Advertisement

Performance of a Method to Standardize Breast Ultrasound Interpretation Using Image Processing and Case-Based Reasoning

  • M.P. AndréEmail author
  • M. Galperin
  • A. Berry
  • H. Ojeda-Fournier
  • M. O’Boyle
  • L. Olson
  • C. Comstock
  • A. Taylor
  • M. Ledgerwood
Conference paper
Part of the Acoustical Imaging book series (ACIM, volume 30)

Abstract

Our computer-aided diagnostic (CADx) tool uses advanced image processing and artificial intelligence to analyze findings on breast sonography images. The goal is to standardize reporting of such findings using well-defined descriptors and to improve accuracy and reproducibility of interpretation of breast ultrasound by radiologists. This study examined several factors that may impact accuracy and reproducibility of the CADx software, which proved to be highly accurate and stabile over several operating conditions.

Keywords

Breast cancer Sonography Computer-aided diagnosis Image processing Relative similarity ROC analysis Segmentation Case-based reasoning 

Notes

Acknowledgements

This work was supported in part by grant 2R44CA112858 from the National Institutes of Health, National Cancer Institute, USA and by the Gustavus and Louise Pfeiffer Research Foundation, Denville, NJ, USA.

We gratefully acknowledge the support of Julie Phan, B.S., Paul Feigin, Ph.D., Paul Clopton, M.S. and Janice J. André, M.S. during discussions of the details of this work.

References

  1. 1.
    Stavros, A.T., Thickman, D., Rapp, C.L., Dennis, M.A., Parker, S.H., Sisney, G.A.: Solid breast nodules: Use of sonography to distinguish between benign and malignant lesions. Radiology 196, 123–134 (1995)Google Scholar
  2. 2.
    Lee, H.J., Kim, E.K., Kim, M.J., Youk, J.H., et al.: Observer variability of breast imaging reporting and data system (BI-RADS) for breast ultrasound. Eur. J. Radiol. 65, 293–298 (2008)CrossRefGoogle Scholar
  3. 3.
    André, M.P., Galperin, M., Contro, G., Omid, N., Olson, L., Comstock, C., Richman, K., O’Boyle, M.: Diagnostic performance of a computer-aided image analysis system for breast ultrasound. Acoustical Imaging 28, 267–277 (2007)zbMATHCrossRefGoogle Scholar
  4. 4.
    Galperin, M., André, M.P., Contro, G., Omid, N.: Optimization of a breast mass classifier for computer-aided ultrasound analysis. Acoustical Imaging 28, 341–348 (2007)CrossRefGoogle Scholar
  5. 5.
    Galperin, M., André, M.P., Barker, C., Mantrawadi, L., Olson, L., O’Boyle, M.: Reproducibility of image analysis for breast ultrasound computer-aided diagnosis. Acoustical Imaging 29, 397–402 (2008)CrossRefGoogle Scholar
  6. 6.
    American College of Radiology: ACR Standards 2000–2001. Reston, VA: American College of Radiology (2000)Google Scholar
  7. 7.
    Imaginis Women’s Health Resource (http://imaginis.com/breasthealth/diagnosis.asp) and American College of Radiology (http://www.acr.org/)
  8. 8.
    Dorfman, D.D., Berbaum, K.S., Metz, C.E.: Receiver operating characteristic rating analysis: Generalization to the population of readers and patients with the jackknife method. Invest. Radiol. 27, 723–731 (1992)CrossRefGoogle Scholar
  9. 9.
    Metz, C.E.: ROC methodology in radiographic imaging. Invest. Radiol. 21, 720–733 (1986)CrossRefGoogle Scholar
  10. 10.
    Lazarus E., Mainiero M.B., Schepps B., et al.: BI-RADS lexicon for US and mammography: Inter-observer variability and positive predictive value. Radiology 239(2), 385–391 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • M.P. André
    • 1
    • 2
    Email author
  • M. Galperin
    • 3
    • 4
  • A. Berry
    • 3
  • H. Ojeda-Fournier
    • 3
  • M. O’Boyle
    • 1
  • L. Olson
    • 3
  • C. Comstock
    • 3
  • A. Taylor
    • 3
  • M. Ledgerwood
    • 3
  1. 1.Department of RadiologyUniversity of CaliforniaSan DiegoUSA
  2. 2.San Diego VA Healthcare SystemSan DiegoUSA
  3. 3.Department of RadiologyUniversity of CaliforniaCaliforniaUSA
  4. 4.Almen Laboratories, Inc.VistaUSA

Personalised recommendations