Skip to main content

Abstract

Prototyping is an iterative process that is part of the analysis phase of the nanosystems development life cycle. Usually, technologists expect the performance of the ultimate nanosystem to be the same as the designed prototype. However, the interactive multiscale prototyping presented in Chap. 3 leads to insufficient analysis at the pre-project stage, degraded performances of the ultimate nanodevice due to experimentation limitations, and lack in quantifiable experimentation feedback. Taking into account the disadvantages of the previous method, we present in this chapter a novel methodology of design and optimization using co-prototyping concepts of carbon nanotube-based nanodevices. It is an iterative optimization process coupling experiments performed on real nanodevices with computational methods of simulation. Among its’ many benefits, the co-prototyping approach lowers the development cost, the development time involved in prototyping, allows for more iterations during experimentation, and gives developers the chance to get immediate experimental feedback on refinements to the design. Furthermore, the theoretical characterization allows to analyze in deep detail some novel properties that could not be observable by the used experimental platform.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cumings, J., Zettl, A.: Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes. Science 289, 602 (2000)

    Article  Google Scholar 

  2. Kis, A., Jensen, K., Aloni, S., Mickelson, W., Zettl, A.: Interlayer forces and ultralow sliding friction in multiwalled carbon nanotubes. Phys. Rev. Lett. A 97, 025501 (2006)

    Article  Google Scholar 

  3. Stuart, D.J., Tuteinb, A.B., Harrisonc, J.A.: A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys. 112(14), 6472–6486 (2000)

    Article  Google Scholar 

  4. Cumings, J., Zettl, A.: Localization and nonlinear resistance in telescopically extended nanotubes. Phys. Rev. Lett. 93, 086801 (2004)

    Article  Google Scholar 

  5. Forro, L.: Beyond Gedanken experiments. Science 289(5479), 560–561 (2000)

    Article  Google Scholar 

  6. Dong, L.X., Nelson, B.J., Fukuda, T., Arai, F.: Towards nanotube linear servomotors. IEEE Trans. Autom. Sci. Eng. 3, 228–235 (2006)

    Article  Google Scholar 

  7. Yan, Q.M., Zhou, G., Hao, S.G., Wu, J., Duan, W.H.: Mechanism of nanoelectronic switch based on telescoping carbon nanotubes. Appl. Phys. Lett. 88, 173107 (2006)

    Article  Google Scholar 

  8. Maslov, L.: Concept of nonvolatile memory based on multiwall carbon nanotubes. Nanotechnology 17, 2475 (2006)

    Article  Google Scholar 

  9. Li, C., Chou, T.-W.: Theoretical studies on the charge-induced failure of single-walled carbon nanotubes. Carbon 45, 922–930 (2007)

    Article  Google Scholar 

  10. Subramanian, A., Dong, L.X., Tharian, J., Sennhauser, U., Nelson, B.J.: Batch fabrication of carbon nanotube bearings. Nanotechnology 18, 075703 (2007)

    Article  Google Scholar 

  11. Lozovik, Y.E., Minogin, A.V., Popov, A.M.: Phys. Lett. A 313, 112 (2003)

    Article  Google Scholar 

  12. Charlier, A., McRae, E., Heyd, R., Charlier, M.F., Moretti, D.: Carbon 37, 1779 (2000)

    Article  Google Scholar 

  13. Charlier, J.-C., Michenaud, J.P.: Phys. Rev. Lett. 70, 1858 (1993)

    Article  Google Scholar 

  14. Lozovik, Y.E., Popov, A.M.: Chem. Phys. Lett. 328, 355 (2000)

    Article  Google Scholar 

  15. Yoshida, M., Osawa, E.: Fuller. Sci. Technol. 1, 54 (1993)

    Article  Google Scholar 

  16. Lozovik, Y.E., Popov, A.M.: Phys. Solid State 44, 186 (2002)

    Article  Google Scholar 

  17. Lozovik, Y.E., Nikolaev, A.G., Popov, A.M.: Fuller. Nanotub. Carbon Nanostructures 14, 227–231 (2006)

    Article  Google Scholar 

  18. Dong, L.X., Subramanian, A., Nelson, B.J.: Carbon nanotubes for nanorobotics. Nano Today 2, 12–21 (2007)

    Article  Google Scholar 

  19. Subramanian, A., Dong, L.X., Tharian, J., Sennhauser, U., Nelson, B.J.: Batch fabrication of carbon nanotube bearings. Nanotechnology 18, 075703 (2007)

    Article  Google Scholar 

  20. Tu, Z.C., Hu, X.: Molecular motor constructed from a double-walled carbon nanotube driven by axially varying voltage. Phys. Rev. B 72, 033404 (2005)

    Article  Google Scholar 

  21. Belikov, A.V., Lozovik, Y.E., Nikolaev, A.G., Popov, A.M.: Double-wall nanotubes: classification and barriers to walls relative rotation, sliding and screwlike motion. Chem. Phys. Lett. 385, 72–78 (2004)

    Article  Google Scholar 

  22. Saito, R., Matsuo, R., Kimura, T., Dresselhaus, G., Dresselhaus, M.S.: Anomalous potential barrier of double-wall carbon nanotube. Chem. Phys. Lett. 348, 187–193 (2001)

    Article  Google Scholar 

  23. Schoen, P.A.E., Walther, J.H., Arcidiacono, S., Poulikakos, D., Koumoutsakos, P.: Nanoparticle traffic on helical tracks: thermophoretic mass transport through carbon nanotubes. Nano Lett. 6, 1910–1917 (2006)

    Article  Google Scholar 

  24. Tu, Z.C., Hu, X.: Molecular motor constructed from a double-walled carbon nanotube driven by axially varying voltage. Phys. Rev. B 72, 033404 (2005)

    Article  Google Scholar 

  25. Zólyomi, V., Koltai, J., Rusznyák, Á., Kürti, J., Gali, Á., Simon, F., Kuzmany, H., Szabados, Á., Surján, P.R.: Intershell interaction in double walled carbon nanotubes: charge transfer and orbital mixing. Phys. Rev. B 77, 245403 (2008)

    Article  Google Scholar 

  26. Ajayan, P.M., Iijima, S.: Nature 361, 333–334 (1993)

    Article  Google Scholar 

  27. Supple, S., Quirke, N.: Phys. Rev. Lett. 90, 214501 (2003)

    Article  Google Scholar 

  28. Smith, B.W., Monthioux, M., Luzzi, D.E.: Nature 396, 323–324 (1998)

    Article  Google Scholar 

  29. Ajayan, P.M., Stephan, O., Redlich, P., Colliex, C.: Nature 375, 564–567 (1995)

    Article  Google Scholar 

  30. Gao, Y.H., Bando, Y.: Nature 415, 599–599 (2002)

    Article  Google Scholar 

  31. Ugarte, D., Chatelain, A., de Heer, W.A.: Science 274, 1897–1899 (1996)

    Article  Google Scholar 

  32. Svensson, K., Olin, H., Olsson, E.: Phys. Rev. Lett. 93, 145901 (2004)

    Article  Google Scholar 

  33. Tao, X.Y., Zhang, X.B., Cheng, J.P., Luo, Z.Q., Zhou, S.M., Liu, F.: Diam. Relat. Mater. 15, 1271–1275 (2006)

    Article  Google Scholar 

  34. Dong, L.X., Arai, F., Fukuda, T.: IEEE-ASME Trans. Mechatron. 9, 350–357 (2004)

    Article  Google Scholar 

  35. Dong, L.X., Tao, X.Y., Zhang, L., Zhang, X.B., Nelson, B.J.: Nano Lett. 7, 58–63 (2007)

    Article  Google Scholar 

  36. Dong, L.X., Arai, F., Fukuda, T.: Appl. Phys. Lett. 81, 1919–1921 (2002)

    Article  Google Scholar 

  37. Matsui, S., Kaito, T., Fujita, J., Komuro, M., Kanda, K., Haruyama, Y.J.: Vac. Sci. Technol. B 18, 3181–3184 (2000)

    Article  Google Scholar 

  38. Dong, L.X., Tao, X.Y., Hamdi, M., Zhang, L., Zhang, X.B., Ferreira, A., Nelson, B.J.: Nanotube fluidic junctions: inter-nanotube attogram mass transport through walls (2008, submitted)

    Google Scholar 

  39. Dong, L.X., Tao, X.Y., Zhang, L., Zhang, X.B., Nelson, B.J.: Metal-filled carbon nanotubes for nanomechatronics. In: Proc. of the 2008 IEEE/ASME Int’l Conf. on Advanced Intelligent Mechatronics (AIM2008), Xi’an, China, pp. 933–937 (2008)

    Google Scholar 

  40. Dong, L.X., Tao, X.Y., Zhang, L., Zhang, X.B., Nelson, B.J.: Nanorobotic spot welding: controlled metal deposition with attogram precision from copper-filled carbon nanotubes. Nano Lett. 7, 58–63 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustapha Hamdi .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Hamdi, M., Ferreira, A. (2011). Characterization and Prototyping of Nanostructures. In: Design, Modeling and Characterization of Bio-Nanorobotic Systems. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3180-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-3180-8_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-3179-2

  • Online ISBN: 978-90-481-3180-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics