Advertisement

The Use of Quality Metrics in Ultrasonic Strain Imaging

  • A. H. Gee
  • G.M. Treece
  • L. Chen
  • R.W. Prager
Conference paper
Part of the Acoustical Imaging book series (ACIM, volume 30)

Abstract

Deformation estimation by block matching plays a central role in most ultrasonic elastography systems. However, not all matches are equally reliable, since the data in many blocks may be severely decorrelated for a number of reasons, including electrical noise, intra-window strain and out-of-plane motion. Conventionally, an estimate of the match quality is derived from the post-alignment similarity metric and used to reject poor matches. This paper moves beyond such rejection thresholds in two ways. First, a displacement tracking strategy is described, in which the tracking direction is not fixed in advance but is generated dynamically according to the quality metric. Second, a nonparametric regression technique is used to smooth the resulting strain images, with more smoothing in low quality regions and less in high quality regions. Simulation and in vivo results show how these two innovations help to improve the accuracy and intelligibility of the strain images.

Keywords

Strain imaging Elastography Displacement Deformation 

References

  1. 1.
    Shi, H., Varghese, T.: Two-dimensional multi-level strain estimation for discontinuous tissue. Phys. Med. Biol. 52, 389–401 (2007)CrossRefGoogle Scholar
  2. 2.
    Lindop, J.E., Treece, G.M., Gee, A.H., Prager, R.W.: Dynamic resolution selection in ultrasonic strain imaging. Ultrasound Med. Biol. 34(5), 809–823 (2008a)CrossRefGoogle Scholar
  3. 3.
    Lindop, J.E., Treece, G.M., Gee, A.H., Prager, R.W.: Phase-based ultrasonic deformation estimation. IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 55(1), 94–111 (2008c)CrossRefGoogle Scholar
  4. 4.
    Treece, G.M., Lindop, J.E., Gee, A.H., Prager, R.W.: Uniform precision ultrasound strain imaging. Tech. Rep. CUED/F-INFENG/TR 624, Cambridge University Department of Engineering (2009)Google Scholar
  5. 5.
    Pesavento, A., Perrey, C., Krueger, M.H.E.: A time efficient and accurate strain estimation concept for ultrasonic elastography using iterative phase zero estimation. IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 46(5), 1057–1067 (1999)CrossRefGoogle Scholar
  6. 6.
    Zhu, Y., Hall, T.J.: A modified block matching method for real-time freehand strain imaging. Ultrason. Imag. 24, 161–176 (2002)Google Scholar
  7. 7.
    Jiang, J., Hall, T.J.: A parallelizable real-time motion tracking algorithm with applications to ultrasonic strain imaging. Phys. Med. Biol. 52, 3773–3790 (2007)CrossRefGoogle Scholar
  8. 8.
    Zahiri-Azar, R., Salcudean, S.E.: Motion estimation in ultrasound images using time domain cross correlation with prior estimates. IEEE Trans. Biomed. Eng. 53, 1990–2000 (2006)CrossRefGoogle Scholar
  9. 9.
    Langeland, S., d’Hooge, J., Torp, H., Bijnens, B., Suetens, P.: Comparison of time-domain displacement estimators for two-dimensional RF tracking. Ultrasound Med. Biol. 29, 1177–1186 (2003)CrossRefGoogle Scholar
  10. 10.
    Ophir, J., C´Espedes, I., Ponnekanti, H., Yazdi, Y., Li, X.: Elastography: A quantitative method for imaging the elasticity of biological tissues. Ultrason. Imag. 13(2), 111–134 (1991)CrossRefGoogle Scholar
  11. 11.
    O’Donnell, M., Skovoroda, A.R., Shapo, B.M.: Measurement of arterial wall motion using Fourier based speckle tracking algorithms. In: Proceedings of the IEEE Ultrasonics Symposium, pp. 1101–1104 (1991)Google Scholar
  12. 12.
    O’Donnell, M., Skovoroda, A.R., Shapo, B.M., Emelianov, S.Y.: Internal displacement and strain imaging using ultrasonic speckle tracking. IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 41, 314–325 (1994)CrossRefGoogle Scholar
  13. 13.
    Viola, F., Walker, W.F.: A comparison of the performance of time-delay estimators in medical ultrasound. IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 50, 392–401 (2003)CrossRefGoogle Scholar
  14. 14.
    Chen, L., Treece, G.M., Lindop, J.E., Gee, A.H., Prager, R.W.: A quality-guided displacement tracking algorithm for ultrasonic elasticity imaging. Med. Image Anal., in press (2009)Google Scholar
  15. 15.
    Chen, L., Housden, R.J., Treece, G.M., Gee, A.H., Prager, R.W.: A hybrid displacement estimation method for ultrasonic elasticity imaging. Tech. Rep. CUED/FINFENG/TR 615, Cambridge University Department of Engineering (2008)Google Scholar
  16. 16.
    Jensen, J.A.: Field: A program for simulating ultrasound systems. In: Proceedings of the 10th Nordic-Baltic Conference on Biomedical Imaging. Tampere, pp. 351–353 (1996)Google Scholar
  17. 17.
    Treece, G.M., Lindop, J.E., Gee, A. H., Prager, R.W.: Freehand ultrasound elastography with a 3-D probe. Ultrasound Med. Biol. 34(3), 463–474 (2008)CrossRefGoogle Scholar
  18. 18.
    Lindop, J.E., Treece, G.M., Gee, A., Prager, R.W.: An intelligent interface for freehand strain imaging. Ultrasound Med. Biol. 34(7), 1117–1128 (2008b)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • A. H. Gee
    • 1
  • G.M. Treece
    • 1
  • L. Chen
    • 1
  • R.W. Prager
    • 1
  1. 1.Department of EngineeringUniversity of CambridgeCambridgeUK

Personalised recommendations