Skip to main content

Nucleation on Strongly Curved Surfaces of Nanofibers

  • Chapter
  • First Online:
Thermal analysis of Micro, Nano- and Non-Crystalline Materials

Part of the book series: Hot Topics in Thermal Analysis and Calorimetry ((HTTC,volume 9))

  • 2529 Accesses

Abstract

It is well known that the existence of the energy barrier of nucleation is a result of the interplay of two antagonistic tendencies: an endeavor of the system to go from initial metastable phase to a more favorable one, and a general trend to minimize the area of interfaces between different phases in the system. The former leads to a negative volume contribution \( \Delta {G_{\text{V}}} \) to the total Gibbs free energy of the cluster formation \( \Delta G \), whereas the latter corresponds to the positive surface contribution \( \Delta {G_{\text{S}}} \):

$$ \Delta G = \Delta {G_{\text{V}}} + \Delta {G_{\text{S}}} = - n\Delta \mu + \gamma \sigma {n^{2/3}}, $$
(19.1)

where \( \Delta \mu \) is the difference of the chemical potentials of the initial metastable and the newly growing phases, n is the number of building units in the cluster, σ is the excess surface energy, and γ stands for the shape factor, which describes the ratio of the surface area of the cluster to its volume.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Frenkel J (1948) O povedenii zhidkikh kapel na poverkhnosti tverdogo tela. ZETF 18:659–667

    CAS  Google Scholar 

  2. Moran K, Yeung A, Masliyah J (2003) Shape relaxation of an elongated viscous drop. J Colloid Interface Sci 267:483–493

    Article  CAS  Google Scholar 

  3. Rottman C, Wortis M (1984) Statistical mechanics of equilibrium crystal shapes: interfacial phase diagrams and phase transitions. Phys Rep 103:59–79

    Article  CAS  Google Scholar 

  4. Zia R (1988) Anisotropic surface tension and equilibrium crystal shapes. In: Hu CK (ed) Progress in statistical mechanics. World Scientific, Singapore, pp 303–357

    Google Scholar 

  5. Wulff G (1901) Zur Frage der Geschwindigkeit des Wachstums und der Auflösung der Krystallflächen. Z Krystallogr 34:449–530

    CAS  Google Scholar 

  6. Chernov A (1964) Crystal growth forms and their kinetic stability. Sov Phys Crystallogr 8:401–405

    Google Scholar 

  7. Roura P, Fort J (2004) Local thermodynamic derivation of Young’s equation. J Colloid Interface Sci 272:420–429

    Article  CAS  Google Scholar 

  8. Gurkov T, Kralchevsky P (1990) Surface tension and surface energy of curved interfaces and membranes. Colloids Surfaces 41:45–68

    Article  Google Scholar 

  9. Nesis E (1973) Kipenie Zhidkostey. Nauka, Moscow

    Google Scholar 

  10. Starov V (2004) Nonflat equilibrium liquid shapes on flat surfaces. J Colloid Interface Sci 269:432–441

    Article  CAS  Google Scholar 

  11. Vehkamäki H (2006) Classical nucleation theory in multicomponent systems. Springer, Berlin

    Google Scholar 

  12. Hey M, Kingston J (2006) Maximum stability of a single spherical particle attached to an emulsion drop. J Colloid Interface Sci 298:497–499

    Article  CAS  Google Scholar 

  13. Dumitrascu N, Borcia C (2006) Determining the contact angle between liquids and cylindrical surfaces. J Colloid Interface Sci 294:418–422

    Article  CAS  Google Scholar 

  14. Barberis F, Capurro M (2008) Wetting in the nanoscale: a continuum mechanics approach. J Colloid Interface Sci 326:201–210

    Article  CAS  Google Scholar 

  15. Cheong A-G, Rey A (2002) Cahn–Hoffman capillarity vector thermodynamics for liquid crystal interfaces. Phys Rev E 66:021704

    Article  Google Scholar 

  16. Cheong A-G, Rey A (2002) Cahn–Hoffman capillarity vector thermodynamics for curved liquid crystal interfaces with applications to fiber instabilities. J Chem Phys 117:108

    Article  Google Scholar 

  17. Berim G, Ruckenstein E (2005) Microscopic treatment of a barrel drop on fibers and nanofibers. J Colloid Interface Sci 286:681–695

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the Grant Agency of the Academy of Sciences of the Czech Republic (Grant No. IAA 100100806), by Grant No. P108/12/0891 of the Grant Agency of the Czech Republic, and by Ministry of Education and Youth of the Czech Republic (Project No. MSM 684077003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Demo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Demo, P., Sveshnikov, A., Kožíšek, Z. (2012). Nucleation on Strongly Curved Surfaces of Nanofibers. In: Šesták, J., Šimon, P. (eds) Thermal analysis of Micro, Nano- and Non-Crystalline Materials. Hot Topics in Thermal Analysis and Calorimetry, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3150-1_19

Download citation

Publish with us

Policies and ethics