Skip to main content

Adenosine A3 Receptor Signaling in the Central Nervous System

  • Chapter
  • First Online:

Abstract

Adenosine A3 receptors are widely distributed in the central nervous system but are expressed at a low level and have lower affinity for adenosine in comparison to the A1 and A2A receptors. Nevertheless, they appear to tonically modulate motor activity as pointed out in A3 receptor-deleted mice.

The role of A3 receptor in several pathophysiological conditions is often controversial. In conditions such as seizures or ischemia, when extracellular concentrations of adenosine increase, A3 receptors may contribute to neurotransmission and cell damage. A pro-convulsant effect of A3 receptor is feasible, especially in the immature brain, thus raising the possibility that A3 receptor might facilitate seizure-induced neuronal damage and activity-dependent plastic changes. Most data support a pro-nociceptive role of A3 receptor involving both central nervous system and pro-inflammatory effects at peripheral tissues. The outcome of A3 receptor stimulation on synaptic transmission during hypoxic/ischemic phenomena appears to depend on the duration and intensity of the ischemic episode. While A3 receptor may play a protective role in the first phase of ischemia by decreasing synaptic transmission, prolonged A3AR stimulation by high adenosine concentrations could be pivotal in transforming the A3AR-mediated effects from protective to injurious. Detrimental effects of A3AR activation may be due, at least in part, to increased excitoxicity. Glial A3AR stimulated by high adenosine levels caused by a prolonged central trauma may well be implicated in neuroinflammatory tissue responses.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AK:

Adenosine-kinase

AD:

Anoxic depolarization

aCSF:

Artificial cerebrospinal fluid

APNEA:

N(6)-2-(4 Aminophenyl)ethyladenosine

AR:

Adenosine Receptor

AR132:

N6-methyl-2-Phenylethynyladenosine

CADO:

2-Chloroadenosine

CNS:

Central nervous system

CCL-2:

Chemokine (C-C motif) ligand 2

cAMP:

Cyclic AMP

CHA:

N6-cyclohexyladenosine

Cl-IB-MECA:

1-[2-Chloro-6-[[(3-iodophenyl)methyl]amino]-9H-purin-p-yl]-1-deoxy-N-methyl-beta-D-ribofuranuronamide

EHNA:

Erythro-9-(2-hydroxy-3-nonyl)adenine hydrochloride

ERK1/2:

Extracellular signal-regulated kinases

NECA:

5-N-Ethylcarboxyamidoadenosine

D-PIA:

D(-)N(6)-(2-Phenylisopropyl)adenosine

DPCPX:

8-Cyclopentyl-1,3-dipropylxanthine

GABAA :

Gamma-aminobutyric acid A

GFAP:

Glial fibrillary acidic protein

KO:

Knockout

5-HT:

5-Hydroxytryptamine

IB-MECA:

1-Deoxy-1-[6-[[(3-iodophenyl)-methyl]amino]-9H-purin-9-yl]-N-methyl-beta-D-ribofuranuronamide

LJ1251:

(2R,3R,4S)-2-(2-chloro-6-(3-iodobenzylamino)-9H-purin-9-yl)tetrahydrothiophene-3,4-diol

L-PIA:

L(-)N(6)-(2-Phenylisopropyl)adenosine

LPS:

Lipopolysaccharide

LTD:

Long-term depression

LTP:

Long-term potentiation

Map-2:

Microtubule-associated protein 2

MCAo:

Middle cerebral artery occlusion

MAPK:

Mitogen activated protein kinase

MRS1191:

3-ethyl-5-benzyl-2-methyl-6-phenyl-4-phenylethynyl-1,4-(+/−)-dihydropyridine-3,5-dicarboxylate

MRS1220:

9-Chloro-2-(2-furanyl)-5-((phenylacetyl)amino)-[1,2,4]triazolo[1,5-c]quinazoline

MRS1340:

1,4-Dihydro-2-methyl-6-phenyl-4-(phenylethynyl)-3,5-pyr idinedicarboxylic acid 3-ethyl-5-[(3-nitrophenyl)methyl] ester

MRS1523:

5-Propyl-2-ethyl-4-propyl-3-(ethylsulfanylcarbonyl)-6-phenylpyridine-5-carboxylate

NMDA:

N-Methyl-D-aspartate

NBTI:

S-(4-Nitrobenzyl)-6-theoinosine

OGD:

Oxygen–glucose deprivation

PKC:

Protein kinase C

PKG:

cGMP-dependent protein kinase

PLC:

Phospholipase C

RT-PCR:

Reverse transcription–polymerase chain reaction

SERT:

Serotonin-selective reuptake transporter

TNF alpha:

Tumour necrosis factor alpha

VT72:

N6-Methoxy-2-phenylethynyl

VT158:

N6-Methoxy-2-phenylethynyl

VT160:

N6-Methoxy-2-(2-pyridinyl)-ethynyl

VT163:

N6-Methoxy-2-p-acetylphenylethynyl

References

  • Abbracchio MP, Brambilla R, Ceruti S, Kim HO, von Lubitz DK, Jacobson KA, Cattabeni F (1995) G protein-dependent activation of phospholipase C by adenosine A3 receptors in rat brain. Mol Pharmacol 48(6):1038–1045

    PubMed  CAS  Google Scholar 

  • Abbracchio MP, Ceruti S, Brambilla R, Franceschi C, Malorni W, Jacobson KA, von Lubitz DK, Cattabeni F (1997) Modulation of apoptosis by adenosine in the central nervous system: a possible role for the A3 receptor. Pathophysiological significance and therapeutic implications for neurodegenerative disorders. Ann N Y Acad Sci 825:11–22

    Article  PubMed  CAS  Google Scholar 

  • Abbracchio MP, Camurri A, Ceruti S, Cattabeni F, Falzano L, Giammarioli AM, Jacobson KA, Trincavelli L, Martini C, Malorni W, Fiorentini C (2001) The A3 adenosine receptor induces cytoskeleton rearrangement in human astrocytoma cells via a specific action on Rho proteins. Ann N Y Acad Sci 939:63–73

    Article  PubMed  CAS  Google Scholar 

  • Alloisio S, Cugnoli C, Ferroni S, Nobile M (2004) Differential modulation of ATP-induced calcium signalling by A1 and A2 adenosine receptors in cultured cortical astrocytes. Br J Pharmacol 141(6):935–942

    Article  PubMed  CAS  Google Scholar 

  • Appel E, Kazimirsky G, Ashkenazi E, Kim SG, Jacobson KA, Brodie C (2001) Roles of BCL-2 and caspase 3 in the adenosine A3 receptor-induced apoptosis. J Mol Neurosci 17(3):285–292

    Article  PubMed  CAS  Google Scholar 

  • Baraldi PG, Cacciari B, Romagnoli R, Merighi S, Varani K, Borea PA, Spalluto G (2000) A(3) adenosine receptor ligands: history and perspectives. Med Res Rev 20(2):103–128

    Article  PubMed  CAS  Google Scholar 

  • Bjorklund O, Halldner-Henriksson L, Yang J, Eriksson TM, Jacobson MA, Dare E, Fredholm BB (2008a) Decreased behavioral activation following caffeine, amphetamine and darkness in A3 adenosine receptor knock-out mice. Physiol Behav 95(5):668–676

    Article  PubMed  CAS  Google Scholar 

  • Bjorklund O, Shang M, Tonazzini I, Dare E, Fredholm BB (2008b) Adenosine A1 and A3 receptors protect astrocytes from hypoxic damage. Eur J Pharmacol 596(1–3):6–13

    Article  PubMed  CAS  Google Scholar 

  • Boison D (2007) Adenosine as a modulator of brain activity. Drug News Perspect 20(10):607–611

    Article  PubMed  CAS  Google Scholar 

  • Boison D (2008) The adenosine kinase hypothesis of epileptogenesis. Prog Neurobiol 84(3):249–262

    Article  PubMed  CAS  Google Scholar 

  • Borowicz KK, Kleinrok Z, Czuczwar SJ (1997) N6-2-(4-aminophenyl)ethyl-adenosine enhances the anticonvulsive activity of antiepileptic drugs. Eur J Pharmacol 327(2–3):125–133

    Article  PubMed  CAS  Google Scholar 

  • Brand A, Vissiennon Z, Eschke D, Nieber K (2001) Adenosine A(1) and A(3) receptors mediate inhibition of synaptic transmission in rat cortical neurons. Neuropharmacology 40:85–95

    Article  PubMed  CAS  Google Scholar 

  • Chen GJ, Harvey BK, Shen H, Chou J, Victor A, Wang Y (2006) Activation of adenosine A3 receptors reduces ischemic brain injury in rodents. J Neurosci Res 84(8):1848–1855

    Article  PubMed  CAS  Google Scholar 

  • Chen JF, Pedata F (2008) Modulation of ischemic brain injury and neuroinflammation by adenosine A2A receptors. Curr Pharm Des 14(15):1490–1499

    Article  PubMed  CAS  Google Scholar 

  • Chen JF, Sonsalla PK, Pedata F, Melani A, Domenici MR, Popoli P, Geiger J, Lopes LV, de Mendonca A (2007) Adenosine A2A receptors and brain injury: broad spectrum of neuroprotection, multifaceted actions and “fine tuning” modulation. Prog Neurobiol 83(5):310–331

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Rathbone MP, Hertz L (2001) Guanosine-induced increase in free cytosolic calcium concentration in mouse astrocytes in primary cultures: does it act on an A3 adenosine receptor? J Neurosci Res 65(2):184–189

    Article  PubMed  CAS  Google Scholar 

  • Colotta V, Catarzi D, Varano F, Capelli F, Lenzi O, Filacchioni G, Martini C, Trincavelli L, Ciampi O, Pugliese AM, Pedata F, Schiesaro A, Morizzo E, Moro S (2007) New 2-arylpyrazolo[3,4-c]quinoline derivatives as potent and selective human A3 adenosine receptor antagonists. Synthesis, pharmacological evaluation, and ligand–receptor modeling studies. J Med Chem 50(17):4061–4074

    Google Scholar 

  • Colotta V, Catarzi D, Varano F, Lenzi O, Filacchioni G, Martini C, Trincavelli L, Ciampi O, Traini C, Pugliese AM, Pedata F, Morizzo E, Moro S (2008) Synthesis, ligand–receptor modeling studies and pharmacological evaluation of novel 4-modified-2-aryl-1,2,4-triazolo[4,3-a]quinoxalin-1-one derivatives as potent and selective human A3 adenosine receptor antagonists Bioorg Med Chem 16(11):6086–6102

    Google Scholar 

  • Corradetti R, Lo CG, Moroni F, Passani MB, Pepeu G (1984) Adenosine decreases aspartate and glutamate release from rat hippocampal slices. Eur J Pharmacol 104(1–2):19–26

    Article  PubMed  CAS  Google Scholar 

  • Costenla AR, Lopes LV, de Mendonca A, Ribeiro JA (2001) A functional role for adenosine A3 receptors: modulation of synaptic plasticity in the rat hippocampus. Neurosci Lett 302(1):53–57

    Article  PubMed  CAS  Google Scholar 

  • Cunha RA, Constantino MC, Sebastião AM, Ribeiro JA (1995) Modification of A1 and A2a adenosine receptor binding in aged striatum, hippocampus and cortex of the rat. Neuroreport 6(11):1583–1588

    Article  PubMed  CAS  Google Scholar 

  • Cunha RA, Johansson B, Constantino MD, Sebastião AM, Fredholm BB (1996a) Evidence for high-affinity binding sites for the adenosine A2A receptor agonist [3H] CGS 21680 in the rat hippocampus and cerebral cortex that are different from striatal A2A receptors. Naunyn Schmiedebergs Arch Pharmacol 353(3):261–271

    Article  PubMed  CAS  Google Scholar 

  • Cunha RA, Vizi ES, Ribeiro JA, Sebastião AM (1996b) Preferential release of ATP and its extracellular catabolism as a source of adenosine upon high- but not low-frequency stimulation of rat hippocampal slices. J Neurochem 67(5):2180–2187

    Article  PubMed  CAS  Google Scholar 

  • de Mendonca A, Sebastião AM, Ribeiro JA (1995) Inhibition of NMDA receptor-mediated currents in isolated rat hippocampal neurones by adenosine A1 receptor activation. Neuroreport 6(8):1097–1100

    Article  PubMed  Google Scholar 

  • de Mendonca A, Ribeiro JA (2000) Long-term potentiation observed upon blockade of adenosine A1 receptors in rat hippocampus is N-methyl-D-aspartate receptor-dependent. Neurosci.Lett 291(2):81–84

    Google Scholar 

  • De Sarro G, De Sarro A, Di Paola ED, Bertorelli R (1999) Effects of adenosine receptor agonists and antagonists on audiogenic seizure-sensible DBA/2 mice. Eur J Pharmacol 371(2–3):137–145

    Article  PubMed  Google Scholar 

  • Deckert J, Morgan PF, Daval JL, Nakajima T, Marangos PJ (1988) Ontogeny of adenosine uptake sites in guinea pig brain: differential profile of [3H]nitrobenzylthioinosine and [3H]dipyridamole binding sites. Brain Res 470(2):313–316

    PubMed  CAS  Google Scholar 

  • DeLander GE, Wahl JJ (1988) Behavior induced by putative nociceptive neurotransmitters is inhibited by adenosine or adenosine analogs coadministered intrathecally. J Pharmacol Exp Ther 246(2):565–570

    PubMed  CAS  Google Scholar 

  • Di Iorio P, Kleywegt S, Ciccarelli R, Traversa U, Andrew CM, Crocker CE, Werstiuk ES, Rathbone MP (2002) Mechanisms of apoptosis induced by purine nucleosides in astrocytes. Glia 38(3):179–190

    Article  PubMed  Google Scholar 

  • Dirnagl U, Iadecola C, Moskowitz MA (1999) Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci 22(9):391–397

    Article  PubMed  CAS  Google Scholar 

  • Dixon AK, Gubitz AK, Sirinathsinghji DJ, Richardson PJ, Freeman TC (1996) Tissue distribution of adenosine receptor mRNAs in the rat. Br J Pharmacol 118(6):1461–1468

    PubMed  CAS  Google Scholar 

  • Dragunow M, Goddard GV, Laverty R (1985) Is adenosine an endogenous anticonvulsant? Epilepsia 26(5):480–487

    Article  PubMed  CAS  Google Scholar 

  • Dragunow M (1991) Adenosine and seizure termination. Ann Neurol 29(5):575

    Article  PubMed  CAS  Google Scholar 

  • Dudek SM, Bear MF (1993) Bidirectional long-term modification of synaptic effectiveness in the adult and immature hippocampus. J Neurosci 13(7):2910–2918

    PubMed  CAS  Google Scholar 

  • Dunwiddie TV (1980) Endogenously released adenosine regulates excitability in the in vitro hippocampus. Epilepsia 21(5):541–548

    Article  PubMed  CAS  Google Scholar 

  • Dunwiddie TV, Diao L, Kim HO, Jiang JL, Jacobson KA (1997) Activation of hippocampal adenosine A3 receptors produces a desensitization of A1 receptor-mediated responses in rat hippocampus. J Neurosci 17(2):607–614

    PubMed  CAS  Google Scholar 

  • During MJ, Spencer DD (1992) Adenosine: a potential mediator of seizure arrest and postictal refractoriness. Ann Neurol 32(5):618–624

    Article  PubMed  CAS  Google Scholar 

  • Etherington LA, Frenguelli BG (2004) Endogenous adenosine modulates epileptiform activity in rat hippocampus in a receptor subtype-dependent manner. Eur J Neurosci 19(9):2539–2550

    Article  PubMed  Google Scholar 

  • Fedorova IM, Jacobson MA, Basile A, Jacobson KA (2003) Behavioral characterization of mice lacking the A3 adenosine receptor: sensitivity to hypoxic neurodegeneration. Cell Mol Neurobiol 23(3):431–447

    Article  PubMed  CAS  Google Scholar 

  • Fiebich BL, Biber K, Lieb K, van Calker D, Berger M, Bauer J, Gebicke-Haerter PJ (1996) Cyclooxygenase-2 expression in rat microglia is induced by adenosine A2a-receptors. Glia 18(2):152–160

    Article  PubMed  CAS  Google Scholar 

  • Fleming KM, Mogul DJ (1997) Adenosine A3 receptors potentiate hippocampal calcium current by a PKA-dependent/PKC-independent pathway. Neuropharmacology 36(3):353–362

    Article  PubMed  CAS  Google Scholar 

  • Fozard JR, Carruthers AM (1993). Adenosine A3 receptors mediate hypotension in the angiotensin II-supported circulation of the pithed rat. Br J Pharmacol 109(1):3–5

    PubMed  CAS  Google Scholar 

  • Fozard JR, Pfannkuche HJ, Schuurman HJ (1996). Mast cell degranulation following adenosine A3 receptor activation in rats. Eur J Pharmacol 298(3):293–297

    Article  PubMed  CAS  Google Scholar 

  • Fredholm BB, IJzerman AP, Jacobson KA, Klotz KN, Linden J (2001) International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev 53(4):527–552

    CAS  Google Scholar 

  • Gao Z, Li BS, Day YJ, Linden J (2001) A3 adenosine receptor activation triggers phosphorylation of protein kinase B and protects rat basophilic leukemia 2H3 mast cells from apoptosis. Mol Pharmacol 59(1):76–82

    PubMed  CAS  Google Scholar 

  • Gao ZG, Jacobson KA (2007) Emerging adenosine receptor agonists. Expert Opin Emerg Drugs 12(3):479–492

    Article  PubMed  CAS  Google Scholar 

  • Gessi S, Merighi S, Varani K, Leung E, Mac Lennan S, Borea PA (2008) The A3 adenosine receptor: an enigmatic player in cell biology. Pharmacol Ther 117(1):123–140

    Article  PubMed  CAS  Google Scholar 

  • Ginsborg BL, Hirst GD (1972) The effect of adenosine on the release of the transmitter from the phrenic nerve of the rat. J Physiol 224(3):629–645

    PubMed  CAS  Google Scholar 

  • Greene RW, Haas HL (1991) The electrophysiology of adenosine in the mammalian central nervous system. Prog Neurobiol 36(4):329–341

    Article  PubMed  CAS  Google Scholar 

  • Hagberg H, Andersson P, Lacarewicz J, Jacobson I, Butcher S, Sandberg M (1987) Extracellular adenosine, inosine, hypoxanthine, and xanthine in relation to tissue nucleotides and purines in rat striatum during transient ischemia. J Neurochem 49(1):227–231

    Article  PubMed  CAS  Google Scholar 

  • Hammarberg C, Schulte G, Fredholm BB (2003) Evidence for functional adenosine A3 receptors in microglia cells. J Neurochem 86(4):1051–1054

    Article  PubMed  CAS  Google Scholar 

  • Hammarberg C, Fredholm BB, Schulte G (2004) Adenosine A3 receptor-mediated regulation of p38 and extracellular-regulated kinase ERK1/2 via phosphatidylinositol-3’-kinase. Biochem Pharmacol 67(1):129–134

    Article  PubMed  CAS  Google Scholar 

  • Hentschel S, Lewerenz A, Nieber K (2003) Activation of A(3) receptors by endogenous adenosine inhibits synaptic transmission during hypoxia in rat cortical neurons. Restor Neurol Neurosci 21(1–2):55–63

    PubMed  CAS  Google Scholar 

  • Huang CC, Yang PC, Lin HJ, Hsu KS (2007) Repeated cocaine administration impairs group II metabotropic glutamate receptor-mediated long-term depression in rat medial prefrontal cortex. J Neurosci 27(11):2958–2968

    Article  PubMed  CAS  Google Scholar 

  • Jacobson KA, Nikodijevic O, Shi D, Gallo-Rodriguez C, Olah ME, Stiles GL, Daly JW (1993) A role for central A3-adenosine receptors. Mediation of behavioral depressant effects. FEBS Lett 336(1):57–60

    CAS  Google Scholar 

  • Jacobson KA, Siddiqi SM, Olah ME, Ji XD, Melman N, Bellamkonda K, Meshulam Y, Stiles GL, Kim HO (1995) Structure–activity relationships of 9-alkyladenine and ribose-modified adenosine derivatives at rat A3 adenosine receptors. J Med Chem 38(10):1720–1735

    Article  PubMed  CAS  Google Scholar 

  • Jacobson KA (1998). Adenosine A3 receptors: novel ligands and paradoxical effects. Trends Pharmacol Sci 19(5):184–191

    Article  PubMed  CAS  Google Scholar 

  • Jacobson KA, Hoffmann C, Cattabeni F, Abbracchio MP (1999) Adenosine-induced cell death: evidence for receptor-mediated signalling. Apoptosis 4(3):197–211

    Article  PubMed  CAS  Google Scholar 

  • Kafka SH, Corbett R (1996) Selective adenosine A2A receptor/dopamine D2 receptor interactions in animal models of schizophrenia. Eur J Pharmacol 295(2–3):147–154

    Article  PubMed  CAS  Google Scholar 

  • Latini S, Bordoni F, Corradetti R, Pepeu G, Pedata F (1998) Temporal correlation between adenosine outflow and synaptic potential inhibition in rat hippocampal slices during ischemia-like conditions. Brain Res., 794, (2) 325-328.

    Article  PubMed  CAS  Google Scholar 

  • Latini S, Pedata F (2001) Adenosine in the central nervous system: release mechanisms and extracellular concentrations. J Neurochem 79(3):463–484

    Article  PubMed  CAS  Google Scholar 

  • Laudadio MA, Psarropoulou C (2004) The A3 adenosine receptor agonist 2-Cl-IB-MECA facilitates epileptiform discharges in the CA3 area of immature rat hippocampal slices. Epilepsy Res 59(2–3):83–94

    Article  PubMed  CAS  Google Scholar 

  • Lee KS, Schubert P, Heinemann U (1984) The anticonvulsive action of adenosine: a postsynaptic, dendritic action by a possible endogenous anticonvulsant. Brain Res 321(1):160–164

    Article  PubMed  CAS  Google Scholar 

  • Lee KS, Lowenkopf T (1993) Endogenous adenosine delays the onset of hypoxic depolarization in the rat hippocampus in vitro via an action at A1 receptors. Brain Res 609(1–2):313–315

    Article  PubMed  CAS  Google Scholar 

  • Lee JY, Jhun BS, Oh YT, Lee JH, Choe W, Baik HH, Ha J, Yoon KS, Kim SS, Kang I (2006) Activation of adenosine A3 receptor suppresses lipopolysaccharide-induced TNF-alpha production through inhibition of PI 3-kinase/Akt and NF-kappaB activation in murine BV2 microglial cells. Neurosci Lett 396(1):1–6

    Article  PubMed  CAS  Google Scholar 

  • Li T, Ren G, Lusardi T, Wilz A, Lan JQ, Iwasato T, Itohara S, Simon RP, Boison D (2008) Adenosine kinase is a target for the prediction and prevention of epileptogenesis in mice. J Clin Invest 118(2):571–582

    PubMed  CAS  Google Scholar 

  • Li T, Steinbeck JA, Lusardi T, Koch P, Lan JQ, Wilz A, Segschneider M, Simon RP, Brustle O, Boison D (2007) Suppression of kindling epileptogenesis by adenosine releasing stem cell-derived brain implants. Brain 130 Pt 5:1276–1288

    Article  PubMed  Google Scholar 

  • Liang BT, Jacobson KA (1998) A physiological role of the adenosine A3 receptor: sustained cardioprotection. Proc Natl Acad Sci U S A 95(12):6995–6999

    Article  PubMed  CAS  Google Scholar 

  • Linden J, Taylor HE, Robeva AS, Tucker AL, Stehle JH, Rivkees SA, Fink JS, Reppert SM (1993) Molecular cloning and functional expression of a sheep A3 adenosine receptor with widespread tissue distribution. Mol Pharmacol 44(3):524–532

    PubMed  CAS  Google Scholar 

  • Londos C, Cooper DM, Wolff J (1980) Subclasses of external adenosine receptors. Proc Natl Acad Sci U S A 77(5):2551–2554

    Article  PubMed  CAS  Google Scholar 

  • Lopes LV, Rebola N, Pinheiro PC, Richardson PJ, Oliveira CR, Cunha RA (2003) Adenosine A3 receptors are located in neurons of the rat hippocampus. Neuroreport 14 (12):1645–1648

    Article  PubMed  CAS  Google Scholar 

  • Macek TA, Schaffhauser H, Conn PJ (1998) Protein kinase C and A3 adenosine receptor activation inhibit presynaptic metabotropic glutamate receptor (mGluR) function and uncouple mGluRs from GTP-binding proteins. J Neurosci 18(16):6138–6146

    PubMed  CAS  Google Scholar 

  • Mauborgne A, Polienor H, Hamon M, Cesselin F, Bourgoin S (2002) Adenosine receptor-mediated control of in vitro release of pain-related neuropeptides from the rat spinal cord. Eur J Pharmacol 441(1–2) 47–55

    Article  PubMed  CAS  Google Scholar 

  • Meyerhof W, Muller-Brechlin R, Richter, D (1991a) Molecular cloning of a novel putative G-protein coupled receptor expressed during rat spermiogenesis. FEBS Lett 284(2):155–160

    Article  PubMed  CAS  Google Scholar 

  • Meyerhof W, Paust HJ, Schonrock C, Richter D (1991b) Cloning of a cDNA encoding a novel putative G-protein-coupled receptor expressed in specific rat brain regions. DNA Cell Biol 10(9):689–694

    Article  PubMed  CAS  Google Scholar 

  • Miller KJ, Hoffman BJ (1994) Adenosine A3 receptors regulate serotonin transport via nitric oxide and cGMP. J Biol Chem 269(44):27351–27356

    PubMed  CAS  Google Scholar 

  • Neary D, Snowden J (1996) Fronto-temporal dementia: nosology, neuropsychology, and neuropathology. Brain Cogn 31(2):176–187

    Article  PubMed  CAS  Google Scholar 

  • Nieber K, Hentschel S (2006) Signalling pathways of the adenosine A3 receptors in rat cortical neurons. In: Proceedings of the 8th international symposium on adenosine and adenine nucleotides, Ferrara, Italy, 24–28 May 2006

    Google Scholar 

  • Okada M, Kawata Y, Kiryu K, Mizuno K, Wada K, Tasaki H, Kaneko S (1997) Effects of adenosine receptor subtypes on hippocampal extracellular serotonin level and serotonin reuptake activity. J Neurochem 69(6):2581–2588

    Article  PubMed  CAS  Google Scholar 

  • Okada M, Kawata Y, Murakami T, Wada K, Mizuno K, Kondo T, Kaneko S (1999) Differential effects of adenosine receptor subtypes on release and reuptake of hippocampal serotonin. Eur J Neurosci 11(1):1–9

    Article  PubMed  CAS  Google Scholar 

  • Oliveira JC, Sebastião AM, Ribeiro JA (1991) Solubilized rat brain adenosine receptors have two high-affinity binding sites for 1,3-dipropyl-8-cyclopentylxanthine. J Neurochem 57(4):1165–1171

    Article  PubMed  CAS  Google Scholar 

  • Palmer TM, Benovic JL, Stiles GL (1995) Agonist-dependent phosphorylation and desensitization of the rat A3 adenosine receptor. Evidence for a G-protein-coupled receptor kinase-mediated mechanism. J Biol Chem 270(49):29607–29613

    CAS  Google Scholar 

  • Park TS, Van Wylen DG, Rubio R, Berne RM (1987) Interstitial fluid adenosine and sagittal sinus blood flow during bicuculline-seizures in newborn piglets. J Cereb Blood Flow Metab 7(5):633–639

    PubMed  CAS  Google Scholar 

  • Pearson T, Damian K, Lynas RE, Frenguelli BG (2006) Sustained elevation of extracellular adenosine and activation of A1 receptors underlie the post-ischaemic inhibition of neuronal function in rat hippocampus in vitro. J Neurochem 97(5):1357–1368

    Article  PubMed  CAS  Google Scholar 

  • Pilitsis JG, Kimelberg HK (1998) Adenosine receptor mediated stimulation of intracellular calcium in acutely isolated astrocytes. Brain Res 798(1–2):294–303

    PubMed  CAS  Google Scholar 

  • Pugliese AM, Latini S, Corradetti R, Pedata F (2003) Brief, repeated, oxygen–glucose deprivation episodes protect neurotransmission from a longer ischemic episode in the in vitro hippocampus: role of adenosine receptors. Br J Pharmacol 140(2):305–314

    Article  PubMed  CAS  Google Scholar 

  • Pugliese AM, Coppi E, Spalluto G, Corradetti R, Pedata F (2006) A3 adenosine receptor antagonists delay irreversible synaptic failure caused by oxygen and glucose deprivation in the rat CA1 hippocampus in vitro. Br J Pharmacol 147(5):524–532

    Article  PubMed  CAS  Google Scholar 

  • Pugliese AM, Coppi E, Volpini R, Cristalli G, Corradetti R, Jeong LS, Jacobson KA, Pedata F (2007) Role of adenosine A3 receptors on CA1 hippocampal neurotransmission during oxygen–glucose deprivation episodes of different duration. Biochem Pharmacol 74(5)768–779

    Google Scholar 

  • Ramkumar V, Stiles GL, Beaven MA, Ali H (1993) The A3 adenosine receptor is the unique adenosine receptor which facilitates release of allergic mediators in mast cells. J Biol Chem 268(23):16887–16890

    PubMed  CAS  Google Scholar 

  • Rebola N, Rodrigues RJ, Oliveira CR, Cunha RA (2005) Different roles of adenosine A1, A2A and A3 receptors in controlling kainate-induced toxicity in cortical cultured neurons. Neurochem Int 47(5):317–325

    Article  PubMed  CAS  Google Scholar 

  • Rebola N, Lujan R, Cunha RA, Mulle C (2008) Adenosine A2A receptors are essential for long-term potentiation of NMDA-EPSCs at hippocampal mossy fiber synapses. Neuron 57(1):121–134

    Article  PubMed  CAS  Google Scholar 

  • Reeves JJ, Jones CA, Sheehan MJ, Vardey CJ, Whelan CJ (1997) Adenosine A3 receptors promote degranulation of rat mast cells both in vitro and in vivo. Inflamm Res 46(5):180–184

    Article  PubMed  CAS  Google Scholar 

  • Ribeiro JA, Walker J (1975) The effects of adenosine triphosphate and adenosine diphosphate on transmission at the rat and frog neuromuscular junctions. Br J Pharmacol 54(2):213–218

    PubMed  CAS  Google Scholar 

  • Ribeiro JA, Sebastião AM (1984) Enhancement of tetrodotoxin-induced axonal blockade by adenosine, adenosine analogues, dibutyryl cyclic AMP and methylxanthines in the frog sciatic nerve. Br J Pharmacol 83(2):485–492

    PubMed  CAS  Google Scholar 

  • Ribeiro JA, Sebastião AM (1986) Adenosine receptors and calcium: basis for proposing a third (A3) adenosine receptor. Prog Neurobiol 26(3):179–209

    Article  PubMed  CAS  Google Scholar 

  • Rivkees SA (1994) Localization and characterization of adenosine receptor expression in rat testis. Endocrinology 135(6):2307–2313

    Article  PubMed  CAS  Google Scholar 

  • Rivkees SA, Thevananther S, Hao H (2000) Are A3 adenosine receptors expressed in the brain? Neuroreport 11(5):1025–1030

    Article  PubMed  CAS  Google Scholar 

  • Roseti C, Martinello K, Fucile S, Piccari V, Mascia A, Di Gennaro G, Quarato PP, Manfredi M, Esposito V, Cantore G, Arcella A, Simonato M, Fredholm BB, Limatola C, Miledi R, Eusebi F (2008) Adenosine receptor antagonists alter the stability of human epileptic GABAA receptors. Proc Natl Acad Sci U S A 105(39):15118–15123

    Article  PubMed  Google Scholar 

  • Rubaj A, Zgodzinski W, Sieklucka-Dziuba M (2003) The influence of adenosine A3 receptor agonist: IB-MECA, on scopolamine- and MK-801-induced memory impairment. Behav Brain Res 141(1):11–17

    Article  PubMed  CAS  Google Scholar 

  • Salvatore CA, Jacobson MA, Taylor HE, Linden J, Johnson RG (1993) Molecular cloning and characterization of the human A3 adenosine receptor. Proc Natl Acad Sci U S A 90(21):10365–10369

    Article  PubMed  CAS  Google Scholar 

  • Salvatore CA, Tilley SL, Latour AM, Fletcher DS, Koller BH, Jacobson MA (2000) Disruption of the A(3) adenosine receptor gene in mice and its effect on stimulated inflammatory cells. J Biol Chem 275(6):4429–4434

    Article  PubMed  CAS  Google Scholar 

  • Sanderson G, Scholfield CN (1986) Effects of adenosine uptake blockers and adenosine on evoked potentials of guinea-pig olfactory cortex. Pflugers Arch 406(1):25–30

    Article  PubMed  Google Scholar 

  • Sattin A, Rall TW (1970) The effect of adenosine and adenine nucleotides on the cyclic adenosine 3′, 5′-phosphate content of guinea pig cerebral cortex slices. Mol Pharmacol 6(1):13–23

    PubMed  CAS  Google Scholar 

  • Sawynok J, Zarrindast MR, Reid AR, Doak GJ (1997) Adenosine A3 receptor activation produces nociceptive behaviour and edema by release of histamine and 5-hydroxytryptamine. Eur J Pharmacol 333(1):1–7

    Article  PubMed  CAS  Google Scholar 

  • Sawynok J (1998) Adenosine receptor activation and nociception. Eur J Pharmacol 347(1):1–11

    Article  PubMed  CAS  Google Scholar 

  • Sawynok J, Reid AR, Esser MJ (1999) Peripheral antinociceptive action of amitriptyline in the rat formalin test: involvement of adenosine. Pain 80(1–2):45–55

    Article  PubMed  CAS  Google Scholar 

  • Sebastião AM, de Mendonca A, Moreira T, Ribeiro JA (2001) Activation of synaptic NMDA receptors by action potential-dependent release of transmitter during hypoxia impairs recovery of synaptic transmission on reoxygenation. J Neurosci 21(21):8564–8571

    PubMed  Google Scholar 

  • Shen H, Chen GJ, Harvey BK, Bickford PC, Wang Y (2005) Inosine reduces ischemic brain injury in rats. Stroke 36(3):654–659

    Article  PubMed  CAS  Google Scholar 

  • Sjolund KF, Sollevi A, Segerdahl M, Lundeberg T (1997) Intrathecal adenosine analog administration reduces substance P in cerebrospinal fluid along with behavioral effects that suggest antinociception in rats. Anesth Analg 85(3):627–632

    Article  PubMed  CAS  Google Scholar 

  • Somjen GG (2001) Mechanisms of spreading depression and hypoxic spreading depression-like depolarization. Physiol Rev 81(3):1065–1096

    PubMed  CAS  Google Scholar 

  • Stella L, de Novellis V, Marabese I, Berrino L, Maione S, Filippelli A, Rossi F (1998) The role of A3 adenosine receptors in central regulation of arterial blood pressure. Br J Pharmacol 125(3):437–440

    Article  PubMed  CAS  Google Scholar 

  • Tanaka E, Yamamoto S, Kudo Y, Mihara S, Higashi H (1997) Mechanisms underlying the rapid depolarization produced by deprivation of oxygen and glucose in rat hippocampal CA1 neurons in vitro. J Neurophysiol 78(2):891–902

    PubMed  CAS  Google Scholar 

  • Tilley SL, Wagoner VA, Salvatore CA, Jacobson MA, Koller BH (2000) Adenosine and inosine increase cutaneous vasopermeability by activating A(3) receptors on mast cells. J Clin Invest 105(3):361–367

    Article  PubMed  CAS  Google Scholar 

  • Trincavelli ML, Tuscano D, Marroni M, Falleni A, Gremigni V, Ceruti S, Abbracchio MP, Jacobson KA, Cattabeni F, Martini C (2002) A3 adenosine receptors in human astrocytoma cells: agonist-mediated desensitization, internalization, and down-regulation. Mol Pharmacol 62(6):1373–1384

    Article  PubMed  CAS  Google Scholar 

  • van Calker D, Muller M, Hamprecht B (1979) Adenosine regulates via two different types of receptors, the accumulation of cyclic AMP in cultured brain cells. J Neurochem 33(5):999–1005

    Article  PubMed  Google Scholar 

  • Vianna EP, Ferreira AT, Dona F, Cavalheiro EA, Silva Fernandes MJ (2005) Modulation of seizures and synaptic plasticity by adenosinergic receptors in an experimental model of temporal lobe epilepsy induced by pilocarpine in rats. Epilepsia 46(Suppl 5):166–173

    Article  PubMed  CAS  Google Scholar 

  • Volpini R, Costanzi S, Lambertucci C, Taffi S, Vittori S, Klotz KN, Cristalli G (2002) N(6)-alkyl-2-alkynyl derivatives of adenosine as potent and selective agonists at the human adenosine A(3) receptor and a starting point for searching A(2B) ligands. J Med Chem 45(15):3271–3279

    Article  PubMed  CAS  Google Scholar 

  • Volpini R, Dal Ben D, Lambertucci C, Taffi S, Vittori S, Klotz KN, Cristalli G (2007) N6-methoxy-2-alkynyladenosine derivatives as highly potent and selective ligands at the human A3 adenosine receptor. J Med Chem 50(6):1222–1230

    Article  PubMed  CAS  Google Scholar 

  • von Arnim CA, Timmler M, Ludolph AC, Riepe MW (2000) Adenosine receptor up-regulation: initiated upon preconditioning but not upheld. Neuroreport 11(6):1223–1226

    Article  Google Scholar 

  • von Arnim CA, Spoelgen R, Peltan ID, Deng M, Courchesne S, Koker M, Matsui T, Kowa H, Lichtenthaler SF, Irizarry MC, Hyman BT (2006) GGA1 acts as a spatial switch altering amyloid precursor protein trafficking and processing. J Neurosci 26(39):9913–9922

    Article  CAS  Google Scholar 

  • von Lubitz DK (1999) Adenosine and cerebral ischemia: therapeutic future or death of a brave concept? Eur J Pharmacol 371(1):85–102

    Article  Google Scholar 

  • von Lubitz DK, Lin RC, Popik P, Carter MF, Jacobson KA (1994) Adenosine A3 receptor stimulation and cerebral ischemia. Eur J Pharmacol 263(1–2):59–67

    Google Scholar 

  • von Lubitz DK, Carter MF, Deutsch SI, Lin RC, Mastropaolo J, Meshulam Y, Jacobson KA (1995) The effects of adenosine A3 receptor stimulation on seizures in mice. Eur J Pharmacol 275(1):23–29

    Article  Google Scholar 

  • von Lubitz DK, Ye W, McClellan J, Lin RC (1999) Stimulation of adenosine A3 receptors in cerebral ischemia. Neuronal death, recovery, or both? Ann N Y Acad Sci 890:93–106

    Article  Google Scholar 

  • von Lubitz DK, Simpson KL, Lin RC (2001) Right thing at a wrong time? Adenosine A3 receptors and cerebroprotection in stroke. Ann N Y Acad Sci 939:85–96

    Article  Google Scholar 

  • Wittendorp MC, Boddeke HW, Biber K (2004) Adenosine A3 receptor-induced CCL2 synthesis in cultured mouse astrocytes. Glia 46(4):410–418

    Article  PubMed  Google Scholar 

  • Wu WP, Hao JX, Halldner-Henriksson L, Xu XJ, Jacobson MA, Wiesenfeld-Hallin Z, Fredholm BB (2002) Decreased inflammatory pain due to reduced carrageenan-induced inflammation in mice lacking adenosine A3 receptors. Neuroscience 114(3):523–527

    Article  PubMed  CAS  Google Scholar 

  • Yaar R, Lamperti ED, Toselli PA, Ravid K (2002) Activity of the A3 adenosine receptor gene promoter in transgenic mice: characterization of previously unidentified sites of expression. FEBS Lett 532(3):267–272

    Article  PubMed  CAS  Google Scholar 

  • Yao Y, Sei Y, Abbracchio MP, Jiang JL, Kim YC, Jacobson KA (1997) Adenosine A3 receptor agonists protect HL-60 and U-937 cells from apoptosis induced by A3 antagonists. Biochem Biophys Res Commun 232(2):317–322

    Article  PubMed  CAS  Google Scholar 

  • Yoon MH, Bae HB, Choi JI (2005) Antinociception of intrathecal adenosine receptor subtype agonists in rat formalin test. Anesth Analg 101(5):1417–1421

    Article  PubMed  CAS  Google Scholar 

  • Yoon MH, Bae HB, Choi JI, Kim SJ, Chung ST, Kim CM (2006) Roles of adenosine receptor subtypes in the antinociceptive effect of intrathecal adenosine in a rat formalin test. Pharmacology 78(1):21–26

    Article  PubMed  CAS  Google Scholar 

  • Zhao Z, Francis C, Ravid K (1999) Characterization of the mouse A3 adenosine receptor gene: exon/intron organization and promoter activity. Genomics 57(1):152–155

    Article  PubMed  CAS  Google Scholar 

  • Zhong H, Shlykov SG, Molina JG, Sanborn BM, Jacobson MA, Tilley SL, Blackburn MR (2003) Activation of murine lung mast cells by the adenosine A3 receptor. J Immunol 171(1):338–345

    PubMed  CAS  Google Scholar 

  • Zhou QY, Li C, Olah ME, Johnson RA, Stiles GL, Civelli O (1992) Molecular cloning and characterization of an adenosine receptor: the A3 adenosine receptor. Proc Natl Acad Sci U S A 89(16):7432–7436

    Article  PubMed  CAS  Google Scholar 

  • Zhu CB, Hewlett WA, Feoktistov I, Biaggioni I, Blakely RD (2004) Adenosine receptor, protein kinase G, and p38 mitogen-activated protein kinase-dependent up-regulation of serotonin transporters involves both transporter trafficking and activation. Mol Pharmacol 65(6):1462–1474

    Article  PubMed  CAS  Google Scholar 

  • Zhu CB, Steiner JA, Munn JL, Daws LC, Hewlett WA, Blakely RD (2007) Rapid stimulation of presynaptic serotonin transport by A(3) adenosine receptors. J Pharmacol Exp Ther 322(1):332–340

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The laboratory work of the authors is supported by research grants from Fundação para a Ciência e Tecnologia (FCT), Gulbenkian Foundation, PRIN-MIUR Ministero dell’Istruzione, dell’Università e della Ricerca, Ente Cassa di Risparmio, Firenze, Italy and European Union (COST B30).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felicita Pedata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Pedata, F., Pugliese, A.M., Sebastião, A.M., Ribeiro, J.A. (2010). Adenosine A3 Receptor Signaling in the Central Nervous System. In: Borea, P. (eds) A3 Adenosine Receptors from Cell Biology to Pharmacology and Therapeutics. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3144-0_9

Download citation

Publish with us

Policies and ethics