Advertisement

Ball Lightning Investigations

Chapter
Part of the Physics of Earth and Space Environments book series (EARTH)

Abstract

Ball lightning (BL) researches’ review and theoretical models of three different authors are presented. The general review covers investigations from 1838 until the present day, and includes a discussion on observation data, experimental modeling, and theoretical approaches. Section 6.1 is written by Bychkov and Nikitin; authors of the sections 6.2, 6.3 and 6.4 are, respectively, Bychkov, Nikitin and Dijkhuis.

Keywords

Ball lightning Charged eigenstate Combustion Concentric gear shells Condensed melted hot material Discharges Dynamic electric capacitor Electrically charged object Electron ring Experiments Explosion High energy Levitation Observations Protons Spherical vortex crystals Theoretical models Vacuum cavity 

Notes

Acknowledgement

The author wishes to thank J. de Graaf for the helpful and stimulating discussions on field theory.

References

  1. 1.
    Ohtsuki, Y.-H. (ed.): Science of Ball Lightning (Fire Ball). World Science, Singapore (1989)Google Scholar
  2. 2.
    Singer, S.: The first decade of International Symposia on Ball Lightning. In: Proceedings of the 5th International Symposium on Ball Lightning (ISBL97), Tsugawa-Town, Niigata, Japan, pp. 1–5 (1997)Google Scholar
  3. 3.
    Singer, S.: Direction in recent research and miscellaneous activities in ball lightning. In: Proceedings of the 6th International Symposium on Ball Lightning (ISBL99), Antwerp, Belgium, pp. 1–2 (1999)Google Scholar
  4. 4.
    Singer, S.: Consideration of selected ball lightning models. In: Proceedings of the 8th International Symposium on Ball Lightning (ISBL04), Chung-li, Taiwan, pp. 1–5 (2004)Google Scholar
  5. 5.
    Singer, S.: Progress toward a solution of ball lightning. In: Proceedings of the 9th International Symposium on Ball Lightning (ISBL06), Eindhoven, The Netherlands, pp. 1–2 (2006)Google Scholar
  6. 6.
    Bychkov, V.L., Golubkov, G.V., Nikitin, A.I.: Contemporary state of investigations of ball lightning. Khim. Fiz. 25(3), 3–6 (2006)Google Scholar
  7. 7.
    Nikitin, A.I., Bychkov, V.L.: 2nd International Symposium on Unconventional Plasmas (ISUP06) and 9th International Symposium on Ball Lightning (ISBL06). Khim. Fiz. 27(2), 87–96 (2008)Google Scholar
  8. 8.
    Leonov, R.A.: Ball Lightning Enigma. Nauka, Moscow (1965)Google Scholar
  9. 9.
    Lomonosov, M.V.: Selected Works on Chemistry and Physics, pp. 220–256. AS USSR Publishers, Moscow (1961)Google Scholar
  10. 10.
    Arago, F.: Sur le Tonnerre. Annuare au Roi par le Bureau des Longitudes, Notices Scient. p. 221 (1838)Google Scholar
  11. 11.
    Brand, W.: Der Kugelblitz. Verlag von H. Grand, Hamburg (1923)Google Scholar
  12. 12.
    Baturin, V.V., Khanzhonkov, V.I.: Air circulation in premises with respect to location of intake and air vent holes. Heating and Ventilation (4–5), 29–33 (1939)Google Scholar
  13. 13.
    Morris, W.: A thunderstorm mystery. Daily Mail (London). November 5 (1936)Google Scholar
  14. 14.
    Goodlet, B.L.: Lightning. J. IEE, London 81, 1 (1937)Google Scholar
  15. 15.
    Chirvinsky, P.N.: Ball lightning. Priroda (6), 14–20 (1949)Google Scholar
  16. 16.
    McNally, J.R., Jr.: Preliminary Report on the Ball Lightning. Oak-Ridge National Laboratory, Report N. ORNL3938 (1966)Google Scholar
  17. 17.
    Rayle, W.D.: Ball Lightning Characteristics. NASA Technical NOTE-D- 3188 (1966)Google Scholar
  18. 18.
    Singer, S.: The Nature of Ball Lightning. Plenum, New York (1971)Google Scholar
  19. 19.
    Dmitriev, M.T.: Ball lightning nature. Priroda (6), 98 (1967)Google Scholar
  20. 20.
    Balyberdin, V.V.: Determination of ball lightning energy. Samoletostroenie i Tehnika Vozdushnogo Flota. KhGU Publishers, Kharkov N.3, 102–104 (1965)Google Scholar
  21. 21.
    Charman, W.N.: Ball lightning. Phys. Rep. 54(4), 261–306 (1979)CrossRefGoogle Scholar
  22. 22.
    Altschuler, M.D., Houste, L.L., Hildner, E.: Is ball Lightning a nuclear phenomenon? Nature 228, 545–547 (1970)CrossRefGoogle Scholar
  23. 23.
    Covington, A.E.: Ball lightning. Nature 226, 252 (1970)CrossRefGoogle Scholar
  24. 24.
    Zimmerman, P.D.: Energy content of Covington’s lightning ball. Nature 228, 853 (1970)CrossRefGoogle Scholar
  25. 25.
    Tompkins, D.R., Rodney, P.F., Gooding, R.: Photographic observations of ball lightning. Bull. Am. Phys. Soc. 20, 659 (1975)Google Scholar
  26. 26.
    Eriksson, A.J.: Videotape recording of a possible ball lightning event. Nature 268, 35 (1977)CrossRefGoogle Scholar
  27. 27.
    Mills, A.A.: Ball lightning and thermoluminescence. Nature 233, 131 (1971)Google Scholar
  28. 28.
    Fleming, S.J., Aitken, M.J.: Radiation dosage associated with ball lightning. Nature 252, 220 (1975)CrossRefGoogle Scholar
  29. 29.
    Stakhanov, I.P.: Physical Nature of Ball Lightning. Atomizdat, Moscow (1979)Google Scholar
  30. 30.
    Stakhanov, I.P.: On Physical Nature of Ball Lightning. Energoatomizdat, Moscow (1985)Google Scholar
  31. 31.
    Stakhanov, I.P.: On Physical Nature of Ball Lightning. Nauchny Mir, Moscow (1996)Google Scholar
  32. 32.
    Imyanitov, I., Tikhiy, D.: Beyond Boundary of Science Laws. Atomizdat, Moscow (1980)Google Scholar
  33. 33.
    Bychkov, V.L.: On observation features of ball lightning. Khim. Fiz. 25(3), 7–17 (2006)Google Scholar
  34. 34.
    Dmitriev, M.T., Bakhtin, B.I., Martynov, B.I.: Thermal factor of ball lightning. Zhur. Tech. Fiz. 51(12), 2567–2572 (1981)Google Scholar
  35. 35.
    Barry, J.D.: Ball Lightning and Bead Lightning. Plenum, New York (1980)Google Scholar
  36. 36.
    Brovetto, P., Maxia, V., Bussetti, G.: On the nature of ball lightning. J. Atmos. Terr. Phys. 38, 921–934 (1976)CrossRefGoogle Scholar
  37. 37.
    Moigno, F.: Le Cosmos. 14, 672 (1859)Google Scholar
  38. 38.
    Endean, V.G.: Ball lightning as electromagnetic radiation. Nature 263, 753 (1976)Google Scholar
  39. 39.
    Menzel, D.H.: Flying Saucers. Harvard University Press, Harvard (1965)Google Scholar
  40. 40.
    Cowgill, W.: Curious phenomenon in Venezuela. Sci. Am. 55, 389 (1886)Google Scholar
  41. 41.
    Grigorjev, A.I.: Fiery Killers. Mysteries and Secret of Ball Lightning. Debiut, Yaroslavl (1990)Google Scholar
  42. 42.
    Grigorjev, A.I.: Ball Lightning. YarGU Publishers, Yaroslavl (2006)Google Scholar
  43. 43.
    Batygin, A., Mosin, I.: Visit of “fiery lady”. Pravda (Moscow). 220 (25938), August, 8 (1989)Google Scholar
  44. 44.
    Egely, G.: Analysis of Hungarian ball lightning observations. In: Keul, A.G. (ed.) Progress in Ball Lightning Research. Proceedings of the VIZOTUM, Salzburg, Austria (1993)Google Scholar
  45. 45.
    Avramenko, R.F., Bychkov, V.L., Klimov, A.I., Sinkevich, O.A. (eds.): Ball Lightning in a Laboratory. Khimiya, Moscow (1994)Google Scholar
  46. 46.
  47. 47.
    Grigorjev, I.S., Meilikhov, E.Z. (eds.): Physical Values. Reference Book. Enrgoatomizdat, Moscow (1991)Google Scholar
  48. 48.
    Stenhoff, M.: Ball Lightning. An Unsolved Problem in Atmospheric Physics. Kluwer, New York (1999)Google Scholar
  49. 49.
    Chernobrov, V.A.: Chronicle of UFO Visits. Drofa, Moscow (2003)Google Scholar
  50. 50.
    Vostrukhin, D.: At 4.10 sharp. Trud (Moscow), January, 30 (1985)Google Scholar
  51. 51.
    Ofuruton, H., Ohtsuki, Y.-H., Kondo, N., Kamogawa, M., Kato, M., Takahashi, T.: Nature of ball lightning in Japan. In: Proceedings of the 5th International Symposium on Ball Lightning (ISBL97), Tsugawa-Town, Niigata, Japan, pp. 17–19 (1997)Google Scholar
  52. 52.
    Keul, A.G.: The Southern Bavaria ball lightning car collision. In: Proceedings of the 5th International Symposium on Ball Lightning (ISBL97), Tsugawa-Town, Niigata, Japan, pp. 27–34 (1997)Google Scholar
  53. 53.
    Stakhanova, I.G.: Ball lightning pictures from the I.P. Stakhanov’s archive and their interpretation. In: Proceedings of the 5th International Symposium on Ball Lightning (ISBL97), Tsugawa-Town, Niigata, Japan, pp. 35–41 (1997)Google Scholar
  54. 54.
    Amirov, A.Kh., Bychkov, V.L.: Observational and computer assisted analysis of data from SKB data base. In: Proceedings of the 5th International Symposium on Ball Lightning (ISBL97), Tsugawa-Town, Niigata, Japan, pp. 42–46 (1997)Google Scholar
  55. 55.
    Stakhanova, I.G.: Observed properties of the ball lightning depending on weather conditions. In: Proceedings of the 6th International Symposium on Ball Lightning (ISBL99), Antwerp, Belgium, pp. 3–9 (1999)Google Scholar
  56. 56.
    Ofuruton, H., Ohtsuki, Y.-H., Kondo, N., Kamogawa, M., Kato, M., Takahashi, T., Sato, S., Shintani, K.: Nature of ball lightning in Japan (Part 2). In: Proceedings of the 6th International Symposium on Ball Lightning (ISBL99), Antwerp, Belgium, pp. 10–12 (1999)Google Scholar
  57. 57.
    Keul, A.G.: Attempted ball lightning tracking with a Lightning Detection System. In: Proceedings of the 6th International Symposium on Ball Lightning (ISBL99), Antwerp, Belgium, pp. 13–18 (1999)Google Scholar
  58. 58.
    Amirov, A.Kh., Bychkov, A.V., Bychkov, V.L.: Ball lightning nature in respect to dependence lifetime diameter. In: Proceedings of the 6th International Symposium on Ball Lightning (ISBL99), Antwerp, Belgium, pp. 19–26 (1999)Google Scholar
  59. 59.
    Amirov, A.Kh., Bychkov, V.L.: On the ball lightning interaction with airplanes. In: Proceedings of the 6th International Symposium on Ball Lightning (ISBL99), Antwerp, Belgium, pp. 34–37 (1999)Google Scholar
  60. 60.
    Toselli, P., Fedele, R.: Project for a database of ball lightning observations in Italy. In: Proceedings of the 6th International Symposium on Ball Lightning (ISBL99), Antwerp, Belgium, pp. 27–33 (1999)Google Scholar
  61. 61.
    Timoshuk, A.S.: Observations of two consequently formed and decayed ball lightning. In: Smirnov, B.M. (ed.) Sharovaya Molniya, vol. 1, p. 9. Institute for High Temperature AS USSR, Moscow (1990)Google Scholar
  62. 62.
    Bychkov, V.L.: Observations of ball lightning. In: Materials of 13-th Russian Conference on Cold Nuclei Transmutation of Chemical Elements and Ball lightning, 2005. Dagomys, city of Sochi, pp. 237–245. NITs FTP “Ersion”, Moscow (2006)Google Scholar
  63. 63.
    Bychkov, V.L., Bychkov, D.V., Sedov, Y.B.: Some new ball lightning observation data. In: Proceedings of the 8th International Symposium on Ball Lightning (ISBL04), Chung-li, Taiwan, pp. 6–10 (2004)Google Scholar
  64. 64.
    Arora, R.: Ball lightning without lightning strike. In: Proceedings of the 8th International Symposium on Ball Lightning (ISBL04), Chung-li, Taiwan, pp. 11–15 (2004)Google Scholar
  65. 65.
    Keul, A.G., Schrattenecker, R., Baumegger, S.: The Zwoenitz, Germany, ball lightning webcam record. In: Proceedings of the 8th International Symposium on Ball Lightning (ISBL04), Chung-li, Taiwan, pp. 44–50 (2004)Google Scholar
  66. 66.
    Kawano, S.: Is a spatial stem a ball lightning? In: Proceedings of the 8th International Symposium on Ball Lightning (ISBL04), Chung-li, Taiwan, pp. 79–82 (2004)Google Scholar
  67. 67.
    Bychkov, V.L.: On observation properties of ball lightning. In: Proceedings of the 9th International Symposium on Ball Lightning (ISBL06), Eindhoven, The Netherlands, pp. 18–25 (2006)Google Scholar
  68. 68.
    Keul, A.G., Hentschel, K.H., Stummer, O.: German ball lightning data banks results. In: Proceedings of the 9th International Symposium on Ball Lightning (ISBL06), Eindhoven, the Netherlands, pp. 96–105 (2006)Google Scholar
  69. 69.
    Nikitin, A.I., Velichko, A.M., Vnukov, A.V., Nikitina, T.F.: Estimation of ball lightning characteristics based on the analysis of its photo. In: Proceedings of the 9th International Symposium on Ball Lightning (ISBL06), Eindhoven, The Netherlands, pp. 148–156 (2006)Google Scholar
  70. 70.
    Papaelias, Ph.M.: Photographs of ball lightning support evidence of antimatter. In: Proceedings of the 9th International Symposium on Ball Lightning (ISBL06), Eindhoven, the Netherlands, pp. 167–171 (2006)Google Scholar
  71. 71.
    Tar, D.: Observation of lightning ball – a new phenomenological description of the phenomenon. In: Proceedings of the 9th International Symposium on Ball Lightning (ISBL06), Eindhoven, The Netherlands, pp. 222–225 (2006)Google Scholar
  72. 72.
    Bychkov, V.L., Nikitin, A.I.: Recent ball lightning investigations: short review. In: Proceedings of the 10th International Symposium on Ball Lightning (ISBL08) and 3rd International Symposium on Unconventional Plasmas (ISUP08), Kaliningrad, Russia, pp. 36–38 (2008)Google Scholar
  73. 73.
    Keul, A.G.: European ball lightning statistics. In: Proceedings of the 10th International Symposium on Ball Lightning (ISBL08) and 3rd International Symposium on Unconventional Plasmas (ISUP08), Kaliningrad, Russia, pp. 66–71 (2008)Google Scholar
  74. 74.
    VanDevender, J.P., VanDevender, A.P., Wilson, P., VanDoorn, P., McGinley, N.: Extreme ball lightning event of August 6, 1868 in County Donegal, Ireland. In: Proceedings of the 10th International Symposium on Ball Lightning (ISBL08) and 3rd International Symposium on Unconventional Plasmas (ISUP08), Kaliningrad, Russia, pp. 142–148 (2008)Google Scholar
  75. 75.
    Fitzgerald, M. Notes on the occurrence of globular lightning and of waterspouts in County Donegal, Ireland. Quarterly Journal of the Meteorological Society. First Quarter of 1878. Quarterly Proceeding at the March 20, 1878, Proceedings at the Meeting of the Society, pp. 160–161 (1878)Google Scholar
  76. 76.
    Shelkunov, G.P., Nikitin, A.I., Bychkov, V.L., Nikitina, T.F., Velichko, A.M., Vasiliev, A.L.: Examination of a window pane exposed to ball lightning. In: Proceedings of the 10th International Symposium on Ball Lightning (ISBL08) and 3rd International Symposium on Unconventional Plasmas (ISUP08), Kaliningrad, Russia, pp. 127–134 (2008)Google Scholar
  77. 77.
    Mashkovich, M.D.: Electric Properties of Inorganic Dielectrics in MW Range. Soviet Radio, Moscow (1969)Google Scholar
  78. 78.
    Nikolayev, G.V.: Mysteries of Electromagnetism. “Znamya mira”, Tomsk (1999)Google Scholar
  79. 79.
    Ford, R.A.: Homemade Lightning. McGraw-Hill, New York (2002)Google Scholar
  80. 80.
    Planté, G.: Electrical Phenomena in Atmosphere. Paris (1891)Google Scholar
  81. 81.
    Silberg, P.A.: A review of ball lightning. In: Coroniti S.C. (ed.) Problems of Atmospheric and Space Electricity, pp. 436–466. Proceedings of the 3rd International Conference on Atmosphere and Space Electricity, 1963, Montreux, Switzerland. Elsevier, Amsterdam (1965)Google Scholar
  82. 82.
    Dijkhuis, G.C.: Threshold current for fireball generation. J. Appl. Phys. 53(5), 3516–3519 (1982)CrossRefGoogle Scholar
  83. 83.
    Kapitsa, P.L.: On nature of ball lightning. Doklady AN SSSR 101, 245–248 (1955)Google Scholar
  84. 84.
    Kapitsa, P.L.: Free plasma filament in high frequency field at high pressure. Zhur. Experim. i Teoretich. Fiziki. 57, N. 6(12), 1801–1866 (1969)Google Scholar
  85. 85.
    Ohtsuki, Y.-H., Ofuruton, H.: Plasma fireballs formed by microwave interference in air. Nature 350, 139–141 (1991)CrossRefGoogle Scholar
  86. 86.
    Zhiltsov, V.A., Leitner, J.F., Manykin, E.A., Petrenko, E.A., Skovoroda, A.A., Handel, P.: Spatially-localized discharge in the atmosphere. Zhur. Experim. i Teoretich. Fiziki. 108. N. 6(12), 1966–1985 (1995)Google Scholar
  87. 87.
    Ofuruton, H., Kondo, N., Kamogawa, M., Aoki, M., Ohtsuki, Y.-H.: Experimental condition of artificial ball lightning by using microwave and discharge. In: Proceedings of the 5th International Symposium on Ball Lightning (ISBL97), Tsugawa-Town, Japan, pp. 215–217 (1997)Google Scholar
  88. 88.
    Ofuruton, H., Kondo, N. Kamogawa, M., Aoki, M., Ohtsuki, Y.-H.: Experimental condition for ball lightning creation by using air gap discharge embedded in microwave field. J. Geoph. Res. 106. N. D12. 12367–12369 (2001)Google Scholar
  89. 89.
    Anderson, R.W.: Absence of diffusion in creation random lattices. Phys. Rev. 109(5). 1492–1505 (1958)Google Scholar
  90. 90.
    Tanaka, K., Tanaka, M.: Is ball lightning “Anderson localization”? In: Proceedings of the 5th International Symposium on Ball Lightning (ISBL97), Tsugawa-Town, Japan, pp. 137–141 (1997)Google Scholar
  91. 91.
    Kamogawa, M., Tanaka, H., Ofuruton, H., Ohtsuki, Y.-H.: Possibility of microwave localization to produce an experimental plasma fireball. Proc. Jap. Acad. 75(10) Ser. B, pp. 275–280 (1999)Google Scholar
  92. 92.
    Ofuruton, H., Kamogawa, M., Tanaka, H., Ohtsuki, Y.-H.: Experiment of the localization of the electromagnetic wave in the waveguide. In: Proceedings of the 6th International Symposium on Ball Lightning (ISBL99), Antwerp, Belgium, pp. 207–211 (1999)Google Scholar
  93. 93.
    Kamogawa, M., Ofuruton, H., Liu, J.Y., Tanaka, H., Ohtsuki, Y.-H.: Study of microwave localization mode for appearance of plasma fireballs. In: Proceedings of the 8th International Symposium on Ball Lightning (ISBL04), Chung-li, Taiwan, pp. 118–119 (2004)Google Scholar
  94. 94.
    Ofuruton, H., Kamogawa, M., Tanaka, H., Ohtsuki, Y.-H.: Experiments on microwave localization for ball lightning research. In: Proceedings of the 8th International Symposium on Ball Lightning (ISBL04), Chung-li, Taiwan, pp. 120–122 (2004)Google Scholar
  95. 95.
    Ofuruton, H., Kamogawa, M., Ohtsuki, Y.-H.: Experiments on ball lightning by using microwave localization. In: Proceedings of the 9th International Symposium on Ball Lightning (ISBL06), Eindhoven, The Netherlands, pp. 157–158 (2006)Google Scholar
  96. 96.
    Ofuruton, H., Kamogawa, M., Ohtsuki, Y.-H.: Experiments for artificial ball lightning by using microwave localization. In: Proceedings of the 10th International Symposium on Ball Lightning (ISBL08) and 3rd International Symposium on Unconventional Plasmas (ISUP08), Kaliningrad, Russia, pp. 99–100 (2008)Google Scholar
  97. 97.
    Chukanov, K.B.: Ball Lightning – source of free energy. In: Proceedings of the 10th International Symposium on Ball Lightning (ISBL08) and 3rd International Symposium on Unconventional Plasmas (ISUP08), Kaliningrad, Russia, pp. 22–26 (2008)Google Scholar
  98. 98.
    Golka, R.K., Jr.: Laboratory-produced ball lightning. J. Geophys. Res. 99, N. D 5, 10679–10681 (1994)Google Scholar
  99. 99.
    Dikhtyar, V., Jerby, E.: Fireball ejection from a molten hot spot to air by localized microwaves. Phys. Rev. Lett. 96, 045002-1–045002-4 (2006)Google Scholar
  100. 100.
    Corum, K.L., Corum, J.F.: Tesla’s production of electric fireballs. Tesla Coil Builder’s Association News 8(3), 13–18 (1989)Google Scholar
  101. 101.
    Koloc, P.M.: Formed PLASMAK artificial ball lightning results. In: Proceedings of the 6th International Symposium on Ball Lightning (ISBL99), Antwerp, Belgium, pp. 219–226 (1999)Google Scholar
  102. 102.
    Koloc, P.M.: Comparison between PLASMAK BL model and formed PMKs. In: Proceedings of the 6th International Symposium on Ball Lightning (ISBL99), Antwerp, Belgium, pp. 227–232 (1999)Google Scholar
  103. 103.
    Kunin, V.N.: Research experiments on method of ball lightning laboratory model obtaining. Khim. Fiz. 25(3), 94–95 (2006)Google Scholar
  104. 104.
    Kunin, V.N., Pleshivtsev, V.S., Furov, L.V.: A method of obtaining of independent long-lived plasma formations in free atmosphere. Khim. Fiz. 25(3), 96–100 (2006)Google Scholar
  105. 105.
    Kunin, V.N., Furov, L.V.: Investigations of plasma toroidal vortices appearing at electric explosion of diaphragms in air. Izvestiya VUZov. Fizika 33(6), 119 (1990)Google Scholar
  106. 106.
    Kunin, V.N., Pleshivtsev, V.S., Furov, L.V.: Experimental laboratory research of the ball lightning nature. In: Proceedings of the 5th International Symposium on Ball Lightning (ISBL97), Tsugawa-Town, Japan, pp. 225–229 (1997)Google Scholar
  107. 107.
    Kunin, V.N., Pleshivtsev, V.S.: On the possible mechanism of transformation of toroidal plasma vortex into the laboratory analog of ball lightning. In: Proceedings of the 6th International Symposium on Ball Lightning (ISBL99), Antwerp, Belgium, pp. 233–235 (1999)Google Scholar
  108. 108.
    Kunin, V.N., Kondakov, V.P., Pleshivtsev, V.S., Furov, L.V.: Experimental results of anomalous decay of independent long-lived plasma formation in free atmosphere. Khim. Fiz. 25(3), 101–103 (2006)Google Scholar
  109. 109.
    Kunin, V.N., Furov, L.V.: On refractional mechanism of energy accumulation in a volume of long-lived plasma formation. In: Materials of 13-th Russian Conference on Cold Nuclei Transmutation of Chemical Elements and Ball Lightning, 2005. Dagomys, city of Sochi, pp. 284–289. NITs FTP “Ersion”, Moscow (2006)Google Scholar
  110. 110.
    Alexeff, I., Parameswaran, S.M., Thiayagarajan, M., Grace, M.: An experimental study of ball lightning. IEEE Trans. Plasma Sci. 32(3), 1378–1382 (2004)CrossRefGoogle Scholar
  111. 111.
    Alexeff, I., Parameswaran, S.M., Thiayagarajan, M., Grace, M.: An observation of synthetic ball lightning. IEEE Trans. Plasma Sci. 33(2), 498–499 (2005)CrossRefGoogle Scholar
  112. 112.
    Avramenko, R.F., Bakhtin, B.I., Nikolayeva, V.I., Poskachheva, L.P., Shirokov, N.N.: Investigation of plasma formations initiated by erosive discharge. Zhur. Tekhnich. Fiziki. 60(12), 57–64 (1990)Google Scholar
  113. 113.
    Ershov, A.P., Rozanov, V.A., Sysoev, N.N., Timofeev, I.B., Chuvashev, S.N., Shibkov, V.M.: Subsonic plasma jets flowing into atmosphere created by capillary. Physical faculty of M.V. Lomonosov MSU. Physical Hydrodynamics. N. 4. Preprint N. 8 (1994)Google Scholar
  114. 114.
    Bychkov, V.L., Gridin, A.Y., Klimov, A.I.: On nature of artificial ball lightning. Teplofiz. Vysok. Temper. 32(2), 190–194 (1994)Google Scholar
  115. 115.
    Emelin, S.E., Semenov, V.S., Bychkov, V.L., Belisheva, N.K., Kovshik, A.P.: Some objects formed in the interaction of electrical discharges with metals and polymers. Tech. Phys. 42(3), 269–277 (1997)CrossRefGoogle Scholar
  116. 116.
    Bychkov, A.V., Bychkov, V.L., Timofeev, I.B.: Experimental modeling of long-lived luminescent formations in air on a basis of polymeric organic materials. In: Materials of 10-th Russian Conference on Cold Nuclei Transmutation of Chemical Elements and Ball Lightning, 2002. Dagomys, city of Sochi, pp. 125–148. NITs FTP “Ersion”, Moscow (2003)Google Scholar
  117. 117.
    Bychkov, A.V., Bychkov, V.L., Timofeev, I.B.: Experimental modeling of long-lived shining formations in air on a basis of polymeric organic materials. Zhur. Tekhnich. Fiziki. 74(1), 128–133 (2004)Google Scholar
  118. 118.
    Klimov, A.I.: Plasmoid generation in airflow and its physical properties. In: Materials of 10-th Russian Conference on Cold Nuclei Transmutation of Chemical Elements and Ball Lightning, 2002. Dagomys, City of Sochi, pp. 229–235. NITs FTP “Ersion”, Moscow (2003)Google Scholar
  119. 119.
    Klimov, A., Moralev, I., Zhirnov, K., Kutalaliev, V.: Investigation of physical properties of plasmoids in air and airflow. In: Materials of 13-th Russian Conference on Cold Nuclei Transmutation of Chemical Elements and Ball Lightning, 2005. Dagomys, City of Sochi, pp. 298–306. NITs FTP “Ersion”, Moscow (2006)Google Scholar
  120. 120.
    Klimov, A.I.: Investigation of physical properties of plasmoids in air and air flow. Khim. Fiz. 25(3), 104–109 (2006)Google Scholar
  121. 121.
    Klimov, A., Moralev, I., Zhirnov, K., Kutalaliev, V.: Investigation of physical properties of plasmoids in air and airflow. In: Proceedings of the 9th International Symposium on Ball Lightning (ISBL06), Eindhoven, The Netherlands, pp. 112–121 (2006)Google Scholar
  122. 122.
    Abrahamson, J., Dinnis, J.: Ball lightning caused by oxidation of nanoparticle networks from normal lightning strikes on soil. Nature 403, 519–521 (2000)CrossRefGoogle Scholar
  123. 123.
    Abrahamson, J.: Ball lightning from atmospheric discharges via metal nanosphere oxidation: from soils, wood or metals. Phil. Trans. Roy. Soc. Lond. 360(1790), 61–88 (2002)CrossRefGoogle Scholar
  124. 124.
    Piva, G.S., Pavão, A.C., de Vasconcelos, E.A., Mendes Jr., O., Da Silva Jr., E.F.: Production of ball-lightning-like luminous balls by electrical discharge in silicon. Phys. Rev. Lett. 98, 048501-1–048501-4 (2007)Google Scholar
  125. 125.
    Shabanov, G.D.: Optical properties of long-lived luminescent formations. Pis’ma v Zhur. Tekhnich. Fiziki. 28(4), 81–86 (2002)Google Scholar
  126. 126.
    Shabanov, G.D., Zherebtsov, O.M.: Experimental modeling of ball lightning analog. In: Materials of 10-th Russian Conference on Cold Nuclei Transmutation of Chemical Elements and Ball Lightning, 2002. Dagomys, City of Sochi. pp. 285–301. NITs FTP “Ersion”, Moscow: (2003)Google Scholar
  127. 127.
    Emelin, S.E., Pirozerskyi, A.L., Egorov, A.I., Stepanov, S.I., Shabanov, G.D., Bychkov, V.L.: Modeling of ball lightning with a help of electric discharge through a surface of weak water solution. In: Materials of 9-th Russian Conference on Cold Nuclei Transmutation of Chemical Elements and Ball Lightning, 2001. Dagomys, City of Sochi, pp. 240–248. NITs FTP “Ersion”, Moscow (2002)Google Scholar
  128. 128.
    Shabanov, G.D., Zherebtsov, O.M.: Electric properties of independent luminous formations. In: Materials of 11-th Russian Conference on Cold Nuclei Transmutation of Chemical Elements and Ball Lightning, 2003. Dagomys, City of Sochi, pp. 279–290. NITs FTP “Ersion”, Moscow (2004)Google Scholar
  129. 129.
    Shabanov, G.D., Zherebtsov, O.M.: Electric discharge to air half-space. Optich. Zhurl. 71(1), 6–8 (2004)Google Scholar
  130. 130.
    Shabanov, G.D., Sokolovskyi, B.Y.: Macroscopic separation of charges in the pulsed electric field. Fizika Plasmy 31(6), 560–566 (2005)Google Scholar
  131. 131.
    Shabanov, G.D., Zherebtsov, O.M., Sokolovskyi, B.Yu.: Experimental modeling with a help of pulsed electric discharge to air half-space of linear lightning leader and ball lightning. In: Materials of 13-th Russian Conference on Cold Nuclei Transmutation of Chemical Elements and Ball Lightning, 2005. Dagomys, City of Sochi. pp. 246–265. NITs FTP “Ersion”, Moscow (2006)Google Scholar
  132. 132.
    Shabanov, G.D., Krivshich, A.G., Sokolovsky, B.Yu., Zherebtsov, O.M.: Ball lightning nature. In: Materials of 14-th Russian Conference on Cold Nuclei Transmutation of Chemical Elements and Ball Lightning, 2006. Dagomys, City of Sochi, pp. 243–254. NITs FTP “Ersion”, Moscow (2008)Google Scholar
  133. 133.
    Shabanov, G.D., Krivshich, A.G, Sokolovsky, B.Yu.: In: Materials of 14-th Russian Conference on Cold Nuclei Transmutation of Chemical Elements and Ball Lightning, 2006. Dagomys, City of Sochi, pp. 255–266. NITs FTP “Ersion”, Moscow (2008)Google Scholar
  134. 134.
    Shabanov, G.D., Krivshich, A.G., Sokolovsky, B.Yu., Zherebtsov, O.M.: Performance of the laboratory ball lightning. In: Proceedings of the 9th International Symposium on Ball Lightning (ISBL06), Eindhoven, The Netherlands, pp. 202–209 (2006)Google Scholar
  135. 135.
    Shabanov, G.D., Zherebtsov, O.M., Sokolovskyi, B.Y.: Independent long-lived luminescent formations in open air. Experimental check of ball lightning formation by the linear lightning leader hypothesis. Khim. Fiz. 25(4), 74–88 (2006)Google Scholar
  136. 136.
    Nikitin, A.I.: Electrodynamic model of ball lightning. Khim. Fiz. 25(3), 38–62 (2006)Google Scholar
  137. 137.
    Chalmers, J.A.: Atmospheric Electricity. Clarendon, Oxford (1949)Google Scholar
  138. 138.
    Emelin, S.E., Pirozersky, A.L., Vassiliev, N.N.: The dust-gas fireball as a special form of the electric erosive discharge afterglow. In: Proceedings of the 9th International Symposium on Ball Lightning (ISBL06), Eindhoven, The Netherlands, pp. 51–61 (2006)Google Scholar
  139. 139.
    Nikitin, A.I.: Electric capacitor as element of energy core of ball lightning. Elektrichestvo. (11), 14–23 (1998)Google Scholar
  140. 140.
    Nikitin, A.I.: Electrical capacitor as the element of the power core of ball lightning. Electr. Technol. Russ. (4), 70–85 (1998)Google Scholar
  141. 141.
    Emelin, S.E., Astafiev, A.M., Pirozerski, A.L.: Investigation of space-time structure of the discharge with an electrolyte anode and face-type, air half-space directed cathode (Gatchina’s discharge). In: Proceedings of the 10th International Symposium on Ball Lightning (ISBL08) and 3rd International Symposium on Unconventional Plasmas (ISUP08), Kaliningrad, Russia, pp. 42–45 (2008)Google Scholar
  142. 142.
    Emelin, S.E., Pirozerski, A.L.: Some questions of power-consuming plasma-chemical ball lightning. Khim. Fiz. 25(3), 83–89 (2006)Google Scholar
  143. 143.
    Pirozerski, A.L., Emelin, S.E.: Long-living plasmoids generation by high-voltage discharge through thin conducting layers. In: Proceedings of the 9th International Symposium on Ball Lightning (ISBL06). Eindhoven, The Netherlands, pp. 180–190 (2006)Google Scholar
  144. 144.
    Juettner, B., Noak, S., Versteegh, A., Fussmann, G.: Long-living plasmoids from a water discharge at atmospheric pressure. In: Proceedings of the 28th International Conference on Phenomena in Ionized Gases, Prague, Czech Republic, pp. 2229–2234 (2007)Google Scholar
  145. 145.
    Versteegh, A., Behringer, K., Fantz, U., Fussmann, G., Jüttner, B., Noak, S.: Long-living plasmoids from an atmospheric water discharge. Plasma Sour. Sci. Technol. 17(2), 02414–02421 (2008)CrossRefGoogle Scholar
  146. 146.
    Smirnov, B.M.: Problem of Ball Lightning. Nauka, Moscow (1988)Google Scholar
  147. 147.
    Kuz’min, R.N., Miskinova, N.A., Shvilkin, B.N.: Laboratory model of ball lightning. In: Materials of 10-th Russian Conference on Cold Nuclei Transmutation of Chemical Elements and Ball Lightning, 2002. Dagomys, City of Sochi, pp. 236–242. NITs FTP “Ersion”, Moscow (2003)Google Scholar
  148. 148.
    Kuz’min, R.N., Miskinova, N.A., Shvilkin, B.N.: Laboratory model of ball lightning. Khim. Fiz. 25(3), 90–93 (2006)Google Scholar
  149. 149.
    Vlasov, A.N.: A ball lightning is a natural nuclear reactor? In: Proceedings of the 5th International Symposium on Ball Lightning (ISBL97), Tsugawa-Town, Japan, pp. 75–79 (1997)Google Scholar
  150. 150.
    Vlasov, A.N.: Bose-Einsten condensed electron catalyzed fusion as a possible mechanism of the ball lightning energy supply. In: Proceedings of the 6th International Symposium on Ball Lightning (ISBL99), Antwerp, Belgium, pp. 133–138 (1999)Google Scholar
  151. 151.
    Vlasov, A.N.: Ball lightning as the current layer induced in a vortex. In: Proceedings of the 9th International Symposium on Ball Lightning (ISBL06), Eindhoven, The Netherlands, pp. 243–249 (2006)Google Scholar
  152. 152.
    Vlasov, A.N.: Magnetohydrodynamical model of plasma object capable to be generated at impact of ordinary lightning. In: Proceedings of the 10th International Symposium on Ball Lightning (ISBL08) and 3rd International Symposium on Unconventional Plasmas (ISUP08), Kaliningrad, Russia, pp. 149–150 (2008)Google Scholar
  153. 153.
    Vlasov, A.N. Experimental modeling of ball lightning on a basis of electric explosion of a wirespiral rolled in torus. In: Materials of 13-th Russian Conference on Cold Nuclei Transmutation of Chemical Elements and Ball Lightning, 2005. Dagomys, City of Sochi, pp. 290–297. NITs FTP “Ersion”, Moscow (2006)Google Scholar
  154. 154.
    Vlasov, A.N., Kolesnikov, S.A.: Calculations of an installation parameters for obtaining of plasmoids at electric explosions of wire spirals rolled in torus. In: Materials of 14-th Russian Conference on Cold Nuclei Transmutation of Chemical Elements and Ball Lightning, 2006. Dagomys, City of Sochi, pp. 162–179. NITs FTP “Ersion”, Moscow (2008)Google Scholar
  155. 155.
    Vlassov, A., Vlassov, A.: Getting a fireball by means of electric explosion of wire spiral twisted into a ring. In: Proceedings of the 9th International Symposium on Ball Lightning (ISBL06). Eindhoven, The Netherlands, pp. 234–242 (2006)Google Scholar
  156. 156.
    Golubnichiy, P.I., Gromenko, V.M., Krutov, V.M.: Formation of long-lived luminescent objects at decay of dense low temperature water plasma. Zhur. Tekh. Fiziki. 60(1), 283–186 (1990)Google Scholar
  157. 157.
    Golubnichiy, P.I., Gromenko, V.M., Krutov, V.M., Nikitin, E.V.: Plasma of electric discharge in water as a raw material for laboratory analogue of a ball lightning. In: Proceedings of the 9th International Symposium on Ball Lightning (ISBL06), Eindhoven, The Netherlands, pp. 62–66 (2006)Google Scholar
  158. 158.
    Golubnichiy, P.I., Krutov, V.M., Nikitin, E.V.: Long-living luminous objects, formed from the products of disintegration of water plasma. In: Proceedings of the 9th International Symposium on Ball Lightning (ISBL06), Eindhoven, The Netherlands, pp. 67–73 (2006)Google Scholar
  159. 159.
    Matsumoto, T.: Ball lightning during underwater spark discharges and the Matsumae earthquakes. In: Proceedings of the 5th International Symposium on Ball Lightning (ISBL97), Tsugawa-Town, Japan, pp. 193–201 (1997)Google Scholar
  160. 160.
    Matsumoto, T.: Micro ball lightning during underwater spark discharges. In: Proceedings of the 6th International Symposium on Ball Lightning (ISBL99), Antwerp, Belgium, pp. 249–254 (1999)Google Scholar
  161. 161.
    Matsumoto, T.: Transport of micro ball lightning. In: Proceedings of the 6th International Symposium on Ball Lightning (ISBL99), Antwerp, Belgium, pp. 255–262 (1999)Google Scholar
  162. 162.
    Urutskoev, L.I., Liksonov, V.I., Tsinoev, V.G.: Experimental discovery of “strange” radiation and transformation of chemical elements. Prikl. Fiz. 4, 83–100 (2000)Google Scholar
  163. 163.
    Klimov, A., Baranov, D., Kutlaliev, V., Moralev, I., Zhirnov, K., Tolkunov, B.: Study of anomalous “traces” of moving bright particles created by erosive pulsed plasma generator. In: Materials of 14-th Russian Conference on Cold Nuclei Transmutation of Chemical Elements and Ball Lightning, 2006. Dagomys, city of Sochi, pp. 199–208. NITs FTP “Ersion”, Moscow (2008)Google Scholar
  164. 164.
    Turner, D.J.: The investigation of ball lightning with glass window panes. J. Meteorol. 22(216), 52–64 (1997)Google Scholar
  165. 165.
    Shelkunov, G.: Ball lightning: observations and analysis of traces. Nauka i Zhizn. (10), 52–53 (2001)Google Scholar
  166. 166.
    Kolosovsky, O.A.: Investigations of ball lightning trace on a window pane. Zhur. Tekh. Fiz. 51(4), 856–858 (1981)Google Scholar
  167. 167.
    Nikitin, A.I., Bychkov, V.L., Nikitina, T.F., Velichko, A.M.: Modeling of ball lightning interaction with window panes. In: Materials of 11-th Russian Conference on Cold Nuclei Transmutation of Chemical Elements and Ball Lightning, 2003. Dagomys, City of Sochi, pp. 254–268. NITs FTP “Ersion”, Moscow (2004)Google Scholar
  168. 168.
    Nikitin, A.I., Bychkov, V.L., Nikitina, T.F., Velichko, A.M.: Modeling of ball lightning interaction with window panes. In: Proceedings of the 8th International Symposium on Ball Lightning (ISBL04), Chung-li,Taiwan, pp. 23–31 (2004)Google Scholar
  169. 169.
    Nikitin, A.I., Bychkov, V.L., Nikitina, T.F., Velichko, A.M.: Modeling of ball lightning interaction with window panes. Khim. Fiz. 25(4), 98–105 (2006)Google Scholar
  170. 170.
    Nikitin, A.I., Leipunsky, I.O., Nikitina, T.F.: A search for the reasons explaining hovering of ball lightning over conductor surface. In: Materials of 13-th Russian Conference on Cold Nuclei Transmutation of Chemical Elements and Ball Lightning, 2005. Dagomys, City of Sochi, pp. 307–319. NITs FTP “Ersion”, Moscow (2006)Google Scholar
  171. 171.
    Nikitin, A.I., Leipunsky, I.O., Nikitina, T.F.: A search for the reasons explaining hovering of ball lightning over conductor surface. In: Proceedings of the 9th International Symposium on Ball Lightning (ISBL06), Eindhoven, The Netherlands, pp. 139–146 (2006)Google Scholar
  172. 172.
    Aleksandrov, V.Y., Podmoshenskyi, I.V., Sall, S.A.: Experiments on electric field impact on gas discharge model of ball lightning. Zhur. Tekh. Fiz. 60(1), 73–76 (1990)Google Scholar
  173. 173.
    Nikitin, A.I., Nikitina, T.F., Velichko, A.M.: Corona discharge as a means to levitation of ball lightning. In: Proceedings of the 10th International Symposium on Ball Lightning (ISBL08) and 3rd International Symposium on Unconventional Plasmas (ISUP08), Kaliningrad, Russia, pp. 89–98 (2008)Google Scholar
  174. 174.
    Bychkov, V.L., Bychkov, A.V., Bychkov, D.V.: Some new observations of ball lightning. In: Materials of 10-th Russian Conference on Cold Nuclei Transmutation of Chemical Elements and Ball Lightning, 2002. Dagomys, City of Sochi, pp. 109–124. NITs FTP “Ersion”, Moscow (2003)Google Scholar
  175. 175.
    Bychkov, V.L., Ershov, A.P., Chernikov, V.A.: Corona discharge modeling of some ball lightning features. In: Proceedings of the 10th International Symposium on Ball Lightning (ISBL08) and 3rd International Symposium on Unconventional Plasmas (ISUP08), Kaliningrad, Russia, pp. 7–11 (2008)Google Scholar
  176. 176.
    Kuz’min, R.N.: On physical and chemical nature of ball lightning. In: Materials of 9-th Russian Conference on Cold Nuclei Transmutation of Chemical Elements and Ball Lightning, 2001. Dagomys, City of Sochi, pp. 235–239. NITs FTP “Ersion”, Moscow (2002)Google Scholar
  177. 177.
    Vvedenskyi, B.L. (ed.): The Big Soviet Encyclopedia, vol. 43, pp. 280–281. BSE Publishers, Moscow (1956)Google Scholar
  178. 178.
    Bychkov, V.L., Nikitin, A.I.: Observations of ball lightning. In: Materials of 12-th Russian Conference on Cold Nuclei Transmutation of Chemical Elements and Ball Lightning, 2004. Dagomys, City of Sochi, pp. 165–169. NITs FTP “Ersion”, Moscow (2005)Google Scholar
  179. 179.
    Uman, M.A.: Decaying lightning channels, bead lightning and ball lightning. In: Coroniti, S.C., Hughes, J. (eds.) Planetary Electrodynamics, vol. 2, p. 199. Gordon and Breach, New York (1968)Google Scholar
  180. 180.
    Bostick, W.H.: Experimental study of ionized matter projected across magnetic field. Phys. Rev. 104(2), 242–299 (1956)CrossRefGoogle Scholar
  181. 181.
    Bostick, W.H.: Experimental study of plasmoids. Phys. Rev. 106(3), 404–412 (1957)CrossRefGoogle Scholar
  182. 182.
    Shafranov, V.D.: On equilibrium magneto-hydrodynamic configurations. Zhur. Exper. i Teor. Fiz. 33(3(9)), 710–722 (1957)Google Scholar
  183. 183.
    Shafranov, V.D.: On magnetohydrodynamical equilibrium configurations. Sov. Phys. JETP. 6, 545 (1957)Google Scholar
  184. 184.
    Finkelstein, D., Rubinstein, J.: Ball lightning. Phys. Rev. 135(2A), A390–A396 (1964)CrossRefGoogle Scholar
  185. 185.
    Powell, J.R., Finkelstein, D.: Ball lightning. Am. Scientist. 58, 262 (1970)Google Scholar
  186. 186.
    Endean, V.G.: Electromagnetic field energy models – some recent developments. In: Stenhoff, M. (ed.) Proceedings of the 4th TORRO Conference: Ball lightning, Tornado and Storm Research Organization (TORRO), pp. 75. Oxford Brooks University, Oxford (1992)Google Scholar
  187. 187.
    Wooding, E.R.: Ball lightning. Nature 199, 272 (1963)CrossRefGoogle Scholar
  188. 188.
    Bergström, A.: Electromagnetic theory of strong interaction. Phys. Rev. D3, 4394 (1973)Google Scholar
  189. 189.
    Neugebauer, Th.: Zu dem Problem des Kugelblitzes. Zeit. für Phys, 106(7), 8.474–8.484 (1937)Google Scholar
  190. 190.
    Neugebauer, Th: Zu der Quanten-mechanischen Theorie des Kugelblitz. Acta Physica 42(1), 29 (1977)CrossRefGoogle Scholar
  191. 191.
    Dijkhuis, G.C.: A model for ball lightning. Nature 248, 150–151 (1980)CrossRefGoogle Scholar
  192. 192.
    Dijkhuis, G.C.: Scaling law for fusion power from ball lightning. In: Janiszewski, J., Moron, W., Sega, W. (eds.) Proceedings of the of International Wroclaw Symposium on Electromagnetic Compatibility, Wroclaw, Poland, pp. 21–25 (1988)Google Scholar
  193. 193.
    Hill, E.: Globular lightning. Nature 56, 293 (1897)CrossRefGoogle Scholar
  194. 194.
    Coulvier-Gravier. Recherches sur les meteors et sur les lois qui les regissent, p. 185. Paris (1859)Google Scholar
  195. 195.
    Meissner, A.: Über Kugelblitze. Meteorol. Zeit. 47, 17–20 (1930)Google Scholar
  196. 196.
    Dawson, G.A., Jones, R.C.: Ball lightning as a radiation bubble. Pure Appl. Geophys. 75, 247–262 (1969)CrossRefGoogle Scholar
  197. 197.
    Besnou, M.: De l’état de l’iode dans l’atmosphere, et de la possibilité de la formation de l’iodide d’azote dans les orages. Mem. Soc. Sci. Nat. Cherbourg. 1, 103 (1852)Google Scholar
  198. 198.
    Thornton, W.M.: On thunderbolts. Fortsch. Phys. 67(3), 342 (1911)Google Scholar
  199. 199.
    De la Rive, A.: Traite de l’electricité theoretique et appliqué. Paris. 3, 197 (1858)Google Scholar
  200. 200.
    Hildebrandsson, H.H.: Kugelblitz. Fortsch. Phys. 39, H. 3518 (1883)Google Scholar
  201. 201.
    Schonland, B.F.J.: The Flight of Thunderbolts. Oxford University Press, Oxford (1950)Google Scholar
  202. 202.
    Benedicks, C.: Theory of lightning balls and its application to the atmospheric phenomenon called ‘flying saucers’. Ark. Geof. 2(1), 1 (1951)Google Scholar
  203. 203.
    Chirvinsky, P.N.: Materials on ball lightning observations, collected by V.K. Cherkas. Klimat i Pogoda. N. 5, 49 (1936)Google Scholar
  204. 204.
    Barry, J.D.: Ball lightning. J. Atmos. Terr. Phys. 29, 1095 (1967)CrossRefGoogle Scholar
  205. 205.
    Barry, J.D.: Fireball, ball lightning and St. Elmo’s fire. Weather 23, 180 (1968)Google Scholar
  206. 206.
    De Tastes, M.: L’orage du 1-er fevrier 1884, a Torus. Météorologie 32, 105 (1884)Google Scholar
  207. 207.
    Frenkel, Y.I.: On nature of a ball lightning. Zhur. Exper. i Teor. Fiz. 10, 1424–1426 (1940)Google Scholar
  208. 208.
    Aleksandrov, V.Y., Golubev, E.M., Podmoshensky, I.V.: Aerosol nature of ball lightning. Zhur. Exper. i Teor. Fiz. 52(10), 1987–1992 (1982)Google Scholar
  209. 209.
    Mukharev, L.A.: The nature of ball lightning. Sov. J. Commun. Technol. Electron. 30(9), 77 (1986)Google Scholar
  210. 210.
    Dauviller, A.: Foudre globulaire et reactions thernonucleaires. Comp. Rendu Hebd. Séances Acad. Sci. 245, 2155 (1957)Google Scholar
  211. 211.
    De Tessan, M.: Sur la foudre en boule. Comp, Rendu Hebd. Séances Acad. Sci. 49, 189–191 (1859)Google Scholar
  212. 212.
    Püringer, A.: Comments. In: Coroniti, S.C. (ed.) Problems of Atmospheric and Space Electricity, pp. 460. Elsevier, Amsterdam (1965)Google Scholar
  213. 213.
    Hill, E.L.: Ball lightning. Am. Scientist. 58, 479 (1970)Google Scholar
  214. 214.
    Crew, E.W.: Ball lightning. New Scientist 56, 764 (1972)Google Scholar
  215. 215.
    Stakhanov, I.P.: On the nature of ball lightning. JETP Lett. 18, 114 (1974)Google Scholar
  216. 216.
    Watson, W.K.R.: A theory of ball lightning formation. Nature 185, 449–450 (1960)CrossRefGoogle Scholar
  217. 217.
    Tonks, L.: Electromagnetic standing waves and ball lightning. Nature 187, 1013–1014 (1960)CrossRefGoogle Scholar
  218. 218.
    Smirnov, B.M.: Physics of ball lightning. Uspekhi Fiz. Nauk. 160(4), 1–45 (1990)Google Scholar
  219. 219.
    Tamm, I.E.: Theory of magnetic thermonuclear reactor. In: Physics of plasma and problem of controlled thermonuclear reactions, vol. 1, pp. 3–19; 31–41. Izdatelstvo AN SSSR, Moscow (1958)Google Scholar
  220. 220.
    Sakharov, A.D.: Theory of magnetic thermonuclear reactor. In; Physics of plasma and problem of controlled thermonuclear reactions, vol. 1, pp. 20–30. Izdatelstvo AN SSSR, Moscow (1958)Google Scholar
  221. 221.
    Rosenbluth, M.N., Bussac, N.N.: MHD stability of Spheromak. Nucl. Fusion 19(4), 489 (1979)Google Scholar
  222. 222.
    Koloc, P.M.: “PLASMAK” star power for energy intensive space applications. Fusion Technol. 15(3), 1136–1141 (1989)Google Scholar
  223. 223.
    Nikitin, A.I.: The requirements for elaboration of theory of ball lightning. In: Proceedings of the 8th International Symposium on Ball Lightning (ISBL04), Chung-li, Taiwan, pp. 16–22 (2004)Google Scholar
  224. 224.
    Nikitin, A.I.: Analysis of the models of highly energetic ball lightning. In: Proceedings of the 8th International Symposium on Ball Lightning (ISBL04), Chung-li, Taiwan, pp. 57–63 (2004)Google Scholar
  225. 225.
    Nikitin, A.I.: The principles of developing the ball lightning theory. J. Rus. Laser Res. 25(2), 169–191 (2004)CrossRefGoogle Scholar
  226. 226.
    Nikitin, A.I.: Will ball lightning problem be resolved in 21-st century? Khim. Fiz. 25(3), 18–37 (2006)Google Scholar
  227. 227.
    Lowke, J.J.: A theory of ball lightning as an electric discharge. J. Phys. D. (Appl. Phys.) 29(5), 1237–1244 (1996)CrossRefGoogle Scholar
  228. 228.
    Handel, P.H.: Maser theory of ball lightning. Bull. Am. Phys. Soc. Ser. II. 20(1), 26BF8 (1975)Google Scholar
  229. 229.
    Handel, P.H., Leitner, J.F.: Theory of the stationary nonlinear ball lightning system of fireball and atmospheric maser. In: Proceedings of the 5th International Symposium on Ball Lightning (ISBL97), Tsugawa-Town, Japan, pp. 114–119 (1997)Google Scholar
  230. 230.
    Handel, P.H., Leitner, J.F.: Development of the maser-caviton ball lightning theory. J. Geophys. Res. 99, 10689–10691 (1994)CrossRefGoogle Scholar
  231. 231.
    Singer, J.R.: Masers. Wiley, New York (1959)Google Scholar
  232. 232.
    Vuylsteke, A.A.: Elements of maser theory. D. Van Nostrand, New York (1960)Google Scholar
  233. 233.
    Oraevsky, A.N.: Radiation echo. Uspekhi Fiz. Nauk. 91(2), 181–191 (1967)Google Scholar
  234. 234.
    Akulin, V.M., Karlov, N.V.: Intense Resonant Interactions in Quantum Electronics. Nauka, Moscow (1987)Google Scholar
  235. 235.
    Gordiets, B.F., Osipov, A.I., Shelepin, L.A.: Kinetic processes in gases and molecular lasers. Nauka, Moscow (1980)Google Scholar
  236. 236.
    Meek, J.M., Craggs, J.D.: Electrical Breakdown of Gases. Clarendon, Oxford (1953)Google Scholar
  237. 237.
    Wieder I.: On the absence of water maser at atmospheric pressure. In: Proceedings of the 9th Intern. Symp. on Ball Lightning (ISBL06), Eindhoven, The Netherlands. pp. 250–255 (2006)Google Scholar
  238. 238.
    Cheung, A.C., Rank, D.M., Townes, C.H., Thornton, D.D., Welch, W.J.: Detection of water in interstellar regions by its microwave radiation. Nature 221, 626–628 (1969)CrossRefGoogle Scholar
  239. 239.
    Letokhov, V.S.: Astrophysical masers. Kvantovaya elektronika 32(12), 1065–1079 (2002)CrossRefGoogle Scholar
  240. 240.
    Handel, P.H. Carlson, G.A., Grace, M., Leitner, J.F.: Electric ponderomotive forces cause explosive ball lightning damages. In: Proceedings of the 8th International Symposium on Ball Lightning (ISBL04), Chung-li, Taiwan, pp. 95–100 (2004)Google Scholar
  241. 241.
    Handel, P.H., Carlson, G.A., Grace, M., Leitner, J.F.: Motion of a BL discharge fed by an atmospheric maser. In: Proceedings of the 8th International Symposium on Ball Lightning (ISBL04), Chung-li, Taiwan, pp. 89–94 (2004)Google Scholar
  242. 242.
    Handel, P.H., Carlson, G.A.: Rise time of maser-caviton ball lightning energy spikes. In: Proceedings of the 9th International Symposium on Ball Lightning (ISBL06), Eindhoven, The Netherlands, pp. 74–80 (2006)Google Scholar
  243. 243.
    Smirnov, B.M.: On analysis of ball lightning nature. Uspekhi Fiz. Nauk. 116(4), 731–739 (1975)Google Scholar
  244. 244.
    Smirnov, B.M.: Origination of ball lightning. Doklady AN SSSR 226(4), 806–808 (1976)Google Scholar
  245. 245.
    Kadomtsev, B.B.: Ball lightning as a phenomenon of self-organization. J. Moscow Phys. Soc. 1(4), 335–340 (1991)Google Scholar
  246. 246.
    Stepanov, S.I., Sall, S.A., Arutjunan, A.V.: Electric machine in ball lightning. In: Proceedings of the 5th International Symposium on Ball Lightning (ISBL97), Tsugawa-Town, Japan, pp. 183–187 (1997)Google Scholar
  247. 247.
    Stepanov, S.I.: Further development of electrochemical model of ball lightning. In: Proceedings of the 6th International Symposium on Ball Lightning (ISBL99), Antwerp, Belgium, pp. 96–101 (1999)Google Scholar
  248. 248.
    Stakhanov, I.P.: To a question of ball lightning nature. Zhur. Tekh. Fiz. 57(8), 1575–1582 (1987)Google Scholar
  249. 249.
    Turner, D.J.: Ball lightning and other meteorological phenomena. Phys. Rep. 293(1), 1–60 (1998)CrossRefGoogle Scholar
  250. 250.
    Igolkin, S.I., Savelyev, S.K.: Condensation model of the ball lightning. In: Proceedings of the 5th International Symposium on Ball Lightning (ISBL97), Tsugawa-Town, Japan, pp. 80–86 (1997)Google Scholar
  251. 251.
    Bychkov, V.L.: Polymer ball lightning model. Physica Scripta. 50, 591–599 (1994)CrossRefGoogle Scholar
  252. 252.
    Manykin, E.A., Ozhovan, M.I., Poluektov, P.P.: On collective electronic state in a system of strongly-excited atoms. Doklady AN SSSR 260, 1096–1098 (1981)Google Scholar
  253. 253.
    Manykin, E.A., Ozhovan, M.I., Poluektov, P.P.: Theory of the condensed state in the system of excited atoms. ZhETF 84(2), 442–453 (1983)Google Scholar
  254. 254.
    Manykin, E.A., Ozhovan, M.I., Poluektov, P.P.: To the question of ball lightning nature. ZhTF 52(7), 1474–1476 (1982)Google Scholar
  255. 255.
    Manykin, E.A., Ojovan, M.I., Poluektov, P.P.: Rydberg matter and ball lightning. In: Proceedings of the 6th International Symposium on Ball Lightning (ISBL99), Antwerp, Belgium, pp. 114–119 (1999)Google Scholar
  256. 256.
    Biberman, L.M., Norman, G.E.: On existence possibility of overcooled dense plasma. Teplofiz. Vysok. Temper. 7(5), 822–831 (1969)Google Scholar
  257. 257.
    Norman, G.E.: Ball lightning as overcooled non-ideal plasma. Khim. Fiz. 18(7), 78–86 (1999)Google Scholar
  258. 258.
    Norman, G.E.: Ball lightning as a supercooled nonideal plasma. Chem. Phys. Rep. 18(7), 1335–1352 (2000)Google Scholar
  259. 259.
    Manykin, E.A., Norman, G.E.: Ball lightning as supercooled plasma condensed phase. In: Proceedings of the 6th International Symposium on Ball Lightning (ISBL99), Antwerp, Belgium, pp. 120–125 (1999)Google Scholar
  260. 260.
    Mesenyashin, A.I.: Electrostatic and bubble nature of ball lightning. Appl. Phys. Lett. 58(23), 2713–2715 (1991)CrossRefGoogle Scholar
  261. 261.
    Mesenyashin, A.I.: Spherical formations in the atmosphere as a physical phenomenon. J. Electrostatics 38, 139–150 (1995)CrossRefGoogle Scholar
  262. 262.
    Zaitsev, I.V., Zaitsev, S.V.: Electrostatic model of ball lightning. Pisma v ZhTF. 17(7), 34–37 (1991)Google Scholar
  263. 263.
    Fedele, R.: A possible quantum-like approach to non-conventional plasmas. In: Proceedings of the 6th International Symposium on Ball Lightning (ISBL99), Antwerp, Belgium, pp. 126–132 (1999)Google Scholar
  264. 264.
    Pavlovsky, A.I., Dolotenko, M.I.: Pisma v ZhTF 38(9), 473 (1983)Google Scholar
  265. 265.
    Marsh, G.: Force free magnetic fields: solutions, topology and applications. World Scientific, Singapore (1996)Google Scholar
  266. 266.
    Rañada, A.F., Trueba, J.L.: Ball lightning as an electromagnetic knot? Nature 383, 32 (1996)CrossRefGoogle Scholar
  267. 267.
    Rañada, A.F., Soler, M., Trueba, J.L.: Ball lightnings and force-free magnetic knots. In: Proceedings of the 6th International Symposium on Ball Lightning (ISBL99), Antwerp, Belgium, pp. 102–107 (1999)Google Scholar
  268. 268.
    Jennison, R.C.: Ball lightning. A general critique. In: Proceedings of the 5th International Symposium on Ball Lightning (ISBL97), Tsugawa-Town, Japan, pp. 6–11 (1997)Google Scholar
  269. 269.
    Callebaut, D.K.: Energy storage by force-free magnetic field in the initial phase of ball lightning. In: Proceedings of the 8th International Symposium on Ball Lightning (ISBL04), Chung-li, Taiwan, pp. 32–37 (2004)Google Scholar
  270. 270.
    Callebaut, D.K., Karugila, G.K., Khater, A.H.: Ball lightning with force-free magnetic fields and runaway current. In: Proceedings of the 9th International Symposium on Ball Lightning (ISBL06), Eindhoven, The Netherlands, pp. 33–38 (2006)Google Scholar
  271. 271.
    Shakirzjanov, F.N.: Electromagnetic model of ball lightning. Elektrichestvo. N. 10, 74–77 (1999)Google Scholar
  272. 272.
    Arnhoff, G.H.: On the spheric radiation. In: Proceedings of the 5th International Symposium on Ball Lightning (ISBL97), Tsugawa-Town, Japan, pp. 101–107 (1997)Google Scholar
  273. 273.
    Arnhoff, G.H.: On the spheric radiation. In: Proceedings of the 6th International Symposium on Ball Lightning (ISBL99), Antwerp, Belgium, pp. 160–165 (1999)Google Scholar
  274. 274.
    Dijkhuis, G.C.: State equation and phase diagram for fractal growth in ball lightning. In: Kikuchi, H. (ed.) Environmental and Space Electromagnetics, pp. 535–546. Springer, Tokyo (1991)Google Scholar
  275. 275.
    Feynman, R.F., Leighton, R.B., Sands, M.: The Feynmann Lectures on Physics. 9, p. 246. Mir, Moscow (1967)Google Scholar
  276. 276.
    Dijkhuis, G.C.: Plasmoid confinement by the charged particles micro-fields. Nature 290, 166 (1981)CrossRefGoogle Scholar
  277. 277.
    Dijkhuis, G.C.: Verhulst dynamics and fractal stretching of transition layer vorticity. In: Kikuchi, H. (ed.) Dusty and Dirty Plasmas, Noise, and Chaos in Space and in the Laboratory, pp. 163–176. Plenum, New York (1994)Google Scholar
  278. 278.
    Dijkhuis, G.C.: Random walk and fractal deformation of transition layer vorticity. In: Proceedings of the 1st International Symposium on Heat and Mass Transfer under Plasma Conditions, Çesme, Turkey, pp. 611–621 (1994)Google Scholar
  279. 279.
    Dijkhuis, G.C.: Constructions for scale-invariant and kink-free vortex stretching. Physica B. Condensed Matter 228, 144–152 (1996)CrossRefGoogle Scholar
  280. 280.
    Dijkhuis, G.C.: Helix string field in ball lightning. In: Proceedings of the 5th International Symposium on Ball Lightning (ISBL97), Tsugawa-Town, Japan, pp. 144–151 (1997)Google Scholar
  281. 281.
    Dijkhuis, G.C.: Exponential particle acceleration by recursive stretching of vortex filaments in turbulent discharge plasma. In: Proceedings of the 8th International Symposium on Ball Lightning (ISBL04), Chung-li, Taiwan, pp. 70–75 (2004)Google Scholar
  282. 282.
    Dijkhuis, G.C.: On Madelung sums for bound states in a plasma vortex system. In: Proceedings of the 10th International Symposium on Ball Lightning (ISBL08) and 3rd International Symposium on Unconventional Plasmas (ISUP08), Kaliningrad, Russia, pp. 27–33 (2008)Google Scholar
  283. 283.
    Artsimovich, L.A.: Controlled Thermonuclear Reactions. GIFML, Moscow (1961)Google Scholar
  284. 284.
    Bychkov, V.L., Bychkov, A.V., Stadnik, S.A.: Polymer fire balls in discharge plasma. Phys. Scripta 53, 749–759 (1996)CrossRefGoogle Scholar
  285. 285.
    Amirov, A.K., Bobkov, S.E., Bychkov, V.L., Emelin, S.E., Klimov, A.I., Semenov, V.S.: Modern theoretical and experimental approaches to the problem of ball lightning. In: Proceedings of the 5th International Symposium on Ball Lightning (ISBL97), Tsugawa-Town, Japan, pp. 52–60 (1997)Google Scholar
  286. 286.
    Bychkov, V.L.: Unipolar ball lightning model. In: Proceedings of the 8th International Symposium on Ball Lightning (ISBL04), Chung-li, Taiwan, pp. 64–69 (2004)Google Scholar
  287. 287.
    Bychkov, V.L., Bychkov, D.V.: Ball lightning as unipolarly charged object with hot surface. In: Proceedings of the 9th International Symposium on Ball Lightning (ISBL06), Eindhoven, The Netherlands, pp. 26–32 (2006)Google Scholar
  288. 288.
    Bychkov, V.L.: Unipolarly charged ball lightning. Khim. Fiz. 25(3), 63–71 (2006)Google Scholar
  289. 289.
    Nikitin, A.I.: The dynamic capacitor model of ball lightning. In: Proceedings of the 6th International Symposium on Ball Lightning (ISBL99), Antwerp, Belgium, pp. 81–84 (1999)Google Scholar
  290. 290.
    Nikitin, A.I.: Stability and limiting energy content of autonomous ball lightning. Elektrichestvo. 3, 29–36 (2004)Google Scholar
  291. 291.
    Nikitin, A.I.: Substance of ball lightning as a certain form of unconventional plasma. Int. J. Unconven. Electromag. Plasmas. 1(1–2), 101–108 (2008)Google Scholar
  292. 292.
    Nikitin, A.I.: How ball lightning can be created in nature. In: Proceedings of the 6th International Symposium on Ball Lightning (ISBL99), Antwerp, Belgium, pp. 85–90 (1999)Google Scholar
  293. 293.
    Nikitin, A.I.: Origination of a ball lightning at development of a linear lightning. Elektrichestvo. (3), 16–23 (2000)Google Scholar
  294. 294.
    Aleksandrov, V.Y., Golubev, E.M., Podmoshensky, I.V.: Aerosol nature of ball lightning. Zhur. Tech. Fizi. 52(10), 1987–1992 (1982)Google Scholar
  295. 295.
    Stakhanov, I.P.: On Physical Nature of Ball Lightning. Energoatomizdat, Moscow (1985)Google Scholar
  296. 296.
    Smirnov, B.M.: Problem of Ball Lightning. Nauka, Moscow (1988)Google Scholar
  297. 297.
    Bychkov, V.L.: Polymer ball lightning model. Physica Scripta. 50, 591–599 (1994)CrossRefGoogle Scholar
  298. 298.
    Abrahamson, J., Dinniss, J.: Ball lightning caused by oxidation of nanoparticle networks from normal lightning strikes on soil. Nature 403, 519–521 (2000)CrossRefGoogle Scholar
  299. 299.
    Grigoriev, A.I., Shiryaeva, S.O., Grigorieva, I.D., et al.: On possibility of one ball lightning division in two. Z. Tekh. Fiz. 61, 25–31 (1991)Google Scholar
  300. 300.
    Saranin, V.A.: Equilibrium of Liquids and its Stability. Institute of Computer Investigations, Moscow (2002)Google Scholar
  301. 301.
    Bychkov, A.V., Bychkov, V.L., Abrahamson, J.: On the energy characteristics of ball lightning. Phil. Trans. Roy. Soc. Lon. 360(1790), 97–106 (2002)CrossRefGoogle Scholar
  302. 302.
    Emelin, S.E., Semenov, V.S., Bychkov, V.L., Belisheva, N.K., Kovshyk, A.P.: Some objects formed in the interaction of electrical discharges with metals and polymers. Tech. Phys. 42(3), 269–277 (1997)CrossRefGoogle Scholar
  303. 303.
    Bychkov, A.V., Bychkov, V.L., Timofeev, I.B.: Experimental modeling of long-lived shining formations in air on a basis of polymeric organic materials. Z. Tekh. Fiz. 74(1), 128–133 (2004)Google Scholar
  304. 304.
    Piva, G.S., Pavão, A.C., de Vasconcelos, E.A., Mendes Jr., O., Da Silva Jr., E.F.: Production of ball-lightning-like luminous balls by electrical discharge in silicon. Phys. Rev. Letts. 98, 048501-1–048501-4 (2007)Google Scholar
  305. 305.
    Dikhtyar, V., Jerby, E.: Fireball ejection from a molten hot spot to air by localized microwaves. Phys. Rev. Lett. 96, 2–4 (2006)CrossRefGoogle Scholar
  306. 306.
    Bychkov, V.L.: Unipolar ball lightning model. In: Proceedings of the 8th International Symposium on Ball Lightning (ISBL04), Chung-li, Taiwan, pp. 64–69 (2004)Google Scholar
  307. 307.
    Bychkov,V.L., Bychkov, D. V.: Ball lightning as unipolarly charged object with hot surface. In: Proceedings of the 9th International Symposium on Ball Lightning (ISBL06), Eindhoven, the Netherlands, pp. 26–32 (2006)Google Scholar
  308. 308.
    Bychkov, V.L.: Unipolarly charged ball lightning. Khim. Fiz. 25(3), 63–71 (2006)Google Scholar
  309. 309.
    Drysdale, D.: An Introduction to Fire Dynamics. Wiley, Chichasler/New York/Brisbane/Toronto/Singapore (1985)Google Scholar
  310. 310.
    Anderson, F.J., Freier, G.D.: Relation of electric fields to thunderstorm days. J. Geophys. Res. 78(27), 6359–6363 (1973)CrossRefGoogle Scholar
  311. 311.
    Sessler, G.M. (ed.): Electrets. Springer-Verlag, New York (1980)Google Scholar
  312. 312.
    Terletskyi, Y.P., Rybakov, Y.P.: Electrodynamics. Vysschaya Schkola, Moscow (1980)Google Scholar
  313. 313.
    Panofsky, W.K.H., Phillips, M.: Classical Electricity and Magnetism. Addison-Wesley, Cambridge, MA (1962)Google Scholar
  314. 314.
    Merzbacher, C.I.: Materials that emit light by chemical reaction. Phil. Trans. Roy. Soc. Lon. 360(1790), 89–96 (2002)CrossRefGoogle Scholar
  315. 315.
    Raizer, Y.P.: Physics of gaseous discharge. Nauka, Moscow (1992)Google Scholar
  316. 316.
    Aleksandrov, A.F., Bogdankevich, L.S., Rukhadze, A.A.: Basics of Plasma Electrodynamics. Vyschaya Schkola, Moscow (1988)Google Scholar
  317. 317.
    Nikitin, A.I., Nikitina, T.F., Velichko, A.M.: Corona discharge as a means to levitation of ball lightning. In: Proceedings of the 10th International Symposium on Ball Lightning (ISBL08) and 3rd International Symposium on Unconventional Plasmas (ISUP08), Kaliningrad, Russia, pp. 89–98 (2008)Google Scholar
  318. 318.
    Blythe, T., Bloor, D.: Electrical Properties of Polymers. Cambridge University Press, Cambridge (2005)Google Scholar
  319. 319.
    Abramovich, G.N.: Applied gas dynamics. Nauka, Moscow (1986)Google Scholar
  320. 320.
    Nikitin, A.I.: Electrodynamic model of ball lightning. Khim. Fiz. 25(3), 38–62 (2006)Google Scholar
  321. 321.
    Rawson, H.: Inorganic Glass-Forming Systems. Academic, London/New York (1967)Google Scholar
  322. 322.
    Bartenev, G.M.: Structure and Mechanical Properties of Inorganic Glasses. Publishers of Building Literature, Moscow (1966)Google Scholar
  323. 323.
    Lykov, A.V.: Theory of Thermal Conductivity. Vysschaya Schkola, Moscow (1967)Google Scholar
  324. 324.
    Amirov, A.Kh., Bychkov, V.L., Bobkov, S.E.: On the dependence lifetime- diameter for ball lightnings. Physica Scripta. 54, 13–14 (1998)Google Scholar
  325. 325.
    Amirov, A.K., Bychkov, A.V., Bychkov, V.L.: Ball lightning in respect to dependence lifetime diameter. In: Proceedings of the 6th International Symposium on Ball Lightning, 23–25 August, Antwerp, Belgium, pp. 19–26 (1999)Google Scholar
  326. 326.
    Pudovkin, A.K.: Ball lightning in Novosibirsk Akademgorodok. Uspekhi Fiz. Nauk. 166(11), 1253–1254 (1996)CrossRefGoogle Scholar
  327. 327.
    Saranin, V.A.: The theory of electrothermal explosion produced by lightning. Teplofiz. Vysok. Temper. 37(1), 31–36 (1999)Google Scholar
  328. 328.
    Mineev, A.: About high trees. In: Tikhomirova,V.A., Chernoutsan, A.I. (eds.) Physics and Biology. Bureau Quantum, Moscow (2001)Google Scholar
  329. 329.
    Kalashnikov, S.G.: Electricity. Nauka, Moscow (1964)Google Scholar
  330. 330.
    Likhosherstnykh, G.U.: 138 approaches to a mystery of nature. Tekhnika Molodezhi. (3), 38–43 (1983)Google Scholar
  331. 331.
    Goodlet, B.L.: Ball Lightning. J. Inst. Elect. Eng. 81, 1 (1937)Google Scholar
  332. 332.
    Barry, J.D.: Ball Lightning and Bead Lightning. Extreme Forms of Atmospheric Electricity. Plenum, New York (1980)Google Scholar
  333. 333.
    Stenhoff, M.: Ball Lightning. An Unsolved Problem in Atmospheric Physics. Kluwer/Plenum, New York (1999)Google Scholar
  334. 334.
    Imianitov, I., Tikhii, D.: Beyond the Laws of Science. Atomizdat, Moscow (1980)Google Scholar
  335. 335.
    Batygin, A., Mosin, I.: Visit of “Fairy Lady”. Pravda (Moscow), N. 220 (25938), pp. 6 (1989)Google Scholar
  336. 336.
    Nikitin, A.I.: The principles for developing of ball lightning theory. J. Russian Laser Res. 25(2), 169–191 (2004)CrossRefGoogle Scholar
  337. 337.
    Nikitin, A.I.: The requirements for elaboration of theory of ball lightning. In: Proceedings of the 8th International Symposium on Ball Lightning, Chung-li, Taiwan, pp. 16–22 (2004)Google Scholar
  338. 338.
    Nikitin, A.I.: Analysis of the models of highly energetic ball lightning. In: Proceedings of the 8th International Symposium on Ball Lightning, Chung-li, Taiwan, pp. 57–63 (2004)Google Scholar
  339. 339.
    Dijkhuis, G.C.: A model for ball lightning. Nature 248, 150–151 (1980)CrossRefGoogle Scholar
  340. 340.
    Dijkhuis, G.C.: Plasmoid confinement by the charged particles microfields. Nature 290, 166 (1981)CrossRefGoogle Scholar
  341. 341.
    Dijkhuis, G.C.: Helix string model for turbulent vorticity and cavitation in shearing arc plasma. Ann. NY Acad. Sci. 891, 259–272 (1999)CrossRefGoogle Scholar
  342. 342.
    Bychkov, V.L.: Polymer ball lightning model. Physica Scripta 50, 591–599 (1994)CrossRefGoogle Scholar
  343. 343.
    Bychkov, V.L.: Ball lightning as unipolarly charged object with hot surface. In: Proceedings of the 9th International Symposium on Ball Lightning, Eindhoven, The Netherlands. pp. 26–38 (2006)Google Scholar
  344. 344.
    Nikitin, A.I.: An electrical capacitor as the element of the power core of ball lightning. Electri. Technol. Russia (4), 70–85 (1998)Google Scholar
  345. 345.
    Nikitin, A.I.: The dynamic capacitor model of ball lightning. In: Proceedings of the 6th International Symposium on Ball Lightning, Antwerp, Belgium, pp. 91–95 (1999)Google Scholar
  346. 346.
    Nikitin, A.I.: Substance of ball lightning as a certain form of unconventional plasma. Int. J. Unconven. Electromag. Plasmas. 1(1–2), 101–108 (2008)Google Scholar
  347. 347.
    Nikitin, A.I.: Electrodynamical model of ball lightning. Khim. Fiz. 25(3), 38–62 (2006)Google Scholar
  348. 348.
    Artsimovich, L.A.: The Elementary Physics of Plasma. Atomizdat, Moscow (1969)Google Scholar
  349. 349.
    Frank-Kamenetskii, D.A.: Lectures on Plasma Physics. Atomizdat, Moscow (1968)Google Scholar
  350. 350.
    Landau, L.D., Lifshits, E.M.: Field Theory. GIFML, Moscow (1961)Google Scholar
  351. 351.
    Artsimovich, L.A.: Controlled Thermonuclear Reactions. GIFML, Moscow (1961)Google Scholar
  352. 352.
    Kalashnikov, S.G.: Electricity. Nauka, Moscow (1985)Google Scholar
  353. 353.
    Sarantsev, V.P., Perel’shtein, E.A.: Collective Acceleration of Ions by Electron Rings. Atomizdat, Moscow (1979)Google Scholar
  354. 354.
    Nikitin, A.I.: Stability and limit energy content of an autonomous ball lightning. Elektrichestvo. (3), 29–36 (2004)Google Scholar
  355. 355.
    Dmitriev, M.T., Bakhtin, B.I., Martynov, V.I.: Investigation of a thermal factor of ball lightning. J. Tech. Phys. 51(12), 2567–2572 (1981)Google Scholar
  356. 356.
    Balyberdin, V.V.: Estimate of the inner energy of ball lightning. In: Samolyotostroenie i Tekhnika Vozdushnogo Flota, vol. 3, pp. 102–104. Publishing of Kharkov State University, Kharkov (1965)Google Scholar
  357. 357.
    Ternov, I.M., Mikhailin, V.V., Khalilov, V.R.: Synchrotron Radiation and Its Applications. Publishing of Moscow State University, Moscow (1980)Google Scholar
  358. 358.
    Artsimovich, L.A., Lukianov, S.Y.: Motion of Charged Particles in the Electric and Magnetic Fields. Nauka, Moscow (1978)Google Scholar
  359. 359.
    Frenkel’, Y.I.: Theory of the Phenomenon of Atmospheric Electricity. GITTL, Leningrad-Moscow (1949)Google Scholar
  360. 360.
    Uman, M.A.: Lightning. McGraw-Hill, New York (1969)Google Scholar
  361. 361.
    Nikitin, A.I.,Velichko, A.M., Vnukov, A.V, Nikitina, T.F.: Estimation of ball lightning characteristics based on the analysis of its photo. In: Proceedings of the 9th International Symposium on Ball Lightning, Eindhoven, the Netherlands, pp. 148–156 (2006)Google Scholar
  362. 362.
    Nikitin, A.I., Velichko, A.M., Vnukov, A.V., Nikitina, T.F.: Estimate of the ball lightning parameters on the base of analysis of its photo. Khim. Fiz. 26(8), 80–89 (2007)Google Scholar
  363. 363.
    Nikitin, A.I., Leipunsky, I.O., Nikitina, T.F.: A search for the reasons explaining hovering of ball lightning over conductor surface. In: Proceedings of the 9th International Symposium on Ball Lightning, Eindhoven, The Netherlands, pp. 139–147 (2006)Google Scholar
  364. 364.
    Nikitin, A.I., Nikitina, T.F., Velichko, A.M.: Corona discharge as a means to levitation of ball lightning. In: Proceedings of the 10th International Symposium on Ball Lightning and 3rd International Symposium on Unconventional Plasmas, Kaliningrad, Russia, pp. 89–98 (2008)Google Scholar
  365. 365.
    Schelkunov, G.P., Nikitin, A.I., Bychkov, V.L., Nikitina, T.F., Velichko, A.M., Vasiliev, A.L.: Examination of a Window Pane Exposed to Ball Lightning. In: Proceedings of the 10th International Symposium on Ball Lightning and 3rd International Symposium on Unconventional Plasmas, Kaliningrad, Russia, pp. 127–134 (2008)Google Scholar
  366. 366.
    Turner, D.J.: The interaction of ball lightning with glasses window panes. J. Meteorol. 22(216), 52–64 (1997)Google Scholar
  367. 367.
    Nikitin, A.I., Bychkov, V.L., Nikitina, T.F., Velichko, A.M.: Modeling of ball lightning interaction with window panes. In: Proceedings of the 8th International Symposium on Ball Lightning. Chung-li, Taiwan, pp. 23–31 (2004)Google Scholar
  368. 368.
    Nikitin, A.I., Bychkov, V.L., Nikitina, T.F., Velichko, A.M.: Modeling of interaction of ball lightning with window panes. Khim. Fiz. 25(4), 98–105 (2006)Google Scholar
  369. 369.
    Grigor’ev, A.I.: Ball Lightning. Publishing of Yaroslavl’ State University, Yaroslavl’ (2006)Google Scholar
  370. 370.
    Singer, S.: The Nature of Ball Lightning. Plenum, New York (1971)Google Scholar
  371. 371.
    Stakhanov, I.P.: On a Physical Nature of Ball Lightning. Nauchny Mir, Moscow (1996)Google Scholar
  372. 372.
    Nikitin, A.I., Velichko, A.M., Nikitina, T.F.: Principles for search of conditions of ordered plasma structures creation. Izvestia Akademii Nauk, Energetics. N.2. pp. 115–132 (2008)Google Scholar
  373. 373.
    Meek, J.M., Craggs, J.D.: Electrical Breakdown in Gases. Clarendon, Oxford (1953)Google Scholar
  374. 374.
    Bazelian, E.M., Raizer, YuP: Physics of Lightning and of Protection Against Lightning. Nauka, Moscow (2001)Google Scholar
  375. 375.
    Nikitin, A.I.: Creation of ball lightning at developing of linear lightning. Elektrichestvo. (3), 16–23 (2000)Google Scholar
  376. 376.
    Nikitin, A.I.: How ball lightning can be created in nature. In: Proceedings of the 6th International Symposium on Ball Lightning, Antwerp, Belgium, pp. 85–90 (1999)Google Scholar
  377. 377.
    Raizer, YuP: Physics of Gas Discharge. Nauka, Moscow (1987)Google Scholar
  378. 378.
    Veselago, V.G.: The electrodynamics of substances with simultaneously negative values of ε and μ. Sov. Phys. Uspekhi. 10, 509–514 (1968)CrossRefGoogle Scholar
  379. 379.
    Yablonovitch, E., et al.: Photonic band structure: the face-centred cubic case employing non-spherical atoms. Phys. Rev. Lett. 67, 2295–2298 (1991)CrossRefGoogle Scholar
  380. 380.
    Pendry, J.B., et al.: Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microwave Theor. Tech. 47, 2075–2084 (1999)CrossRefGoogle Scholar
  381. 381.
    Shelby, R.A., et al.: Experimental verification of a negative index of refraction. Science 292, 77–79 (2001)CrossRefGoogle Scholar
  382. 382.
    Singer, S.: The Nature of Ball Lightning. Plenum, New York (1978)Google Scholar
  383. 383.
    Smirnov, B.M.: Physics of ball lightning. Phys. Rep. 224, 151–236 (1993)CrossRefGoogle Scholar
  384. 384.
    Amirov, A.K.h., Bychkov, V.L.: Ball lightning diameter-lifetime statistical analysis of the SKB data bank. Physica Scripta. 50, 413–416 (1994)CrossRefGoogle Scholar
  385. 385.
    Keul, A.G., et al.: German ball lightning data bank results. In: Proceedings of the 9th International Symposium on Ball Lightning, Eindhoven, The Netherlands. pp. 96–105 (2006)Google Scholar
  386. 386.
    Ofuruton, H. et al.: Experimental conditions for ball lightning creation by using air gap discharge embedded in a microwave field. J. Geophys. Res. 106, 12,367–12,369 (2001)Google Scholar
  387. 387.
    Golubkov, G.V., et al.: Collision of Rydberg atom A** with ground-state atom B. JETP Lett. 75, 314–316 (2002)CrossRefGoogle Scholar
  388. 388.
    Klimov, A. et al.: Investigation of physical properties of plasmoids in air and airflow. In: Proceedings of the 9th International Symposium on Ball Lightning. Eindhoven, The Netherlands. pp. 112–121 (2006)Google Scholar
  389. 389.
    Shabanov, G.D.: Performance of the laboratory of ball lightning. In: Proceedings of the 9th International Symposium on Ball Lightning. Eindhoven, The Netherlands. pp. 202–209 (2006)Google Scholar
  390. 390.
    Vlassov, A.: Getting a fireball by means of electric explosion of a wire spiral. In: Proceedings of the 9th International Symposium on Ball Lightning, Eindhoven, The Netherlands. pp. 233–241 (2006)Google Scholar
  391. 391.
    Jennison, R.C.: Ball lightning. Nature 224, 895 (1969)CrossRefGoogle Scholar
  392. 392.
    Dmitriev, M.T.: Stabilility mechanism for ball lightning. Sov. Phys. Tech. Phys. 14, 284–289 (1969)Google Scholar
  393. 393.
    Dwyer, J.R., et al.: Energetic radiation produced during rocket-triggered lightning. Science 299, 4 (2003)CrossRefGoogle Scholar
  394. 394.
    Shah, G.N., et al.: Neutron generation in lightning bolts. Nature 313, 773–775 (1985)CrossRefGoogle Scholar
  395. 395.
    Dijkhuis, G.C.: Helix string model for turbulent vorticity and cavitation in shearing arc plasma. Ann. NY Acad. Sci. 891, 259–272 (1999)CrossRefGoogle Scholar
  396. 396.
    Dijkhuis, G.C.: Exponential particle acceleration by recursive stretching of vortex filaments in turbulent discharge plasma. In: Proceedings of the 8th International Symposium on Ball Lightning, Taiwan, Chung-li, pp. 70–76 (2004)Google Scholar
  397. 397.
    Dijkhuis, G.C.: Scaling law for fusion power from ball lightning. In: Janiszewski, J., Moron, W., Sega, W. (eds.). Proceedings of the International Wroclaw Symposium on Electromagnetic Compatibility, pp. 21–25 (1988)Google Scholar
  398. 398.
    Pendry, J.B., et al.: Low frequency plasmons in thin-wire structures. J. Phys. Condens. Matter. 10, 4785–4809 (1998)CrossRefGoogle Scholar
  399. 399.
    Bergström, A.: Electromagnetic theory of strong interaction. Phys. Rev.D. 8, 4394–4402 (1978)Google Scholar
  400. 400.
    Dijkhuis, G.C.: A model of ball lightning. Nature 284, 150–151 (1980)CrossRefGoogle Scholar
  401. 401.
    Tsuchiya, H. et al.: Detection of high-energy gamma rays from winter thunderclouds. Phys. Rev. Lett., 99, 4165002, 4 (2007)Google Scholar
  402. 402.
    Bychkov, V.L.: On observation properties of ball lightning. In: Proceedings of the 9th International Symposium on Ball Lightning. Eindhoven, The Netherlands. pp 39–42 (2006)Google Scholar
  403. 403.
    Nikitin, A.I. et al.: Estimation of ball lightning characteristics based on the analysis of its photo. In: Proceedings of the 9th International Symposium on Ball Lightning, Eindhoven, The Netherlands, pp. 148–156 (2006)Google Scholar
  404. 404.
    Noten, L.C.: Private communication supported by his original laboratory journal. (1995)Google Scholar
  405. 405.
    Dijkhuis, G.C.: Site report and evaluation of Dutch ball lightning event. In: Proceedings of the 9th International Symposium on Ball Lightning, Eindhoven, The Netherlands, pp. 39–42 (2006)Google Scholar
  406. 406.
    Ofuruton, H., Kamogawa, M., Ohtsuki, Y.-H.: Experiments on ball lightning by using microwave localization. In: Proceedings of the 9th International Symposium on Ball Lightning (ISBL06), Eindhoven, The Netherlands, pp. 157–158 (2006)Google Scholar
  407. 407.
    Emelin, S.E., et al.: The dust-gas fireball as a special form of the electric erosive discharge afterglow. In: Proceedings of the 9th International Symposium on Ball Lightning, Eindhoven, The Netherlands, pp. 51–61 (2006)Google Scholar
  408. 408.
    Pirozerski, A.L., et al.: Long-living plasmoids generation by high-voltage discharge. In: Proceedings of the 9th International Symposium on Ball Lightning, Eindhoven, The Netherlands, pp. 180–190 (2006).Google Scholar
  409. 409.
    Spiegel, M.R.: Theory and Problems of Complex Variables. McGraw-Hill, New York (1964)Google Scholar
  410. 410.
    Panofsky, W.K.H., Phillips, M.: Classical Electricity and Magnetism. Addison-Wesley, Cambridge, MA (1962)Google Scholar
  411. 411.
    Dijkhuis, G.C.: Crystal lattices for 3D vortex systems with uniform curvature and torsion at minimal dissi-pation. In: Doerffer, P. (ed.) Internals Flows. IFFM Publishers. Gdansk, Poland, pp. 661–668 (2001)Google Scholar
  412. 412.
    Hamilton, W.R.: On a New Species of Imaginary Quantities Connected with the Theory of Quaternions. Proc. Roy. Irish Acad. 2, 424–434 (1844)Google Scholar
  413. 413.
    Dijkhuis, G.C.: On potential flow solutions from the division algebras. In: Proceedings of the 6th European Symposium on Aerothermod. for Space Vehicles, ESA SP-659 (2009)Google Scholar
  414. 414.
    Conway, J.H., Smith, D.A.: On Quaternions and Octonions. A.K. Peters, Natick, MA (2003)Google Scholar
  415. 415.
    Coxeter, H.S.M.: Regular Polytopes, 3rd ed. Dover, New York (1973)Google Scholar
  416. 416.
    Kuipers, J.B.: Quaternions and Rotation Sequences. Princeton University Press, New York (1999)Google Scholar
  417. 417.
    Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1968)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Physical Electronics Chair, Physical DepartmentM.V. Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations