Advertisement

Formation of Aerosols in the Atmosphere

  • A. A. Lushnikov
  • V. A. Zagaynov
  • Yu. S. Lyubovtseva
Chapter
Part of the Physics of Earth and Space Environments book series (EARTH)

Abstract

Atmospheric aerosol is one of the most important factors affecting the Earth’s climatic and weather conditions. The study of the mechanisms of formation and evolution of atmospheric aerosols is of primary importance for predictions of the climatic changes on our planet. We hope that this short overview of the modern state of art in aerosol science will be of use to all those who are involved to the study of atmospheric processes that form the Earth’s climate. We introduce the readers to the basics of physical chemistry of aerosols. Special attention is given to the latest achievements in the theory of particle formation and their subsequent growth.

Keywords

Aerosols Nucleation Condensation Growth 

References

  1. 1.
    Friedlander, S.K.: Smokes, Haze, Mist. Wiley, New York/London (2000)Google Scholar
  2. 2.
    Hidy, J.M., Brock, J.R.: The dynamics of aerocolloidal systems. Pergamon, Oxford (1970)Google Scholar
  3. 3.
    Seinfeld, J.H., Pandis, S.N.: Atmospheric Chemistry and Physics. Wiley, New York (1998)Google Scholar
  4. 4.
    Taylor, F.W.: The greenhouse effect and climate change revisited. Rep. Prog. Phys. 65, 1 (2002)CrossRefGoogle Scholar
  5. 5.
    Graedel, T.E., Crutzen, P.J.: The changing atmosphere. Sci. Am. 261, 58 (1989)CrossRefGoogle Scholar
  6. 6.
    Charlson, R.J., Schwartz, S.E., Hales, J.M., Cess, R.D., Coslkey Jr., J.A., Hansen, J.E., Hofmann, D.J.: Climate forcing by anthropogenic aerosols. Science 255, 423 (1992)CrossRefGoogle Scholar
  7. 7.
    Charlson, R.J., Heitzenberg, R.L.: Aerosol forcing of climate. Wiley, New York (1995)Google Scholar
  8. 8.
    Pruppacher, H.R., Klett, J.D.: Microphysics of clouds and precipitation. Reidel, Dordrecht, The Netherlands (1991)Google Scholar
  9. 9.
    Fuchs, N.A.: Mechanics of aerosols. Pergamon, New York (2002)Google Scholar
  10. 10.
    Reist, P.C.: Introduction to aerosol science. Macmillan, New York (1984)Google Scholar
  11. 11.
    Williams, M.M.R., Loyalka, S.K.: Aerosol science, theory and practice. Pergamon, Oxford (1991)Google Scholar
  12. 12.
    Kulmala, M., Vehkmäki, H., Petäjä, T., Dal Maso, M., Lauri, A., Kerminen, V.-M., Birmili, W., McMurry, P.H.: Formation and growth rates of ultrafine atmospheric particles: a review of observations. J. Aerosol Sci. 35, 143–176 (2004)CrossRefGoogle Scholar
  13. 13.
    Alpin, K.L., Harrison, R.G.: A computer controlled Gerdien atmospheric ion counter. Rev. Sci. Instrum. 71, 3037 (2000)CrossRefGoogle Scholar
  14. 14.
    Eisele, F.L., Hanson, D.R.: First measurements of prenucleation molecular clusters. J. Phys. Chem. 104, 830–836 (2000)Google Scholar
  15. 15.
    Gamera-Castano, M., de la Mora, F.: A condensation nucleus counter (CNC) sensitive to singly charged sub-nanometer particles. J. Aerosol Sci 31, 757 (2000)CrossRefGoogle Scholar
  16. 16.
    Aitchison, J., Brown, J.A.: The lognormal distribution function. Cambridge University Press, Cambridge (1957)Google Scholar
  17. 17.
    Deirmenjian, D.: Electromagnetic scattering on spherical polidispersions. Elsevier, New York (1969)Google Scholar
  18. 18.
    Abraham, F.F.: Homogeneous nucleation theory. Academic, New York (1974)Google Scholar
  19. 19.
    Kaschiev, D.: Nucleation: Basic principles and application. Butterworth, Heinemann (2000)Google Scholar
  20. 20.
    Laaksonen, A., Talanquer, V., Oxtoby, D.W.: Nucleation: measurements, theory, and atmospheric applications. Annu. Rev. Phys. Chem. 46, 189 (1995)CrossRefGoogle Scholar
  21. 21.
    Anisimov, M.A.: Nucleation: theory and experiment. Russ. Chem. Rev. 72, 591 (2003)CrossRefGoogle Scholar
  22. 22.
    Hill, T.: Statistical mechanics. Principles and selected applications. McGraw-Hill, New York (1956)Google Scholar
  23. 23.
    Gross, D.H.E.: Microcanonical thermodynamics. World Scientific, Singapore (2001)CrossRefGoogle Scholar
  24. 24.
    Landau, L.D., Lifshits, E.M.: Statistical physics. Nauka, Moscow (1998)Google Scholar
  25. 25.
    Lushnikov, A.A., Kulmala, M.: Dimer in nucleating vapor. Phys. Rev. E58, 3157 (1998)Google Scholar
  26. 26.
    Lushnikov, A.A., Kulmala, M.: Nucleation controlled formation and growth of disperse particles. Phys. Rev. Lett. 81, 5165 (1998)CrossRefGoogle Scholar
  27. 27.
    Castleman Jr., A.W., Holland, P.M., Keesee, R.G.: The properties of ion clusters and their relationship to heteromolecular nucleation. J. Chem. Phys. 68, 1760 (1978)CrossRefGoogle Scholar
  28. 28.
    Yu, F., Turco, R.P.: From molecular clusters to nanoparticles: role of ambient ionization in tropospheric aerosol formation. J. Geophys. Res. 106, 4797–4814 (2001)CrossRefGoogle Scholar
  29. 29.
    Svensmark, H.: Influence of cosmic rays on Earth’s climate. Phys. Rev. Lett. 81, 5027 (1998)CrossRefGoogle Scholar
  30. 30.
    Reiss, H., Tabahzade, A., Talbot, J.: Molecular theory of vapor phase nucleation: the physically consistent cluster. J. Chem. Phys. 92, 1266 (1990)CrossRefGoogle Scholar
  31. 31.
    Ford, I.J., Harris, S.A.: Molecular cluster decay viewed as escape from a potential of mean force. J. Chem. Phys. 120, 4428 (2004)CrossRefGoogle Scholar
  32. 32.
    Fuchs, N.A., Sutugin, A.G.: High–dispersed aerosols. In: Hidy, G.M., Brock, J.R. (eds.) Topics in current aerosol research, vol. 2, pp. 1–60, Pergamon, Oxford (1971)Google Scholar
  33. 33.
    Lushnikov, A.A., Kulmala, M.: Flux–matching theory of particle charging. Phys. Rev. E70, 046413 (2004)Google Scholar
  34. 34.
    Lushnikov, A.A., Kulmala, M.: Charging of aerosol particles in the near free-molecule regime. Eur. Phys. J. D29, 345 (2004)Google Scholar
  35. 35.
    Arnold, F.: Multi-ion complexes in the stratosphere – implication for trace gases and aerosols. Nature 284, 610 (1980)CrossRefGoogle Scholar
  36. 36.
    Arnold, F., Stilp, T., Busen, R., Shauman, U.: Jet engine exhaust chemi-ion measurements: implication for gaseous SO2 and H2SO4. Atmos. Environ. 32, 3073 (1998)CrossRefGoogle Scholar
  37. 37.
    Castleman Jr., A.V.: Nucleation and molecular clustering about ions. Adv. Colloid Interface Sci. 10, 73 (1979)CrossRefGoogle Scholar
  38. 38.
    Horrak, U., Salm, J., Tammet, H.: Burst of intermediate ions in atmospheric air. J. Geophys. Res. 103, 13909 (1998)CrossRefGoogle Scholar
  39. 39.
    Karher, B., Yu, F., Schroeder, F.P., Turco, R.P.: Ultrafine aerosol particles in aircraft plumes: analysis of growth mechanisms. Geophys. Res. Lett. 25, 2793 (1998)CrossRefGoogle Scholar
  40. 40.
    Raes, F., Augustin, J., Vandingenen, R.: The role of ion induced aerosol formation in the lower atmosphere. J. Aerosol Sci. 17, 466 (1986)CrossRefGoogle Scholar
  41. 41.
    Turco, R.P., Zhao, J.-X., Yu, F.: A new source of tropospheric aerosols: ion–ion recombination. Geophys. Res. Lett. 25, 635 (1998)CrossRefGoogle Scholar
  42. 42.
    Yu, F., Turco, R.P.: The role of ions in the formation and evolution of particles in aircraft plumes. Geophys. Res. Lett. 24, 1927 (1997)CrossRefGoogle Scholar
  43. 43.
    Yu, F., Turco, R.P.: Ultrafine aerosol formation via ion-mediated nucleation. Geophys. Res. Lett. 27, 883 (2000)CrossRefGoogle Scholar
  44. 44.
    Yu, F., Turco, R.P.: On the contribution of lightning to ultrafine aerosol formation. Geophys. Res. Lett. 27, 1453 (2000)Google Scholar
  45. 45.
    Lushnikov, A.A., Kulmala, M.: A kinetic theory of particle charging in the free-molecule regime. J. Aerosol Sci. 39, 1069 (2005)CrossRefGoogle Scholar
  46. 46.
    Marlow, W.H.: Derivation of the aerosol collision rates for singular attractive contact potentials. J. Chem. Phys. 73, 6284 (1980)CrossRefGoogle Scholar
  47. 47.
    Pui, D.Y.H., Fruin, S., McMurry, P.H.: Unipolar charging of fine particles. Aerosol Sci Technol. 8, 173 (1988)CrossRefGoogle Scholar
  48. 48.
    Hoppel, W.A. Frick, G.M.: Ion-aerosol attachment coefficients and the steady-state charge distribution on aerosols in a bipolar ion environment. Aerosol Sci. Technol. 5, 1 (1986)CrossRefGoogle Scholar
  49. 49.
    Friedlander, S.K.: Dynamics of aerosol formation by chemical reactions. Ann. N Y Acad. Sci. 354, 1 (1983)Google Scholar
  50. 50.
    Prastinis, S.E., Friedlander, S.K., Pearlstein, A.J.: Aerosol reactor theory: stability and dynamics of a continuous stirred tank aerosol reactor. AiChE J. 32, 177 (1986)CrossRefGoogle Scholar
  51. 51.
    McGraw, R., Marlow, W.H.: The multistate kinetics of nucleation in the presence of an aerosol. J. Chem. Phys. 78, 2542 (1983)CrossRefGoogle Scholar
  52. 52.
    McMurry, P.H., Wilson, J.C.: Growth laws for formation of secondary ambient aerosols: implication for chemical conversion mechanisms. Atmos. Environ. 16, 121 (1982)CrossRefGoogle Scholar
  53. 53.
    Lushnikov, A.A., Kulmala, M.: Source enhanced condensation in monocomponent disperse systems. Phys. Rev. E52, 1658 (1995)Google Scholar
  54. 54.
    Lushnikov, A.A., Kulmala, M., Arstila, H., Zapadinskii, E.L.: Source enhanced condensation of a single component vapor in the transition regime. J. Aerosol Sci. 27, 853 (1996)CrossRefGoogle Scholar
  55. 55.
    Pratsinis, S.E.: Simultaneous nucleation, condensation and coagulation in aerosol reactors. J. Colloid Interface Sci. 124, 416 (1988)CrossRefGoogle Scholar
  56. 56.
    Jacobson, M.Z., Turko, R.P.: Simulating condensational growth, evaporation and coagulation of aerosols using a combined moving and stationary size grid. Aerosol Sci. Technol. 22, 73 (1995)CrossRefGoogle Scholar
  57. 57.
    Tsang, T.H., Rao, A.: Comparison of different numerical schemes for condensational growth of aerosols. Aerosol Sci. Technol. 9, 133 (1988)CrossRefGoogle Scholar
  58. 58.
    Warren, D.R., Seinfeld, J.H.: Simulation of aerosol size distribution evolution in systems with simultaneous nucleation, condensation and coagulation. Aerosol Sci. Technol. 4, 31 (1985)CrossRefGoogle Scholar
  59. 59.
    Aikin, A.C., Pesnel, W.D.: Uptake coefficient of charged aerosols – implication for atmospheric chemistry. Geophys. Res. Lett. 25, 1309 (1998)CrossRefGoogle Scholar
  60. 60.
    Davis, E.J.: Transport phenomena with single aerosol particle. Aerosol Sci. Technol. 2, 121 (1983)Google Scholar
  61. 61.
    Davidovits, P., Hu, J.H., Worsnop, D.R., Zahnister, M.S., Kolb, C.E.: Entry of gas molecules into liquids. Faraday Discuss. 100, 65 (1995)CrossRefGoogle Scholar
  62. 62.
    Li, W., Davis, E.J.: Aerosol evaporation in the transition regime. Aerosol Sci. Technol. 25, 11 (1995)Google Scholar
  63. 63.
    Natanson, G.M., Davidovits, P., Worsnop, D.R., Kolb, C.E.: Dynamics and kinetics at the gas–liquid interface. J. Phys. Chem. 100, 13007 (1996)CrossRefGoogle Scholar
  64. 64.
    Shi, B., Seinfeld, J.H.: On mass transport limitation to the rate of reaction of gases in liquid droplets. Atmos. Environ. 25A, 2371 (1991)Google Scholar
  65. 65.
    Aalto, P., Hammeri, K., Becker, S., Weber, R., Salm, J., Mäkelä, J.M., Hoell, C., O’Dowd, C., Karlsson, H., Hansson, H.-C., Väkevä, M., Buzorius, G., Kulmala, M.: Physical haracterization of aerosol particles during nucleation events. Tellus 53B, 344 (2001)Google Scholar
  66. 66.
    Arey, J., Atkinson, R., Aschmann, S.M.: Product study of gas-phase reactions of monoterpenes with the OH radical in the presence of NOx. J. Geophys. Res. 96, 18539 (1990)CrossRefGoogle Scholar
  67. 67.
    Juozaitis, A., Trakumas, S., Girgzdiene, D., Girgzdis, A., Sopauskiene, D., Ulevicius, V.: Investigation of gas-to-particle conversion in the atmosphere. Atmos. Res. 41, 445 (1996)CrossRefGoogle Scholar
  68. 68.
    Boy, M., Kulmala, M.: Nucleation events on the continental boundary layer: influence of physical and meteorological parameters. Atmos. Chem. Phys. 2, 1 (2002)CrossRefGoogle Scholar
  69. 69.
    Lushnikov, A.A., Kulmala, M.: Foreign aerosols in nucleating vapor. J. Aerosol Sci. 31, 651 (2000)CrossRefGoogle Scholar
  70. 70.
    Lushnikov, A.A., Kulmala, M.: Nucleation burst in a coagulating system. Phys. Rev. E62, 4932 (2000)Google Scholar
  71. 71.
    Lushnikov, A.A., Kulmala, M.: Kinetics of nucleation controlled formation and condensational growth of disperse particles. Phys. Rev. E63, 061109 (2001)Google Scholar
  72. 72.
    Griffin, R., Cocker, D.R., Flagan, R., Seinfeld, J.H.: Organic aerosol formation from the oxidation of biogenic hydrocarbons. J. Geophys. Res. 104, 3555 (1999)CrossRefGoogle Scholar
  73. 73.
    Hoffmann, Th, Odum, J., Bowman, F., Collins, D., Klockow, D., Flagan, R., Seinfeld, J.: Formation of organic aerosols from the oxidation of biogenic hydrocarbons. J. Atmos. Chem. 26, 189 (1997)CrossRefGoogle Scholar
  74. 74.
    Kerminen, V.-M., Virkkula, A., Hillamo, R., Wexler, A.S., Kulmala, M.: Secondary organics and atmospheric cloud condensation nuclei production. J. Geophys. Res. 105, 9255 (2000)CrossRefGoogle Scholar
  75. 75.
    Korhonen, H., Lehtinen, K., Kulmala, M.: Multicomponent aerosol dynamic model UHMA: model development and validation. Atmos. Chem. Phys. Discuss. 22, 471 (2004)CrossRefGoogle Scholar
  76. 76.
    Kulmala, M., Pirjola, L., Mäkelä, J.M.: Stable sulfate clusters as a source of new atmospheric particles. Nature 404, 66 (2000)CrossRefGoogle Scholar
  77. 77.
    Lyubovtseva, YuS, Sogacheva, L., Dal-Maso, M., Bonn, B., Keronen, P., Kulmala, M.: Seasonal variations of trace gases, meteorological parameters, and formation of aerosols in boreal forests. Boreal Env. Res. 10, 493 (2005)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • A. A. Lushnikov
    • 1
  • V. A. Zagaynov
  • Yu. S. Lyubovtseva
  1. 1.Karpov Institute of Physical ChemistryMoscowRussia

Personalised recommendations