Skip to main content

Morphological Alterations in Response to Management and Environment

  • Chapter
Physiology of Cotton

Abstract

The morphology of the cotton plant serves two main functions. The first is that it provides photosynthate sources (i.e., leaves) and sinks (i.e., squares, flowers, and bolls). The second function is the plant superstructure (i.e., roots, stems, branches, petioles) upon which the sources and sinks reside, and through which they are interconnected via vascular tissues. Excellent reviews of the morphology of the cotton plant have been published earlier by numerous authors, including Mauney (1984) and Oosterhuis and Jernstedt (1999).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Bader, R.F. and G.A. Niles. 1986. Response of short- and full-season cotton cultivars to mepiquat chloride. I. Morphological and phenological variables. Proceedings Beltwide Cotton Conf., National Cotton Council, Memphis., pp. 513-517.

    Google Scholar 

  • Blackman, V.H. 1919. The compound interest law and plant growth. Ann. Bot. 33:353-360.

    Google Scholar 

  • Bland, W.L. 1993. Cotton and soybean root system growth in three soil temperature regimes. Agron. J. 85:906-911.

    Article  Google Scholar 

  • Carter, O.G.1980. The nutrition of Crops. In: J.E. Pratley (ed.), Principles of field crop production, Sydney Univ. Press, Sydney. pp. 221-249.

    Google Scholar 

  • Cathey, G.W. and W.R. Meredith, Jr. 1988. Cotton response to planting date and mepiquat chloride. Agron. J. 80:463-466.

    Article  Google Scholar 

  • Cawley, N.M. 1999. Growth and yield response of cotton to ultra-narrow row spacing in North Carolina. M.S. thesis. North Carolina State Univ., Raleigh, NC.

    Google Scholar 

  • Constable, G.A. 1994. Predicting yield responses of cotton to growth regulators. In: G.A. Constable and N.W. Forrester (eds.) Challenging the future. CSIRO, Australia. pp. 3-5.

    Google Scholar 

  • Constable, G.A. and A.B. Hearn, 1981. Irrigation for crops in a sub-humid environment. VI. Effect of irrigation and nitrogen fertilizer on growth, yield and quality of cotton. Irrig. Sci. 3:17-28.

    Article  Google Scholar 

  • Cothren, J.T. 1994. Use of growth regulators in cotton production. In: G.A. Constable and N.W. Forrester (eds.) Challenging the future. CSIRO, Australia. pp. 6-24.

    Google Scholar 

  • Culpepper, A.S. and A.C. York. 2000. Weed management in ultra-narrow row cotton (Gossypium hirsutum L.). Weed Tech. 14:19-29.

    Article  Google Scholar 

  • Cutler, J.M. and D.W. Rains. 1977. Effects of irrigation history on responses of cotton to subsequent water stress. Crop Sci. 17:329-335.

    Article  Google Scholar 

  • Edmisten, K.L. 1994. The use of plant monitoring techniques as an aid in determining mepiquat chloride rates in rain-fed cotton. In: G.A. Constable and N.W. Forrester (eds.) Challenging the future. CSIRO, Australia. pp. 25-28.

    Google Scholar 

  • El-Fouly, M.M. and H.A. Moustafa. 1969. Growth, yield and nitrogen content of cotton plants as affected by gibberellic acid. Z. Planzenernahr. Budenk. 123:106-113.

    Article  CAS  Google Scholar 

  • Fowler, J.L. and L.L. Ray. 1977. Response of two cotton genotypes to five equidistant spacing patterns. Agron. J. 69:733-738.

    Article  Google Scholar 

  • Gardner, B.R. and T.C. Tucker. 1967. Nitrogen effects on cotton. I. Vegetative and fruiting characteristics. Soil Sci. Soc. Amer. Proc. 31:780-785.

    Article  Google Scholar 

  • Gipson, J.R. 1986. Temperature effects on growth, development, and fiber properties. In: J.R. Mauney and J. McD. Stewart (eds.), Cotton Physiology, The Cotton Foundation, Memphis. pp.47-56.

    Google Scholar 

  • Gipson, J.R. and H.E. Joham. 1968. Influence of night temperature on growth and development of cotton (Gossypium hirsutum L.). I. Fruiting and development. Agron. J. 60:292-295.

    Article  Google Scholar 

  • Grimes, D.W. and H. Yamada. 1982. Relation of cotton growth and yield to minimum leaf water potential. Crop Sci. 22:134-139.

    Article  Google Scholar 

  • Guinn, G. 1974. Abscission of cotton floral buds and bolls as influenced by factors affecting photosynthesis. Crop Sci. 14:291-293.

    Article  CAS  Google Scholar 

  • Guinn, G. 1985. Fruiting of cotton. III. Nutritional stress and cutout. Crop Sci. 25:981-985.

    Article  Google Scholar 

  • Guthrie, D.S. 1991. Cotton response to starter fertilizer placement and planting dates. Agron. J. 83:836-839.

    Article  Google Scholar 

  • Hawkins, B.S. and H.A. Peacock. 1973. Influence of row width and population density on yield and fiber characteristics of cotton. Agron. J. 65:47-51.

    Article  Google Scholar 

  • Hearn, A.B. 1969a. The growth and performance of cotton in a desert environment. I. Morphological development. J. Agric. Sci., Camb. 73:65-74.

    Article  Google Scholar 

  • Hearn, A.B. 1969b. The growth and performance of cotton in a desert environment. II. Dry matter production. J. Agric. Sci., Camb. 73:75-86.

    Article  Google Scholar 

  • Hearn, A.B. 1969c. The growth and performance of cotton in a desert environment. III. Crop performance. J. Agric. Sci., Camb. 73:87-97.

    Article  Google Scholar 

  • Hearn, A.B. 1975. The response of cotton to water and nitrogen in a tropical environment. I. Frequency of watering and method of application of nitrogen. J. Agric. Sci., Camb. 73:407-417.

    Google Scholar 

  • Hearn, A.B. 1979. Water relationships in cotton. Outlook Agric. 10:159-166.

    Google Scholar 

  • Hearn, A.B. 1995. The principles of cotton water relations and their application in management. In: G.A. Constable and N.W. Forrester (eds.). Proc. World Cotton Research Conference (1st:1994 Brisbane, Queensland). CSIRO, Melbourne, Australia. pp. 66-90.

    Google Scholar 

  • Hearn, A.B. and G.A. Constable. 1984. Cotton. pp. 495-527. In: P.R. Goldsworthy and N.M. Fisher (eds.). The Physiology of Tropical Field Crops, John Wiley and Sons, New York.

    Google Scholar 

  • Heitholt, J.J. 1994a. Canopy characteristics associated with deficient and excessive cotton plant population densities. Crop Sci. 34:1291-1297.

    Article  Google Scholar 

  • Jackson, B.S., and T.J. Gerik. 1990. Boll shedding and boll load in nitrogen-stressed cotton. Agron. J. 82:483-488.

    Article  Google Scholar 

  • Jones, H.G. 1992. Plants and microclimate: A quantitative approach to environmental plant physiology. 2nd edition. Cambridge Univ. Press, New York. 428 pp.

    Google Scholar 

  • Jones, M.A. and R. Wells. 1997. Dry matter allocation and fruiting patterns of cotton grown at two divergent plant populations. Crop Sci. 37:797-802.

    Article  Google Scholar 

  • Jost, P.H. and J.T. Cothren. 2000. Growth and yield comparison of cotton planted in conventional and ultranarrow row spacing. Crop Sci. 40:430-435.

    Article  Google Scholar 

  • Kasperbauer, M.J. 1971. Spectral distribution of light in a tobacco canopy and effects of end-of-day light quality on growth and development. Plant Physiol. 47:775-778.

    Article  PubMed  CAS  Google Scholar 

  • Kasperbauer, M.J. 1988. Phytochrome involvement in regulation of the photosynthetic apparatus and plant adaptation. Plant Physiol. Biochem. 26:519-524.

    CAS  Google Scholar 

  • Kasperbauer, M.J., and Hunt, P.G. 1992. Cotton seedling morphogenic responses to FR/R ratio reflected from different colored soils and soil covers. Biochem. Photobiol. 56:579-584.

    Article  Google Scholar 

  • Kerby, T.A. 1998. UNR cotton production system trial in the Mid-South. In: P. Dugger and D. Richter (eds.) Proc. Beltwide Cotton Conf. 5-9 Jan., 1998, San Diego, CA. Natl. Cotton Counc. of Am., Memphis, Tenn. pp. 87-88.

    Google Scholar 

  • Lang, A.R.G. 1973. Leaf orientation of a cotton plant. Agr. Meteorol. 11:37-51.

    Article  Google Scholar 

  • Leffler, H.R. 1983. Plant density affects the development of plant structure and yield. Proc. Beltwide Cotton Prod. Res. Conf. National Cotton Council, Memphis., pp. 45.

    Google Scholar 

  • Marani, A. and D. Levi.1973. Effect of soil moisture during early stages of development on growth and yield of cotton plants. Agron. J. 65:637-641.

    Article  Google Scholar 

  • Mauney, J.R. 1966. Floral initiation of upland cotton Gossypium hirsutum L. in response to temperatures. J. Exp. Bot. 17:452-459.

    Article  Google Scholar 

  • Mauney, J.R. 1984. Anatomy and morphology of the cotton plant. pp. 25-79. In: R.J. Kohel and C.F. Lewis (eds.), Cotton: Principles and practice. Iowa State University Press, Ames, IA.

    Google Scholar 

  • McMichael, B.L. and J.J. Burke. 1994. Metabolic activity of cotton roots in response to temperature. Environ. Expl. Bot. 34:201-206.

    Article  Google Scholar 

  • Meyer, V.G. 1969. Some effects of genes, cytoplasm, and environment on male sterility of cotton (Gossypium). Crop Sci. 9:237-242.

    Article  Google Scholar 

  • Oosterhuis, D.M. 1992. Foliar feeding with potassium nitrate in cotton. Proc. Beltwide Cotton Conf., Nashville, Tenn. pp. 71-72.

    Google Scholar 

  • Oosterhuis, D.M. 1995b. Potassium nutrition of cotton in the USA, with particular reference to foliar fertilization. In: G.A. Constable and N.W. Forrester (eds.). Challenging the Future: Proc. World Cotton Conference-1. Brisbane Australia. CSIRO, Melbourne. pp. 133-146.

    Google Scholar 

  • Oosterhuis, D.M. 1997. Physiological aspects of potassium deficiency in cotton. Ark. Agri. Exp. Sta. Spec. Rpt. 183:61-73.

    Google Scholar 

  • Potter, J.R. and J.W. Jones.1977. Leaf area partitioning as an important factor in growth. Plant Physiol. 59:10-14.

    Article  PubMed  CAS  Google Scholar 

  • Radin, J.W. and J.R. Mauney. 1986. The nitrogen stress syndrome. In. Cotton Physiology, The Cotton Foundation, Memphis, pp. 91-105.

    Google Scholar 

  • Ritchie, J.T.1983. Efficient water use in crop production: Discussion on the generality of relations between biomass production and evapotranspiration. In: H.M. Taylor, W.R. Jordan, and T.R. Sinclair (eds.). Limitations to efficient water use in crop production. Amer. Soc. Agron., Madison. pp. 29-44.

    Google Scholar 

  • Sadras, V.O. 1995. Compensatory growth in cotton after loss of reproductive organs. Field Crops Res. 40:1-18.

    Article  Google Scholar 

  • Sage, L.C. 1992. The Chromophore. In. Pigment of the imagination: A history of phytochrome research. Acad. Press, New York. pp.395-409.

    Google Scholar 

  • Soomro, A.W., and S.A. Waring. 1987. Effect of temporary flooding on cotton growth and nitrogen nutrition in soils with different organic matter levels. Aust. J. Agric. Res. 38:91-99.

    Article  Google Scholar 

  • Taylor, H.M. and B. Klepper. 1974. Water relations of cotton. I. Root growth and water use as related to top growth and soil water content. Agron. J. 66:584-588.

    Article  Google Scholar 

  • Temple, P.J. 1990b. Growth form and yield responses of four cotton cultivars to ozone. Agron. J. 82:1045-1050.

    Article  CAS  Google Scholar 

  • Wells, R. and W.R. Meredith, Jr. 1984a. Comparative growth of obsolete and modern cotton cultivars. I. Vegetative dry matter partitioning. Crop Sci. 24:858-862.

    Article  Google Scholar 

  • Wells, R. and W.R. Meredith. 1984b. Comparative growth of obsolete and modern cotton cultivars. II. Reproductive dry matter partitioning. Crop Sci. 24:863-868.

    Article  Google Scholar 

  • Wells, R. and W.R. Meredith, Jr. 1986a. Heterosis in upland cotton. I. Growth and leaf area partitioning. Crop Sci. 26:1119-1123.

    Article  Google Scholar 

  • Wullschleger, S.D. and D.M. Oosterhuis. 1990b. Canopy development and photosynthesis as influenced by nitrogen nutrition. J. Plant Nut. 13:1141-1154.

    Article  CAS  Google Scholar 

  • Xu, X. and H.M. Taylor. 1992. Increase in drought resistance of cotton seedlings treated with mepiquat chloride. Agron. J. 84:569-574.

    Article  CAS  Google Scholar 

  • York, A.C.1983a. Cotton cultivar response to mepiquat chloride. Agron. J. 75:663-667.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Wells, R., Stewart, A.M. (2010). Morphological Alterations in Response to Management and Environment. In: Stewart, J.M., Oosterhuis, D.M., Heitholt, J.J., Mauney, J.R. (eds) Physiology of Cotton. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3195-2_3

Download citation

Publish with us

Policies and ethics