Advertisement

Atmosphere–Ionosphere Electrodynamic Coupling

  • V. M. Sorokin
  • V. M. Chmyrev
Chapter
Part of the Physics of Earth and Space Environments book series (EARTH)

Abstract

Numerous phenomena that occur in the mesosphere, ionosphere, and the magnetosphere of the Earth are caused by the sources located in the lower atmosphere and on the ground. We describe the effects produced by lightning activity and by ground-based transmitters operated in high frequency (HF) and very low frequency (VLF) ranges. Among these phenomena are the ionosphere heating and the formation of plasma density inhomogeneities, the excitation of gamma ray bursts and atmospheric emissions in different spectral bands, the generation of ULF/ELF/VLF electromagnetic waves and plasma turbulence in the ionosphere, the stimulation of radiation belt electron precipitations and the acceleration of ions in the upper ionosphere. The most interesting results of experimental and theoretical studies of these phenomena are discussed below. The ionosphere is subject to the action of the conductive electric current flowing in the atmosphere–ionosphere circuit. We present a physical model of DC electric field and current formation in this circuit. The key element of this model is an external current, which is formed with the occurrence of convective upward transport of charged aerosols and their gravitational sedimentation in the atmosphere. An increase in the level of atmospheric radioactivity results in the appearance of additional ionization and change of electrical conductivity. Variation of conductivity and external current in the lower atmosphere leads to perturbation of the electric current flowing in the global atmosphere–ionosphere circuit and to the associated DC electric field perturbation both on the Earth’s surface and in the ionosphere. Description of these processes and some results of the electric field and current calculations are presented below. The seismic-induced electric field perturbations produce noticeable effects in the ionosphere by generating the electromagnetic field and plasma disturbances. We describe the generation mechanisms of such experimentally observed effects as excitation of plasma density inhomogeneities, field-aligned currents, and ULF/ELF emissions and the modification of electron and ion altitude profiles in the upper ionosphere. The electrodynamic model of the ionosphere modification under the influence of some natural and man-made processes in the atmosphere is also discussed. The model is based on the satellite and ground measurements of electromagnetic field and plasma perturbations and on the data on atmospheric radioactivity and soil gas injection into the atmosphere.

Keywords

Electromagnetic field Plasma disturbances Upper ionosphere Atmosphere 

References

  1. 1.
    Getmantsev, C.G., Zuikov, N.A., Kotik, D.S., Mironenko, L.F., Mityakov, N.A., Rapoport, V.O., Sazonov, Y.A., Trakhtengerts, V.Y., Eidman, V.Y.: Combination frequencies in the interaction between high-power short-wave radiation and ionospheric plasma. JETP Lett. 20, 101–112 (1974)Google Scholar
  2. 2.
    James, H., Inan, U.S., Rietveld, M.T.: Observation on the DE-1 spacecraft of ELF/VLF waves generated by an ionospheric heater. J. Geophys. Res. 95, 12187 (1990)Google Scholar
  3. 3.
    Inan, U.S., Golkowski, M., Carpenter, D.L., Reddell, N., Moore, R.C., Bell, T.F., Paschal, E., Kossey, P., Kennedy, E., Meth, S.Z.: Multi-hop whistler-mode ELF/VLF signals and triggered emissions excited by the HAARP HF heater. Geophys. Res. Lett. 31, L24805 (2004)Google Scholar
  4. 4.
    Moore, R.C., Inan, U.S., Bell, T.F., Kennedy, E.J.: ELF waves generated by modulated HF heating of the auroral electrojet and observed at a ground distance of 4400 km. J. Geophys. Res. 112, A05309 (2007). doi:10.1029/2006JA012063Google Scholar
  5. 5.
    Parrot, M., Sauvaud, J.A., Berthelier, J.J., Lebreton, J.P.: First in-situ observations of strong ionospheric perturbations generated by powerful VLF transmitter. Geophys. Res. Lett. 34, L11111 (2007). doi:10.1029/2007GL029368Google Scholar
  6. 6.
    Frolov, V., Rapoport, V., Komrakov, G., Belov, A., Markov, G., Parrot, M., Rauch, J., Mishin, E.: Density ducts formed by heating the Earth’s ionosphere with high-power HF transmitter. JETP Lett. 88, 790–794 (2008)Google Scholar
  7. 7.
    Milikh, G.M., Papadopoulos, K., Shroff, H., Chang, C.L., Wallace, T., Mishin, E.V., Parrot, M., Berthelier, J.J.: Formation of artificial ionospheric ducts. Geophys. Res. Lett. 35, L17104 (2008). doi:10.1029/2008GL034630Google Scholar
  8. 8.
    Dzhordzhio, N.V., Mogilevskii, M.M., Chmyrev, V.M., Kovrazhkin, R.A., Molchanov, O.A., Galperin, YuI, Boske, J.M., Roche, J.L.: Acceleration of ions in the plasma environment of the Earth by the radiation from a low-frequency transmitter on the ground. JETP Lett. 46, 405–409 (1987)Google Scholar
  9. 9.
    Chmyrev, V.M., Kuzmin, A.K., Lazarev, V.I., Isaev, N.V., Bilichenko, S.V., Taranenko, YuN, Teltsov, M.V., Teodosiev, D.K.: Correlation of stable red arcs and Hβ emissions with ion fluxes, electric fields and VLF radiation. Geom. Aeron. 28, 813–819 (1988)Google Scholar
  10. 10.
    Chmyrev, V.M., Mogilevsky, M.M., Molchanov, O.A., Sobolev, Ya.P., Titova, E.E., Yakhnina, T.A., Suncheleev, R.N., Gladyshev, V.A., Baranets, N.V., Dzhordzhio, N.V., Galperin, Yu.I., Streltsov, A.V.: Parametric excitation of ELF waves and acceleration of ions at the injection of strong VLF waves into the ionosphere. Kosmich. Issled. 27, 248–257 (1989)Google Scholar
  11. 11.
    Bernhardt, P.A., Scales, W.A., Grach, S.M., Keroshtin, A.N., Kotik, D.S., Polyakov, S.M.: Excitation of artificial airglow by high-power radio waves from “SURA“ ionospheric heating facility. Geophys. Res. Lett. 18(8), 1477–1480 (1991)Google Scholar
  12. 12.
    Cohen, D., Weiber, J., King, J., Kemper, S., Stephens, S., Davis, L., Spanjer, G., Winter, J., Adler, A., Easley, S., Tolliver, M., Guarnieri, J.: The SSTE-4: DSX flight experiment: design of a low-cost, R&D space mission with responsive enabling technologies. Paper N.2005-3004, AIAA 3rd Responsive Space Conference 2005, Los Angeles, CA (2005)Google Scholar
  13. 13.
    Gamble, R.J., Rodger, C.J., Clivlend, M.A., Sauvaud, J.-A., Thomson, N.R., Stewart, S.L., McCornick, R.J., Parrot, M., Berthelier, L.-J.: Radiation belt precipitation by manmade VLF transmission. J. Geophys. Res. (2008). doi:10.1029/2008JA013369Google Scholar
  14. 14.
    Molchanov, O.A.: Wave and plasma phenomena inside the ionosphere and the magnetosphere associated with earthquakes. In: Stone, W.R. (ed.) Review of Radio Science 1990–1992, pp. 591–600. Oxford University Press, New York (1993)Google Scholar
  15. 15.
    Buchachenko, A.L., Oraevskii, V.N., Pokhotelov, O.A., Sorokin, V.M., Strakhov, V.N., Chmyrev, V.M.: Ionospheric precursors to earthquakes. Phys.-Usp. 39, 959–965 (1996)Google Scholar
  16. 16.
    Varotsos, P.: A review and analysis of electromagnetic precursory phenomena. Acta Geophys. Pol. 49, 1–42 (2001)Google Scholar
  17. 17.
    Hayakawa, M., Molchanov, O.: Seismo-Electromagnetics (Lithosphere–Atmosphere–Ionosphere Coupling), pp. 1–477. Terrapub, Tokyo (2002)Google Scholar
  18. 18.
    Parrot, M., Berthelier, J.J., Lebreton, J.P., Sauvaud, J.A., Santolik, O., Blecki, J.: Examples of unusual ionospheric observations made by the DEMETER satellite over seismic regions. Phys. Chem. Earth 31, 486–495 (2006)Google Scholar
  19. 19.
    Parrot, M., Berthelier, J.J., Lebreton, J.P., Treumann, R., Rauch, J.L.: DEMETER observation of EM emissions related to thunderstorms. Space Sci. Rev. 137, 511519 (2008). doi: 10.1007/s11214-008-9347-yGoogle Scholar
  20. 20.
    Bhattacharya, S., Sarkar, S., Gwal, A.K., Parrot, M.: Satellite and ground-based ULF/ELF emissions observed before Gujarat earthquake in March 2006. Curr. Sci. 93, 41–46 (2006)Google Scholar
  21. 21.
    Sorokin, V.M., Chmyrev, V.M., Yaschenko, A.K.: Electrodynamic model of the lower atmosphere and the ionosphere coupling. J. Atmos. Solar-Terr. Phys. 63, 1681–1691 (2001)Google Scholar
  22. 22.
    Sorokin, V.M.: Plasma and electromagnetic effects in the ionosphere related to the dynamic of charged aerosols in the lower atmosphere. Russ. J. Phys. Chem. 1, 138–170 (2007)Google Scholar
  23. 23.
    Alekseev, V.A., Alekseeva, N.G.: Investigation of metal transfer in the biosphere during gaseous emission in zones of tectonic activity using methods of nuclear physics. Nucl. Geophys. 6, 99–105 (1992)Google Scholar
  24. 24.
    Voitov, G.I., Dobrovolsky, I.P.: Chemical and isotope – carbonic instability of the soil gases in the seismic regions. Izvestiya AN SSSR. Fizika Zemli 3, 20–27 (1994)Google Scholar
  25. 25.
    Virk, H.S., Singh, B.: Radon recording of Uttarkashi earthquake. Geophys. Res. Lett. 21, 737–741 (1994)Google Scholar
  26. 26.
    Heincke, J., Koch, U., Martinelli, G.: CO2 and Radon measurements in the Vogtland area (Germany) – a contribution to earthquake prediction research. Geophys. Res. Lett. 22, 774–779 (1995)Google Scholar
  27. 27.
    Igarashi, G., Saeki, T., Takahata, N., Sano, Y., Sumikawa, K., Tasaka, S., Sasaki, Y., Takahashi, M.: Groundwater radon anomaly before the Kobe earthquake. Science 269, 60–61 (1995)Google Scholar
  28. 28.
    Pulinets, S.A., Alekseev, V.A., Legenka, A.D., Khegai, V.V.: Radon and metallic aerosols emanation before strong earthquakes and their role in atmosphere and ionosphere modification. Adv. Space Res. 20, 2173–2176 (1997)Google Scholar
  29. 29.
    Isaev, N.V., Sorokin, V.M., Chmyrev, V.M., Serebryakova, O.N., Ovcharenko, O.Ya.: Electric field enhancement in the ionosphere above tropical storm region. In.: Hayakawa, M., Molchanov, O.A. (eds.) Seismo electromagnetics: litosphere–atmosphere–ionosphere coupling, pp. 313–315. Terrapub, Tokyo (2002)Google Scholar
  30. 30.
    Sorokin, V.M., Isaev, N.V., Yaschenko, A.K, Chmyrev, V.M., Hayakawa, M.: Strong DC electric field formation in the low latitude ionosphere over typhoons. J. Atmos. Solar-Terr. Phys. 67, 1269–1279 (2005)Google Scholar
  31. 31.
    Serebryakova, O.N., Bilichenko, S.V., Chmyrev, V.M., Parrot, M., Rauch, J.L., Lefeuvre, F., Pokhotelov, O.A.: Electromagnetic ELF radiation from earthquake regions as observed by low-altitude satellites. Geophys. Res. Lett. 19, 91–94 (1992)Google Scholar
  32. 32.
    Chmyrev, V.M., Isaev, N.V., Serebryakova, O.N., Sorokin, V.M., Sobolev, Ya.P.: Small-scale plasma inhomogeneities and correlated ELF emissions in the ionosphere over an earthquake region. J. Atmos. Solar-Terr. Phys. 59, 967–973 (1997)Google Scholar
  33. 33.
    Gokhberg, M.B., Morgunov, V.A., Yoshino, T., Tomizawa, I.: Experimental measurements of electromagnetic emissions possibly related to earthquake in Japan. J. Geophys. Res. 87, 7824–7828 (1982)Google Scholar
  34. 34.
    Koons, H.C., Roeder, J.L.: A comparison of ULF/ELF measurements associated with earthquakes. In: Hayakawa, M. (ed.) Atmospheric and ionospheric electromagnetic phenomena associated with earthquakes, pp. 171–175. Terrapub, Tokyo (1999)Google Scholar
  35. 35.
    Henderson, T.R., Sonwalkar, V.S., Helliwell, R.A., Inan, U.S., Fraser-Smith, A.C.: A Search for ELF/VLF emissions induced by earthquakes as observed in the ionosphere by the DE-2 satellite. J. Geophys. Res. 98, 9503–9511 (1993)Google Scholar
  36. 36.
    Borisov, N., Chmyrev, V., Rybachek, S.: A new ionospheric mechanism of electromagnetic ELF precursors to earthquakes. J. Atmos. Solar-Terr. Phys. 63, 3–10 (2001)Google Scholar
  37. 37.
    Kondo, G.: The variation of the atmospheric electric field at the time of earthquake. Memoirs of the Kakioka Magnetic Observatory, Kakioka. Japan 13, 17–23 (1968)Google Scholar
  38. 38.
    Pierce, E.T.: Atmospheric electricity and earthquake prediction. Geophys. Res. Lett. 3, 185–188 (1976)Google Scholar
  39. 39.
    Hao, J.: The anomalous of atmospheric electric field at the ground level and earthquakes. Acta Seismol. Sinica. 10, 207–211 (1988)Google Scholar
  40. 40.
    Chmyrev, V.M., Isaev, N.V., Bilichenko, S.V., Stanev, G.A.: Observation by space-borne detectors of electric fields and hydromagnetic waves in the ionosphere over on earthquake center. Phys. Earth Planet. Inter. 57, 110–114 (1989)Google Scholar
  41. 41.
    Tate, J., Daily, W.: Evidence of electro-seismic phenomena. Phys. Earth Planet. Inter. 57, 1–9 (1989)Google Scholar
  42. 42.
    Vershinin, E.F., Buzevich, A.V., Yumoto, K., Saita, K., Tanaka, Y.: Correlations of seismic activity with electromagnetic emissions and variations in Kamchatka region. In: Hayakawa, M. (ed.) Atmospheric and ionospheric electromagnetic phenomena associated with earthquakes, pp. 513–518. Terrapub, Tokyo (1999)Google Scholar
  43. 43.
    Pulinets, S.A., Legenka, A.D. Alekseev, V.A.: Pre-earthquakes effects and their possible mechanisms. Dusty and dirty plasmas, noise and chaos in space and in the laboratory, pp. 545–557. Plenum Publishing, New York (1994)Google Scholar
  44. 44.
    Boskova, J., Smilauer, I., Triska, P., Kudela, K.: Anomalous behaviour of plasma parameters as observed by the Intercosmos-24 satellite prior to the Iranian earthquake of 20 June 1990. Studia Geophys. Geodet. 8, 213–220 (1994)Google Scholar
  45. 45.
    Afonin, V.V., Molchanov, O.A., Kodama, T., Hayakawa, M., Akentieva, O.A.: Statistical study of ionospheric plasma response to seismic activity: search for reliable result from satellite observations. In: Hayakawa, M. (ed.) Atmospheric and ionospheric electromagnetic phenomena associated with earthquakes, pp. 597–617. Terra Scientific Publishing Company (TERRAPUB), Tokyo (1999)Google Scholar
  46. 46.
    Pulinets, S.A., Legenka, A.D.: Spatial-temporal characteristics of the large scale disturbances of electron concentration observed in the F-region of the ionosphere before strong earthquake. Cosmic Res. 41, 221–229 (2003)Google Scholar
  47. 47.
    Tronin, A.A.: Satellite thermal survey application for earthquake prediction. In.: Hayakawa, M. (ed.) Atmospheric and ionospheric electromagnetic phenomena associated with earthquakes, pp. 717–723. Terrapub, Tokyo (1999)Google Scholar
  48. 48.
    Tronin, A.A., Hayakawa, M., Molchanov, O.A.: Thermal IR satellite data application for earthquake research in Japan and China. J. Geodyn. 33, 519–534 (2002)Google Scholar
  49. 49.
    Qiang, Z.J., Dian, C.G., Li, L.Z.: Satellite thermal infrared precursors of two moderate-strong earthquakes in Japan and impending earthquake prediction. In: Hayakawa, M. (ed.) Atmospheric and ionospheric electromagnetic phenomena associated with earthquakes, pp. 747–745. Terrapub, Tokyo (1999)Google Scholar
  50. 50.
    Tramutoli, V., Di Bello, G., Pergova, N., Piscitalli, S.: Robust satellite techniques for remote sensing of seismically active areas. Ann. Geofis. 44, 295–312 (2001)Google Scholar
  51. 51.
    Toroshelidze, T.I., Fishkova, L.M.: Analyzes of the middle and upper atmosphere luminescence before earthquakes. DAN SSSR, Fizika Zemli. 302, 313–319 (1986)Google Scholar
  52. 52.
    Gokhberg, M.B., Nekrasov, A.K., Shalimov, S.L.: On influence of the unstable injection of green gases to the ionosphere in seismic region. Izvestiya AN SSSR, Fizika Zemli. 8, 52–60 (1996)Google Scholar
  53. 53.
    Draganov, A.B., Inan, U.S., Taranenko, YuN: ULF magnetic signatures at the earth surface due to ground water flow: a possible precursor to earthquakes. Geophys. Res. Lett. 18, 1127–1131 (1991)Google Scholar
  54. 54.
    Surkov, V., Pilipenko, V.: The physics of pre-seismic electromagnetic ULF signals. In: Hayakawa, M. (ed.) Atmospheric and ionospheric electromagnetic phenomena associated with earthquakes, pp. 357–363. Terrapub, Tokyo (1999)Google Scholar
  55. 55.
    Molchanov, O.A., Hayakawa, M., Rafalsky, V.A.: Penetration characteristics of electromagnetic emissions from an underground seismic source into the atmosphere, ionosphere, and magnetosphere. J. Geophys. Res. 100, 1691–1712 (1995)Google Scholar
  56. 56.
    Fitterman, D.V.: Theory of electrokinetic–magnetic anomalies in a faulted half-space. J. Geophys. Res. 84, 6031–6040 (1979)Google Scholar
  57. 57.
    Pilipenko, V.A., Fedorov, E.N., Yagova, N.V., Yumoto, K.: Attempt to detect ULF electro-magnetic activity preceding earthquake. In: Hayakawa, M. (ed.) Atmospheric and ionospheric electromagnetic phenomena associated with earthquakes, pp. 203–214. Terrapub, Tokyo (1999)Google Scholar
  58. 58.
    Alperovich, L.S., Gokhberg, M.B., Sorokin, V.M., Fedorovich, G.V.: On generation of the geomagnetic variations by acoustic oscillation occurring at the time of earthquakes. Izvestiya AN SSSR, Fizika Zemli 3, 58–68 (1979)Google Scholar
  59. 59.
    Sorokin, V.M., Fedorovich, G.V.: Propagation of the short periodic waves in the ionosphere. Izvestiya VUZov, Radiofizika. 25, 495–507 (1982)Google Scholar
  60. 60.
    Grimalsky, V.V., Hayakawa, M., Ivchenko, V.N., Rapoport, YuG, ZAdoroznii, V.I.: Penetration of an electrostatic field from the lithosphere into the ionosphere and its effect on the D-region before earthquakes. J. Atmos. Solar-Terr. Phys. 65, 391–407 (2003)Google Scholar
  61. 61.
    Rapoport, Y., Grimalsky, V., Hayakawa, M., Ivchenko, V., Juarez, R.D., Koshevaya, S., Gotynyan, O.: Change of ionospheric plasma parameters under the influence of electric field which has lithospheric origin and due to radon emanation. Phys. Chem. Earth 29, 579–587 (2004)Google Scholar
  62. 62.
    Volland, H.: Atmospheric electrodynamics. Springer, New York (1984)Google Scholar
  63. 63.
    Pasko, V.P.: Dynamic coupling of quasi-electrostatic thundercloud fields to the mesosphere and lower ionosphere: sprites and jets. Ph.D. thesis, Stanford University, Stanford, CA (1996)Google Scholar
  64. 64.
    Uman, M.A.: The lightning discharge. Academic, Orlando, FL (1987)Google Scholar
  65. 65.
    Inan, U.S., Sampson, W.A., Taranenko, Y.N.: Space-time structure of lower ionospheric optical flashes and ionization changes produced by lightning EMP. Geophys. Res. Lett. 23, 133–138 (1996)Google Scholar
  66. 66.
    Roussel-Dupre, R.A., Gurevich, A.V., Tunnell, T., Milikh, G.M.: Kinetic theory of runaway air breakdown. Phys. Rev. E 49, 2257–2269 (1994)Google Scholar
  67. 67.
    Bell, T.F., Pasko, V.P., Inan, U.S.: Runaway electrons as a source of Red Sprites in the mesosphere. Geophys. Res. Lett. 22, 2127–2135 (1995)Google Scholar
  68. 68.
    Helliwell, R.A., Katsufrakis, J.P., Trimpi, M.L.: Whistler-induced amplitude perturbation in VLF propagation. J. Geophys. Res. 78, 4679–4688 (1973)Google Scholar
  69. 69.
    Carpenter, D.L., Inan, U.S., Trimpi, M.L., Helliwell, R.A., Katsufrakis, J.P.: Perturbations of subionospheric LF and MF signals due to whistler-induced electron precipitation bursts. J. Geophys. Res. 89, 9857–9867 (1984)Google Scholar
  70. 70.
    Burgess, W.C., Inan, U.S.: The role of ducted whistlers in the precipitation loss and equilibrium flux of radiation belt electrons. J. Geophys. Res. 98, 15643–15650 (1993)Google Scholar
  71. 71.
    Rosenberg, T.J., Helliwell, R.A., Katsufrakis, J.P.: Electron precipitation associated with discrete, very low frequency emissions. J. Geophys. Res. 76, 8445–8456 (1971)Google Scholar
  72. 72.
    Rycroft, M.J.: Enhanced energetic electron intensities at 100 km altitude and a whistler propagation through the plasmasphere. Planet. Space Sci. 21, 239–247 (1973)Google Scholar
  73. 73.
    Goldberg, R.J., Curtis, S.A., Barcus, J.R.: Detailed spectral structure of magnetospheric electron bursts precipitated by lightning. J. Geophys. Res. 92, 2505–2512 (1987)Google Scholar
  74. 74.
    Voss, H.D., Imhof, W.L., Mobila, J., Gaines, E.E., Walt, M., Inan, U.S., Helliwell, R.A., Carpenter, D.L., Katsufrakis, J.P., Chang, H.C.: Lightning-induced electron precipitation. Nature 312, 740–749 (1984)Google Scholar
  75. 75.
    Imhof, W.L., Voss, H.D., Walt, M., Gaines, E.E., Mobila, J., Datlove, D.W., Reagan, J.B.: Slot region electron precipitation by lightning. J. Geophys. Res. 91, 8883–8892 (1986)Google Scholar
  76. 76.
    Voss, H.D., Walt, M., Imhof, W.L., Mobila, J., Inan, U.S.: Satellite observation of lightning-induced electron precipitation. J. Geophys. Res. 103, 11725–11732 (1998)Google Scholar
  77. 77.
    Inan, U.S., Bell, T.F., Helliwell, R.A.: Nonlinear pitch angle scattering of energetic electrons by coherent VLF waves in the magnetosphere. J. Geophys. Res. 83, 3235–3246 (1978)Google Scholar
  78. 78.
    Chang, H.C., Inan, U.S.: Lightning-induce energetic electron precipitation from the magnetosphere. J. Geophys. Res. 90, 4531–4539 (1985)Google Scholar
  79. 79.
    Armstrong, W.C.: Recent advances from studies of the Trimpi effect. Antarctic J. 18, 281–286 (1983)Google Scholar
  80. 80.
    Inan, U.S., Shafer, D.C., Yip, W.Y., Orville, R.E.: Subionospheric VLF signatures of nighttime D-region perturbations in the vicinity of lightning discharges. J. Geophys. Res. 93, 11455–11467 (1988)Google Scholar
  81. 81.
    Inan, U.S., Rodriguez, J.V., Idone, V.P.: VLF signatures of lightning-induced heating and ionization of the nighttime D-region. Geophys. Res. Lett. 20, 2355–2360 (1993)Google Scholar
  82. 82.
    Inan, U.S., Bell, T.F., Pasko, V.P., Sentman, D.D., Wescott, E.M., Lyons, W.A.: VLF signatures of ionospheric disturbances associated with sprites. Geophys. Res. Lett. 22, 3461–3466 (1995)Google Scholar
  83. 83.
    Inan, U.S., Slingeland, A., Pasko, V.P., Rodriguez, J.: VLF signatures of mesospheric/lower ionospheric response to lightning discharges. J. Geophys. Res. 101, 5219–5228 (1996)Google Scholar
  84. 84.
    Dowden, R.L., Adams, C.D.C., Brundell, J.B., Dowden, P.E.: Rapid onset, rapid decay (RORD), phase and amplitude perturbations of VLF subionospheric transmissions. J. Atmos. Terr. Phys. 56, 1513–1521 (1994)Google Scholar
  85. 85.
    Sentman, D.D., Wescott, E.M.: Red sprites and blue jets: thunderstorm-excited optical emissions in the stratosphere, mesosphere and ionosphere. Phys. Plasmas 2, 2514–2522 (1995)Google Scholar
  86. 86.
    Lyons, W.A.: Characteristics of luminous structures in the stratosphere above thunderstorms as imaged by low-light video. Geophys. Res. Lett. 21, 875–881 (1994)Google Scholar
  87. 87.
    Lyons, W.A.: Low-light video observations of frequent luminous structures in the stratosphere above thunderstorms. Mon. Weather Rev. 122, 1940–1950 (1995)Google Scholar
  88. 88.
    Lyons, W.A.: Sprite observations above the U.S. high plains in relation to their parent thunderstorm systems. J. Geophys. Res. 101, 29641–29652 (1996)Google Scholar
  89. 89.
    Boeck, W.L., Vaughan, O.H., Blakeslee, R.J., Vonnegut, B., Brook, M., McKune, J.: Observation of lightning in the stratosphere. J. Geophys. Res. 100, 1465–1472 (1995)Google Scholar
  90. 90.
    Rairden, R.L., Mende, S.B.: Time resolved sprite imagery. Geophys. Res. Lett. 22, 3465–3469 (1995)Google Scholar
  91. 91.
    Winckler, J.R., Lyons, W.A., Nelson, T., Nemzek, R.J.: New high-resolution ground-based studies of cloud-ionosphere discharges over thunderstorms (CI or Sprites). J. Geophys. Res. 101, 6997–7012 (1996)Google Scholar
  92. 92.
    Wescott, E.M., Sentman, D., Osborne, D., Hampton, D., Heavner, M.: Preliminary results from the Sprites94 aircraft campaign: 2. Blue jets. Geophys. Res. Lett. 22, 1209–1213 (1995)Google Scholar
  93. 93.
    Boeck, W.L., Vaughan, O.H., Blakeslee, R.J., Vonnegut, B., Brook, M.: Lightning-induced brightening in the airglow layer. Geophys. Res. Lett. 19, 99–103 (1992)Google Scholar
  94. 94.
    Fukunishi, H., Takahashi, Y., Kubota, M., Sakanoi, K., Inan, U.S., Lyons, W.A.: Lightning-induced transient luminous events in the lower ionosphere. Geophys. Res. Lett. 23, 2157–2163 (1996)Google Scholar
  95. 95.
    Boccippio, D.J., Williams, E.R., Heckman, S.J., Lyons, W.A., Baker, I.T., Boldi, R.: Sprites, ELF transients, and positive ground strokes. Science 269, 1088–1093 (1995)Google Scholar
  96. 96.
    Fishman, G.J., Bhat, P.N., Mallozzi, R., Horack, J.M., Koshut, T., Kouveliotou, C., Pendleton, G.N., Meegan, C.A., Wilson, R.B., Paciesas, W.S., Goodman, S.J., Christian, H.J.: Discovery of intense gamma-ray flashes of atmospheric origin. Science 264, 1313–1319 (1994)Google Scholar
  97. 97.
    Inan, U.S., Reising, S.C., Fishman, G.J., Horack, J.M.: On the association of terrestrial gamma-ray bursts with lightning discharges and sprites. Geophys. Res. Lett. 23, 1017–1022 (1996)Google Scholar
  98. 98.
    Holden, D.N., Munson, C.P., Devenport, J.C.: Satellite observation of transionospheric pulse pairs. Geophys. Res. Lett. 22, 889–893 (1995)Google Scholar
  99. 99.
    Taranenko, Y.N., Inan, U.S., Bell, T.F.: Interaction with the lower ionosphere of electromagnetic pulses from lightning: heating, attachment, and ionization. Geophys. Res. Lett. 20, 1539–1545 (1993)Google Scholar
  100. 100.
    Taranenko, Y.N., Inan, U.S., Bell, T.F.: The interaction with the lower ionosphere of electromagnetic pulses from lightning: excitation of optical emissions. Geophys. Res. Lett. 20, 2675–2680 (1993)Google Scholar
  101. 101.
    Milikh, G.M., Papadopoulos, K., Chang, C.L.: On the physics of high altitude lightning. Geophys. Res. Lett. 22, 85–91 (1995)Google Scholar
  102. 102.
    Rowland, H.L., Fernsler, R.F., Huba, J.D., Bernhardt, P.A.: Lightning driven EMP in the upper atmosphere. Geophys. Res. Lett. 22, 361–367 (1995)Google Scholar
  103. 103.
    Pasko, V.P., Inan, U.S., Taranenko, Y.N., Bell, T.F.: Heating, ionization and upward discharges in the mesosphere due to intense quasi-electrostatic thunderstorm fields. Geophys. Res. Lett. 22, 365–370 (1995)Google Scholar
  104. 104.
    Pasko, V.P., Inan, U.S., Bell, T.F.: Sprites as luminous columns of ionization produced by quasi-electrostatic thunderstorm fields. Geophys. Res. Lett. 23, 649–655 (1996)Google Scholar
  105. 105.
    Pasko, V.P., Inan, U.S., Bell, T.F.: Blue jets produced by quasi-electrostatic pre-discharge thunderstorm fields. Geophys. Res. Lett. 23, 301–307 (1996)Google Scholar
  106. 106.
    Pasko, V.P., Inan, U.S., Bell, T.F., Taranenko, Y.N.: Sprites produced by quasi-electrostatic heating and ionization in the lower ionosphere. J. Geophys. Res. 102, 4529–4539 (1997)Google Scholar
  107. 107.
    Roussel-Dupre, R.A., Gurevich, A.V.: On runaway breakdown and upward propagating discharges. J. Geophys. Res. 101, 2297–2310 (1996)Google Scholar
  108. 108.
    Taranenko, Y.N., Roussel-Dupre, R.A.: High altitude discharges and gamma-ray flashes: a manifestation of runaway air breakdown. Geophys. Res. Lett. 23, 571–576 (1996)Google Scholar
  109. 109.
    Lehtinen, N.G., Walt, M., Inan, U.S., Bell, T.F., Pasko, V.P.: X-ray emission produced by a relativistic beam of runaway electrons accelerated by quasi-electrostatic thundercloud fields. Geophys. Res. Lett. 23, 2645–2652 (1996)Google Scholar
  110. 110.
    Franz, R.C., Nemzek, R.J., Winckler, J.R.: Television image of a large upward electric discharge above a thunderstorm system. Science 249, 48–54 (1990)Google Scholar
  111. 111.
    Sentman, D.D., Wescott, E.M., Osborne, D.L., Hampton, D.L., Heavner, M.J.: Preliminary results from the Sprites94 campaign: red sprites. Geophys. Res. Lett. 22, 1205–1211 (1995)Google Scholar
  112. 112.
    Sentman, D.D., Wescot, E.M.: Observation of upper atmosphere optical flashes recorded from an aircraft. Geophys. Res. Lett. 20, 2857–2864 (1993)Google Scholar
  113. 113.
    Sentman, D.D., Wescott, E.M.: Red sprites and blue jets. Geophysical Institute Video Production, University of Alaska, Fairbanks (1994)Google Scholar
  114. 114.
    Vaughan, O.H., Blakeslee, R.J., Boeck, W.L., Vonnegut, B., Brook, M., McKune, J.: A cloud-to-space lightning as recorded by the space shuttle payload-bay TV cameras. Mon. Weather Rev. 120, 1459–1465 (1992)Google Scholar
  115. 115.
    Wescott, E.M., Sentman, D.D, Heavner, M.J, Hampton, D.L.: Blue starters, discharges above an intense thunderstorm over Arkansas, July 1, 1994. In: Proceedings of the EOS Transactions. AGU, 1995 Fall Meeting, 76, F104 (1995)Google Scholar
  116. 116.
    Picard, R.H., Inan, U.S., Pasko, V.P., Winick, J.R., Wintersteiner, P.P.: Infrared glow above thunderstorms. Geophys. Res. Lett. 24, 2635–2643 (1997)Google Scholar
  117. 117.
    Parrot, M., Berthelier, J.J., Lebreton, J.P., Treumann, R., Rauch, J.L.: DEMETER observation of EM emissions related to thunderstorms. Space Sci. Rev. 137, 511–519 (2008). doi:10.1007/s11214-008-9347-yGoogle Scholar
  118. 118.
    Berthelier, J.J., Malingre, M., Pfaff, R., Seran, E., Pottelette, R., Lebreton, J.P., Parrot, M.: Lightning – induced plasma turbulence and ion heating in equatorial ionospheric depletion. Nat. Geosci. (2008). doi:10.1038/ngeo109Google Scholar
  119. 119.
    Inan, U.S., Carpenter, D.L.: Lightning-induced electron precipitation events observed at L 2.4 as phase and amplitude perturbations on subionospheric VLF signals. J. Geophys. Res. 92, 3293–3299 (1987)Google Scholar
  120. 120.
    Clilverd, M.A., Rodger, C.J., Nunn, D.: Radiation belt electron precipitation fluxes associated with lightning. J. Geophys. Res. 109, A12208 (2004). doi:10.1029/2004JA010644Google Scholar
  121. 121.
    Inan, U.S., Piddyachiy, D., Peter, W.B., Sauvaud, J.A., Parrot, M.: DEMETER satellite observation of lightning-induced electron precipitation. Geophys. Res. Lett. 34, L07103 (2007). doi:10.1029/2006GL029238Google Scholar
  122. 122.
    Jones, T.B., Davis, K., Wieder, B.: Observation of D-region modifications at low and very low frequencies. Nature 238, 33–37 (1972)Google Scholar
  123. 123.
    Barr, R., Rietveld, M.T., Kopka, H., Stubbe, P.: Effects of heated patch of auroral ionosphere on VLF radio wave propagation. Nature 309, 534–538 (1984)Google Scholar
  124. 124.
    Barr, R., Rietveld, M.T., Kopka, H., Stubbe, P., Nielsen, E.: Extra-low-frequency radiation from the polar electrojet antenna. Nature 317, 155160 (1985)Google Scholar
  125. 125.
    Bell, T.F., Inan, U.S., Danielson, M., Cummer, S.: VLF signatures of ionospheric heating by HIPAS. In: Goodmaned, J.M. (ed.) Proceedings of the 1993 Ionospheric Effects Symposium, pp. 622–628. SRI International, Arlington, VA (1993)Google Scholar
  126. 126.
    Stubbe, P., Kopka, H., Rietveld, M.T., Dowden, R.L.: ELF and VLF generation by modulated heating of the current carrying lower ionosphere. J. Atmos. Terr. Phys. 44, 1123–1128 (1982)Google Scholar
  127. 127.
    Ferrano, A.J., Lee, H.S., Allshouse, R., Carroll, K., Lunnen, R., Collins, T.: Characteristics of ionospheric ELF radiation generated by HF heating. J. Atmos. Terr. Phys. 46, 855–863 (1984)Google Scholar
  128. 128.
    Barr, R., Stubbe, P., Rietveld, M.T., Kopka, H.: ELF and VLF signals radiated by the “polar electrojet antenna”: experimental results. J. Geophys. Res. 91, 4451–4462 (1986)Google Scholar
  129. 129.
    Barr, R., Stubbe, P., Kopka, H.: Long-range detection of VLF radiation produced by heating the auroral electrojet. Radio Sci. 26, 871–989 (1991)Google Scholar
  130. 130.
    Papadopoulos, K., Wallace, T., McCarrick, M., Milikh, G.M., Yang, X.: On the efficiency of ELF/VLF generation using HF heating of the auroral electrojet. Plasma Phys. Rep. 29, 561–567 (2003)Google Scholar
  131. 131.
    Pashin, A.B., Mochalov, A.A., Bosinger, T., Rietveld, M.T.: Physics of auroral phenomena. In: Proceedings of the XXVI Annual Seminar, Apatity, pp. 111–114. Kola Science Centre, Russian Academy of Science (2003)Google Scholar
  132. 132.
    Kimura, I., Stubbe, P., Rietveld, M.T., Barr, R., Ishida, K., Kasahara, Y., Yagitani, S., Nagano, I.: Collaborative experimentsby Akebono satellite, Tromso ionospheric heater, and European incoherent scatter radar. Radio Sci. 29, 23–29 (1994)Google Scholar
  133. 133.
    Ferrano, A.J., Lee, H.S., Allshouse, R., Carroll, K., Tomko, A.A., Kelly, F.J., Joiner, R.G.: VLF/ELF radiation from the ionospheric dynamo current system modulated by powerful HF signals. J. Atmos. Terr. Phys. 44, 1113–1119 (1982)Google Scholar
  134. 134.
    McCarrick, M.J., Sentman, D.D., Wong, A.Y., Wuerker, R.F., Chouinard, B.: Excitation of ELF waves in the Schumann resonance range by modulated HF heating of the polar electrojet. Radio Sci. 25, 1291–1298 (1990)Google Scholar
  135. 135.
    Villasenor, J., Wong, A.Y., Song, B., Pau, J., McCarrick, M., Sentman, D.: Comparison of ELF/VLF generation modes in the ionosphere by the HIPAS heater array. Radio Sci. 31, 211–217 (1996)Google Scholar
  136. 136.
    Kimura, I., Wong, A., Chouinard, B., McCarrick, M., Okada, T.: Satellite and ground observations of HIPAS VLF modulation. Geophys. Res. Lett. 18, 309–314 (1991)Google Scholar
  137. 137.
    Milikh, G.M., Papadopoulos, K., McCarrick, M., Preston, J.: ELF emissions generated by the HAARP HF-heater using varying frequencies and polarization. Izvestiya VUZov, Radiofizika 42, 728–733 (1999)Google Scholar
  138. 138.
    Platino, M., Inan, U.S., Bell, T.F., Parrot, M., Kennedy, E.J.: DEMETER observations of ELF waves injected with the HAARP HF transmitter. Geophys. Res. Lett. 33, L16101 (2006)Google Scholar
  139. 139.
    Moore, R.C.: ELF/VLF wave generation by modulated HF heating of the auroral electrojet. Ph.D. thesis, Stanford University, Stanford, CA (2007)Google Scholar
  140. 140.
    Rapoport, V.O., Frolov, V.L., Komrakov, G.P. Markov, G.A., Belov, A.S., Parrot, M., Rauch, J.L.: Some results of measuring the characteristics of electromagnetic and plasma disturbances stimulated in the outer ionosphere by high-power high-frequency radio emission from the “Sura” facility. Radiophys. Quantum Electron. 50, 645–651 (2007)Google Scholar
  141. 141.
    Frolov, V., Komrakov, G., Rapoport, V., Ryzhov, N., Belov, A., Markov, G., Parrot, M., Rauch, J., Reitveld, M.: Phenomena observed by HF heating of middle – and high-latitude ionosphere and registered with DEMETER instruments. Geophys. Res. Abstracts 10, EGU 2008-A-03872 (2008a)Google Scholar
  142. 142.
    Zhulin, I.A., Lyakhov, S.B., Majorov, A.D., Managadze, G.G., Mogilevsky, M.M., Chmyrev, V.M.: Artificially stimulated electron precipitation from the Earth’s magnetosphere. Dokl. Akad. Nauk SSSR 230, 1073–1077 (1976)Google Scholar
  143. 143.
    Imhof, W.L., Reagan, J.B., Voss, H.D., Gaines, E.E., Datlowe, D.W., Mobilia, J., Helliwell, R.A., Inan, U.S., Ratsufrakis, J.P.: Direct observation of radiation belt electrons precipitated by the controlled injection of VLF signals from a ground-based transmitter. Geophys. Res. Lett. 10, 361–366 (1983)Google Scholar
  144. 144.
    Imhof, W.L., Reagan, J.B., Voss, H.D., Gaines, E.E., Datlowe, D.W., Mobilia, J., Helliwell, R.A., Inan, U.S., Ratsufrakis, J.P.: The modulated precipitation of radiation belt electrons by controlled signals from VLF transmitter. Geophys. Res. Lett. 10, 615–620 (1983)Google Scholar
  145. 145.
    Inan, U.S., Chang, H.C., Helliwell, R.A., Imhof, W.L., Reagan, J.B., Walt, M.: Precipitation of radiation belt electrons by man-made waves: a comparison between theory and measurement. J. Geophys. Res. 90, 359–370 (1985)Google Scholar
  146. 146.
    Kovrazhkin, R.A., Mogilevsky, M.M., Bosqued, J.-M., Galperin, Y.I., Dzhordzhio, N.V., Lisakov, Y.V., Molchanov, O.A., Reme, A.: Observation of particle precipitation from the ring-current zone stimulated by powerful ground-based VLF transmitter. JETP Lett. 38, 397–402 (1983)Google Scholar
  147. 147.
    Kovrazhkin, R.A., Mogilevsky, M.M., Molchanov, O.A., Galperin, Y.I., Dzhordzhio, N.V., Lisakov, Y.V., Bosqued, J.-M., Reme, A.: Direct detection of the precipitation of ring current electrons and protons stimulated by artificial VLF emission. Geophys. Res. Lett. 11, 705–709 (1984)Google Scholar
  148. 148.
    Sauvaud, J.-A., Maggiolo, R., Jacquey, C., Parrot, M., Berthelier, J.-J., Gamble, R.J.: Radiation belt electron precipitation due to VLF transmission. Satellite observations. Geophys. Res. Lett. 35, L09101 (2008). doi:10.1029/2008GL033194 Google Scholar
  149. 149.
    Inan, U.S., Rodriguez, J.V., Lev-Tov, S., Oh, J.: Ionospheric modification with a VLF transmitter. Geophys. Res. Lett. 19, 2071–2077 (1992)Google Scholar
  150. 150.
    Barr, R., Rietveld, M.T., Stubbe, P., Kopka, H.: The diffraction of VLF radio waves by a patch of ionosphere illuminated by a powerful HF transmitter. J. Geophys. Res. 90, 2861–2869 (1985)Google Scholar
  151. 151.
    Taranenko, Y.N., Inan, U.S., Bell, T.F.: VLF-HF heating of the lower ionosphere and ELF wave generation. Geophys. Res. Lett. 19, 61–66 (1992)Google Scholar
  152. 152.
    Rodriguez, J.V.: Modification of the Earth’s ionosphere by very-low-frequency transmitter. Ph.D. thesis, Stanford University, Stanford, CA (1994)Google Scholar
  153. 153.
    Rodriguez, J.V., Inan, U.S.: Electron density changes in the nighttime D region due to heating by very-low-frequency transmitter. Geophys. Res. Lett. 21, 93–98 (1994)Google Scholar
  154. 154.
    Likhter, Ya.I., Molchanov, O.A., Chmyrev, V.M.: Modulation of spectrum and amplitude of low-frequency signal in the magnetosphere. JETP Lett. 14, 325–327 (1971)Google Scholar
  155. 155.
    Bell, T.F., James, H.G., Inan, U.S., Katsufrakis, J.P.: The apparent spectral broadening of VLF transmitter signals during trans-ionospheric propagation. J. Geophys. Res. 88, 4813–4818 (1983)Google Scholar
  156. 156.
    Titova, E.E., Di, V.I., Yurov, V.E., Raspopov, O.M., Trakhtengerts, V.Y., Jiricek, F., Triska, P.: Interaction between VLF waves and turbulent ionosphere. Geophys. Res. Lett. 11, 323–327 (1984)Google Scholar
  157. 157.
    Bell, T.F., Inan, U.S., Lauben, D., Sonwalkar, V.S., Helliwell, R.A., Sobolev, YaP, Chmyrev, V.M., Gonzalez, S.: DE-1 and COSMOS-1809 observations of lower hybrid waves excited by VLF whistler mode waves. Geophys. Res. Lett. 21, 653–656 (1994)Google Scholar
  158. 158.
    Taranenko, YuN, Chmyrev, V.M.: Interaction between whistler waves and ion-cyclotron waves in magnetospheric plasma. Radiophys. Quant. Electron. 29, 373–376 (1986)Google Scholar
  159. 159.
    Taranenko, YuN, Chmyrev, V.M.: Parametric interaction of whistler and electromagnetic ion-cyclotron waves in ionospheric plasma. Geom. Aeron. 29, 459–464 (1989)Google Scholar
  160. 160.
    Chmyrev, V.M., Draganov, A.B., Taranenko, YuN, Teodosiev, D.: Acceleration of particles in the upper ionosphere and the magnetosphere due to decay interactions of whistlers, part 1. Phys. Scr. 43, 495–502 (1991)Google Scholar
  161. 161.
    Chang, T., Crew, G.B., Hershkowtz, N., Jasper, J.R., Retterer, J.M., Winningham, J.D.: Transverse acceleration of oxygen ions by electromagnetic ion cyclotron resonance with broad band left hand polarized waves. Geophys. Res. Lett. 13, 636–640 (1986)Google Scholar
  162. 162.
    Frazer-Smith, A.C., Cole, C.A.: Initial observations of the artificial stimulation of ULF pulsations by pulsed VLF transmissions. Geophys. Res. Lett. 2, 146–149 (1975)Google Scholar
  163. 163.
    Chmyrev, V.M., Roldugin, V.K., Zhulin, I.A., Mogilevsky, M.M., Di, V.I., Koshelevsky, V.K., Bushmarin, V.A., Raspopov, O.M.: Artificial injection of very low-frequency (VLF) waves into the ionosphere and the magnetosphere of the Earth. JETP Lett. 23, 409–412 (1976)Google Scholar
  164. 164.
    Chmyrev, V.M., Taranenko, Yu.N, Kopytenko, Yu.A., Voronov, P.V., Draganov, A.B.: Observation of ULF pulsations correlated with transmission of VLF waves and amplification of ULF waves by O+ ion conics in the equatorial magnetosphere. Paper presented at AGU Chapman Conference on auroral plasma dynamics, Minneapolis, MN, 21–25 Oct 1991Google Scholar
  165. 165.
    Sorokin, V.M., Chmyrev, V.M.: Electrodynamic model of ionospheric precursors of earthquakes and certain types of disasters. Geom. Aeron. 42, 821–830 (2002)Google Scholar
  166. 166.
    Molchanov, O.A., Hayakawa, M.: VLF transmitter earthquake precursors influenced by a change in atmospheric electric field. In: Proceedings of 10th International Conference on Atmospheric Electricity, pp. 428–431. Osaka, Japan, 10–14 June 1996Google Scholar
  167. 167.
    Boyarchuk, K.A., Lomonosov, A.M, Pulinets, S.A., Hegai, V.V.: Variability of the Earth’s atmospheric electric field and ion-aerosols kinetics in the troposphere. Studia Geophys. Geod. 42, 197–206 (1998)Google Scholar
  168. 168.
    Sorokin, V.M., Chmyrev, V.M., Yaschenko, A.K.: Theoretical model of DC electric field formation in the ionosphere stimulated by seismic activity. J. Atmos. Solar-Terr. Phys. 67, 1259–1268 (2005)Google Scholar
  169. 169.
    Sorokin, V.M., Yaschenko, A.K.: Perturbation of the conductivity and electric field in the Earth–ionosphere layer over preparing earthquake. Geom. Aeron. 39, 100–106 (1999)Google Scholar
  170. 170.
    Sorokin, V., Yaschenko, A.: Electric field disturbance in the Earth–ionosphere layer. Adv. Space Res. 26, 1219–1225 (2000)Google Scholar
  171. 171.
    Sorokin, V.M., Yaschenko, A.K., Hayakawa, M.: A perturbation of DC electric field caused by light ion adhesion to aerosols during the growth in seismic-related atmospheric radioactivity. Nat. Hazards Earth Syst. Sci. 7, 155–163 (2007)Google Scholar
  172. 172.
    Sorokin, V.M., Chmyrev, V.M., Isaev, N.V.: A generation model of mall-scale geomagnetic field-aligned plasma inhomogeneities in the ionosphere. J. Atmos. Solar-Terr. Phys. 60, 1331–1342 (1998)Google Scholar
  173. 173.
    Sorokin, V.M., Chmyrev, V.M.: On acoustic gravity waves instability by electric field in the ionosphere. Geom. Aeron. 39, 38–45 (1999)Google Scholar
  174. 174.
    Piddington, J.H.: The transmission of geomagnetic disturbances through the atmosphere and interplanetary space. Geophys. J. 2, 173–189 (1959)Google Scholar
  175. 175.
    Chmyrev, V.M., Sorokin, V.M., Pokhotelov, O.A.: Theory of small scale plasma density inhomogeneities and ULF/ELF magnetic field oscillations excited in the ionosphere prior to earthquakes. In: Hayakawa, M. (ed.) Atmospheric and Ionospheric Electromagnetic Phenomena Associated with Earthquakes, pp. 759–776. Terrapub, Tokyo (1999)Google Scholar
  176. 176.
    Lyatsky, V.B., Maltsev, YuP: Magnetosphere–Ionosphere Coupling. Nauka, Moscow (1983)Google Scholar
  177. 177.
    Molchanov, O.A., Mazhaeva, O.A., Golyavin, A.N., Hayakawa, M.: Observation by Intercosmos-24 satellite of ELF–VLF electromagnetic emissions associated with earthquakes. Ann. Geophys. 11, 431–440 (1993)Google Scholar
  178. 178.
    Chmyrev, V.M., Sorokin, V.M., Shklyar, D.R.: VLF transmitter signals as a possible tool for detection of seismic effects on the ionosphere. J. Atmos. Solar-Terr. Phys. 70, 2053–2060 (2008)Google Scholar
  179. 179.
    Frazer-Smith, A.C., Bernardi, A., McGill, P.R., Ladd, M.E., Helliwell, R.A., Villard Jr., O.G.: Low-frequency magnetic field measurements near epicentre of the MS 7.1 Loma Prieta earthquake. Geophys. Res. Lett. 17, 1465–1468 (1990)Google Scholar
  180. 180.
    Kopytenko, Y.A., Matiashvili, T.G., Voronov, P.M., Kopytenko, E.A., Molchanov, O.A.: Detection of ultra-low-frequency emissions connected with the Spitak earthquake and its aftershock activity, based on geomagnetic pulsations data at Dusheti and Vardzia observatories. Phys. Earth Planet. Inter. 77, 85–89 (1993)Google Scholar
  181. 181.
    Hayakawa, M., Kawate, R., Molchanov, O.A., Yumoto, K.: Results of ultra-low-frequency magnetic field measurements during the Guam earthquake of August 1993. Geophys. Res. Lett. 23, 241–250 (1996)Google Scholar
  182. 182.
    Sorokin, V.M., Chmyrev, V.M., Yaschenko, A.K.: Ultra low frequency oscillations of magnetic field on the Earth’s surface generated by irregularities of the ionosphere conductivity. Geom. Aeron. 41, 327–331 (2001)Google Scholar
  183. 183.
    Sorokin, V.M., Chmyrev, V.M., Yaschenko, A.K.: Ionospheric generation mechanism of geomagnetic pulsations observed on the Earth’s surface before earthquake. J. Atmos. Solar-Terr. Phys. 64, 21–29 (2003)Google Scholar
  184. 184.
    Sorokin, V.M.: Wave processes in the ionosphere related to geomagnetic field. Izvestiya VUZov, Radiofizika. 31, 1169–1179 (1988)Google Scholar
  185. 185.
    Sorokin, V.M., Yaschenko, A.K.: Propagation of the Pi2 pulsations in the low ionosphere. Geom. Aeron. 28, 655–660 (1988)Google Scholar
  186. 186.
    Sorokin, V.M., Pokhotelov, O.A.: Gyrotropic waves in the mid-latitude ionosphere. J. Atmos. Solar-Terr. Phys. 67, 921–930 (2005)Google Scholar
  187. 187.
    Rauscher, E.A., Van Bise, W.I.: The relationship of extremely low frequency electromagnetic and magnetic fields associated with seismic and volcanic natural activity and artificial ionospheric disturbances. In: Hayakawa, M. (ed.) Atmospheric and Ionospheric Electromagnetic Phenomena Associated with Earthquakes, pp. 459–487. Terrapub, Tokyo (1999)Google Scholar
  188. 188.
    Sorokin V. M., Hayakawa, M.: On the generation of narrow-banded ULF/ELF pulsations in the lower ionospheric conducting layer. J. Geophys. Res. 113, A06306 (2008). doi:10.1029/2008JA013094 Google Scholar
  189. 189.
    Sorokin, V.M., Fedorov, E.N., Schekotov, AYu, Molchanov, O.A., Hayakawa, M.: Depression of the ULF geomagnetic pulsation related to ionospheric irregularities. Ann. Geophys. 47, 191–198 (2004)Google Scholar
  190. 190.
    Sorokin, V.M., Chmyrev, V.M.: Modification of the Ionosphere by Seismic Related Electric Field. In: Hayakawa, M. (ed.) Atmospheric and ionospheric electromagnetic phenomena associated with earthquakes, pp. 805–818. Terrapub, Tokyo (1999)Google Scholar
  191. 191.
    Kim, V.P., Khegay, V.V., Nikiforova, V.V.: On possible perturbation of the night ionosphere E region over large scale tectonic fault. Izvestiya RAN, Fizika Zemli. 7, 35–39 (1995)Google Scholar
  192. 192.
    Bowhill, S.A.: The formation of the daytime peak of the ionospheric F2-layer. J. Atmos. Terr. Phys. 24, 503–520 (1962)Google Scholar
  193. 193.
    Ondoh, T., Hayakawa, M.: Seismo discharge model of anomalous sporadic E ionization before great earthquakes. In.: Hayakawa, M., Molchanov, O.A. (eds.) Seismo electromagnetics: litosphere–atmosphere–ionosphere coupling, pp. 385-390. Terrapub, Tokyo (2002)Google Scholar
  194. 194.
    Ondoh, T.: Anomalous sporadic-E layers observed before M7.2 Hyogo-ken Nanbu earthquake; Terrestrial gas emanation model. Adv. Polar Upper Atmos. Res. 17, 96–108 (2003)Google Scholar
  195. 195.
    Yokoyama, T., Yamamoto, M., Pfaff, R.F., Fukao, S., Iwagami, N.: SEEK-2 campaign measurement of the electric field in the E-region and its association with the QP echoes. In: Abstracts for the 112th SGEPSS Fall Meeting, pp. 12–13. University of Electro-Communications, Tokyo (2002)Google Scholar
  196. 196.
    Sorokin, V.M., Yaschenko, A.K., Hayakawa, M.: Formation mechanism of the lower ionosphere disturbances by the atmosphere electric current over a seismic region. J. Atmos. Solar-Terr. Phys. 68, 1260–1268 (2006)Google Scholar
  197. 197.
    Fuks, I.M., Shubova, R.S.: Anomaly in ELF signals as response to the low atmosphere processes. Geom. Aeron. 34, 130–134 (1995)Google Scholar
  198. 198.
    Martynenko, S.I., Fuks, I.M., Shubova, R.S.: Ionospheric electric-field influence on the parameters of VLF signals connected with nuclear accidents and earthquakes. J. Atmos. Electr. 15, 259–269 (1996)Google Scholar
  199. 199.
    Schunk, R.W., Nagy, A.F.: Ionospheres of terrestrial planets. Rev. Geophys. Space Phys. 18, 813–852 (1980)Google Scholar
  200. 200.
    Parrot, M.: Statistical study of ELF/VLF emissions recorded by a low-altitude satellite during seismic events. J. Geophys. Res. 99, 23339–23347 (1994)Google Scholar
  201. 201.
    Sorokin, V.M., Chmyrev, V.M., Hayakawa, M.: The formation of ionosphere–magnetosphere ducts over the seismic zone. Planet. Space Sci. 48, 175–182 (2000)Google Scholar
  202. 202.
    Hayakawa, M.T., Yoshino, T., Morgounov, V.A.: On the possible influence of seismic activity on the propagation of magnetospheric whistlers at low latitudes. Phys. Earth Planet. Inter. 77, 97–102 (1993)Google Scholar
  203. 203.
    Sorokin, V.M., Cherny, G.P.: It is quite possible to monitor typhoons from outer space. Aerospace Courier. N. 3, pp. 84–87 (1999)Google Scholar
  204. 204.
    Isaev, N.V., Sorokin, V.M., Chmyrev, V.M., Serebryakova, O.N.: DC electric fields in the ionosphere related to sea storms and typhoons. Geom. Aeron. 42, 670–676 (2002)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • V. M. Sorokin
    • 1
  • V. M. Chmyrev
  1. 1.Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave PropagationRussian Academy of Sciences, IZMIRANMoscow RegionRussia

Personalised recommendations