, J.A., Ruger, D., Johnston, R.N., Quate, C.F.: Acoustic microscopy of living cells. PNAS 78(3), 1656–1660 (1981)ADSCrossRefGoogle Scholar
  2. 2.
    Cross, S., Jin, Y., Rao, J., Gimzewski, J.: Nanomechanical analysis of cells from cancer patients. Nat. Nanotechnol. 2, 780–783 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    Grill, W., Hillman, K., Würz, K.U., Wesner, J. In: Briggs, A., Arnold, W. (ed.) Advances in Acoustic Microscopy, vol. 2, pp. 167–218. Plenum Press, New York (1996)Google Scholar
  4. 4.
    Briggs, G.A.D., Wang, J., Gundle, R.: Quantitative acoustic microscopy of individual living human cells. J. Microsc. 172, 3–12 (1993)Google Scholar
  5. 5.
    A-Hassan, E., Heinz, W.F., Antonik, M.D., D’Costa, N.P., Nageswaran, S., Schoenenberger, C-A., Hoh, J.H.: Relative microelastic mapping of living cells by atomic force microscopy. Biophys. J. 74, 1564–1578 (1998)CrossRefGoogle Scholar
  6. 6.
    Fabry, B., Maksym, G.N., Butler, J.P., Glogauer, M., Navajas, D., Taback, N.A., Millet, E.J., Fredberg, J.J.: Time scale and other invariants of integrative mechanical behavior in living cells. Phys. Rev. E 68(4), 041914 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    Wottawah, F., Schinkinger, S., Lincoln, B., Ananthakrishnan, R., Romeyke, M., Guck, J., Käs, J.: Optical rheology of biological cells. Phys. Rev. Lett. 94(098103), 1–4 (2005)Google Scholar
  8. 8.
    Kundu, T., Bereiter-Hahn, J., Karl, I.: Cell property determination from the acoustic microscope generated voltage versus frequency curves. Biophys. J. 78, 2270–2279 (2000)CrossRefGoogle Scholar
  9. 9.
    Kundu, T., Bereiter-Hahn, J., Hillmann, K.: Measuring elastic properties of cells by evaluation of scanning acoustic microscopy v(z) values using simplex algorithm. Biophys. J. 59, 1194–1207 (1991)CrossRefGoogle Scholar
  10. 10.
    Bereiter-Hahn, J., Blase, C.: Ultrasonic characterization of biological cells. In: Kundu, T. (ed.) Ultrasonic Nondestructive evaluation, pp. 725–759. CRC Press, Boca Raton, FL (2003)Google Scholar
  11. 11.
    Liang, K.K., Bennett, S.D., Kino, G.S.: , Precision phase measurement with short tone burst signals in acoustic microscopy. Rev. Sci. Instrum. 57, 446–452 (1986)ADSCrossRefGoogle Scholar
  12. 12.
    Lemons, R.A., Quate, C.F.: Acoustic microscope - scanning version. Appl. Phys. Lett. 24(4), 163–165 (1974)ADSCrossRefGoogle Scholar
  13. 13.
    Grill, W., Hillmann, K., Kim, T.J., Lenkeit, O., Ndop, J., Schubert, M.: Scanning acoustic microscopy with vector contrast. Physica B 263, 553–558 (1999)ADSCrossRefGoogle Scholar
  14. 14.
    Lemor, R.M., Weiss, E.C., Pilarczyk, G., Zinin, P.V.: Measurements of elastic properties of cells using high-frequency time-resolved acoustic microscopy. IEEE Ultrasonics Symposium, pp. 762–765 (2003)Google Scholar
  15. 15.
    Kamanyi, A., Ngwa, W., Betz, T., Wannemacher, R., Grill, W.: Combined phase-sensitive acoustic microscopy and confocal laser scanning microscopy. Ultrasonics 44, e1295–e1300 (2006)CrossRefGoogle Scholar
  16. 16.
    Schenkl, S., Weiss, E.C., Stracke, F., Sauer, D., Stark, M., Riemann, I., Lemor, R.M., König, K.: In-vivo observation of cells with a combined high-resolution multiphoton-acoustic scanning microscope. Microsc. Res. Tech. 70, 476–480 (2007)CrossRefGoogle Scholar
  17. 17.
    von Buttlar, M., Twerdowski, E., Grill, W.: Offset correction for scanning acoustic microscopy with phase contrast. Proc. Int. Congr. Ultras., Paper ID 1698 (2007)Google Scholar
  18. 18.
    Rasband, W.S.: ImageJ, U. S. National Institute of Health, Bethesda, Maryland, USA, (1997–2009)
  19. 19.
    Zscharnack, M., Poesel, C., Galle, J., Bader, A.: Low oxygen expansion improves subsequent chondrogenesis of ovine bone-marrow-derived mesenchymal stem cells in collagen type I hydrogel. Cells Tissues Organs. doi:10.1159/000178024 (2008)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • M. von Buttlar
    • 1
  • E.A. Mohamed
    • 1
  • W. Grill
    • 1
  1. 1.Institute of Experimental Physics II, University of LeipzigLeipzigGermany

Personalised recommendations