Skip to main content

A3 Adenosine Receptor Agonists: History and Future Perspectives

  • Chapter
  • First Online:
Book cover A3 Adenosine Receptors from Cell Biology to Pharmacology and Therapeutics

Abstract

IB-MECA, the first selective A3 adenosine receptor (A3AR) agonist, was reported in 1993, and since then numerous adenosine derivatives have been modified to optimize their interaction with the A3AR. IB-MECA (CF101) and its 2-chloro analogue, Cl-IB-MECA (CF102) are in Phase II clinical trials for treatment of autoimmune inflammatory diseases and cancer, respectively. Additional structural modifications made at the N 6 and 2 positions and in the ribose moiety of adenosine derivatives have led to even more potent and selective A3AR agonists. A newer generation of A3AR agonists incorporates the (N)-methanocarba ring system in place of the ribose moiety, leading to increased affinity and subtype selectivity. The affinity of certain nucleoside derivatives at the A3AR has been found to be species-dependent. Combinations of efficacy-lowering substitutions can convert agonists into partial agonists and even A3AR antagonists. In general, A3 agonists have a cytoprotective effect, for example in the heart, brain, and skeletal muscle. Contradictory (or opposite) pharmacological effects of A3AR agonists have also been noted, depending on the dose and system, which has led to a proposed concept of “effect reversal” for this receptor. The potency and efficacy of various adenosine derivatives at the A3AR also depends on the second messenger system being studied. Differential effects of A3AR agonists in the inhibition of adenylate cyclase, stimulation of [35S]GTPγS binding, and translocation of arrestin, and other effector systems may be compared. The potency and or efficacy of A3AR agonists may also be enhanced by allosteric modulators. Several heterocyclic classes of positive allosteric modulators of the A3AR, including 1H-imidazo-[4,5-c]quinolines such as LUF6000 (N-(3,4-dichloro-phenyl)-2-cyclohexyl-1H-imidazo[4,5-c]quinolin-4-amine) and pyridinylisoquinolines, have been reported. Structure activity relationships (SARs) of both agonists and allosteric enhancers are covered in detail in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AR:

Adenosine receptor

cAMP:

Adenosine 3′,5′-cyclic phosphate

CHO:

Chinese hamster ovary

Cl-IB-MECA:

2-Chloro-N 6-(3-iodobenzyl)-5′-N-methylcarboxamidoadenosine

DBXRM:

7-β-D-Ribofuronamide

DU124183:

2-Cyclopentyl-4-phenylamino-1H-imidazo[4,5-c]quinoline

GPCR:

G protein-coupled receptor

h:

Human

HEK293 cells:

Human embryonic kidney 293 cells

I-AB-MECA:

N 6-(4-Amino-3-iodobenzyl)-5′-N-methylcabroxamidoadenosine

IB-MECA:

N 6-(3-Iodobenzyl)-5′-N-methylcarboxamidoadenosine

LJ-529:

2-Chloro-N 6-(3-iodobenzyl)-4′-thioadenosine-5′-methyluronamide

LJ-1251:

(2R,3R,4S)-2-(2-Chloro-6-(3-iodobenzylamino)-9H-purin-9-yl)tetrahydrothiophene-3,4-diol

LJ-1416:

(2R,3R,4S)-2-(2-Chloro-6-(3-chlorobenzylamino)-9H-purin-9-yl)tetrahydrothiophene-3,4-diol

LUF6000:

N-(3,4-Dichloro-phenyl)-2-cyclohexyl-1H-imidazo[4,5-c]quinolin-4-amine

Me:

Methyl

MRS1292:

(2R,3R,4S,5S)-2-[N 6-3-Iodobenzyl)adenos-9’-yl]-7-aza-1-oxa-6-oxospiro[4.4]-nonan-4,5-diol

MRS3558:

((1’R,2’R,3’S,4’R,5’S)-4-{2-Chloro-6-[(3-iodophenylmethyl)amino]purin-9-yl}-1-(methylaminocarbonyl)bicyclo-[3.1.0]-hexane-2,3-diol)

MRS5127:

(1′R,2′R,3′S,4′R,5′S)-4′-[2-Chloro-6-(3-iodobenzylamino)-purine]-2′,3′-O-dihydroxybicyclo-[3.1.0]hexane

MRS5147:

(1′R,2′R,3′S,4′R,5′S)-4′-[2-Chloro-6-(3-bromobenzylamino)-purine]-2′,3′-O-dihydroxybicyclo-[3.1.0]hexane

MRS5151:

(1′S,2′R,3′S,4′S,5′S)-4′-[6-(3-Chlorobenzylamino)-2-(5-hydroxycarbonyl-1-pentynyl)-9-yl]-2′,3′-dihydroxybicyclo[3.1.0]hexane-1′-carboxylic acid N-methylamide

NECA:

Adenosine 5′-N-ethyluronamide

QSAR:

Quantitative structure–activity relationships

r:

Rat

SARs:

Structure–activity relationships

VUF5455:

4-Methoxy-N-[7-methyl-3-(2-pyridinyl)-1-isoquinolinyl]benzamide

References

  • Auchampach JA, Ge ZD, Wan TC, Moore J, Gross GJ (2003) A3 adenosine receptor agonist IB-MECA reduces myocardial ischemia-reperfusion injury in dogs. Am J Physiol-Heart Circ Physiol 285(2):H607–613

    CAS  PubMed  Google Scholar 

  • Baharav E, Bar-Yehuda S, Madi L, Silberman D, Rath-Wolfson L, Halpren M, Ochaion A, Weinberger A, Fishman P (2005) Antiinflammatory effect of A3 adenosine receptor agonists in murine autoimmune arthritis models. J Rheumatol 32(3):469–476

    CAS  PubMed  Google Scholar 

  • Baraldi PG, Cacciari B, Pineda de las Infantas MJ, Romagnoli R, Spalluto G, Volpini R, Costanzi S, Vittori S, Cristalli G, Melman N, Park K-S, Ji X-D, Jacobson KA (1998) Synthesis and biological activity of a new series of N 6-arylcarbamoyl-, 2-(ar)alkynyl-N 6-arylcarbamoyl, and N 6-carboxamido- derivatives of adenosine-5′-N-ethyluronamide (NECA). J Med Chem 41(17):3174–3185

    Google Scholar 

  • Bar-Yehuda S, Stemmer SM, Madi L, Castel D, Ochaion A, Cohen S, Barer F, Zabutti A, Perez-Liz G, Del Valle L, Fishman P (2008) The A3 adenosine receptor agonist CF102 induces apoptosis of hepatocellular carcinoma via de-regulation of the Wnt and NF-kappaB signal transduction pathways. Int J Oncol 33(2):287–295

    CAS  PubMed  Google Scholar 

  • Beukers MW, Chang LC, von Frijtag Drabbe Künzel JK, Mulder-Krieger T, Spanjersberg RF, Brussee J, IJzerman AP (2004) New, non-adenosine, high-potency agonists for the human adenosine A2B receptor with an improved selectivity profile compared to the reference agonist N-ethylcarboxamidoadenosine. J Med Chem 47(15):3707–3709

    Google Scholar 

  • Brown RA, Spina D, Page CP (2008) Adenosine receptors and asthma. Br J Pharmacol 153(Suppl 1):S446–S456

    CAS  PubMed  Google Scholar 

  • Chang LC, von Frijtag Drabbe Künzel JK, Mulder-Krieger T, Spanjersberg RF, Roerink SF, van den Hout G, Beukers MW, Brussee J, IJzerman AP (2005) A series of ligands displaying a remarkable agonistic-antagonistic profile at the adenosine A1 receptor. J Med Chem 48(6):2045–2053

    Google Scholar 

  • Christopoulos A (2002) Allosteric binding sites on cell-surface receptors: novel targets for drug discovery. Nat Rev Drug Discov 1(3):198–210

    Article  CAS  PubMed  Google Scholar 

  • Cordeaux Y, Briddon SJ, Alexander SP, Kellam B, Hill SJ (2008) Agonist-occupied A3 adenosine receptors exist within heterogeneous complexes in membrane microdomains of individual living cells. FASEB J 22(3):850–860

    Article  CAS  PubMed  Google Scholar 

  • Cosyn L, Gao ZG, Van Rompaey P, Lu C, Jacobson KA, Van Calenbergh S (2006a) Synthesis of hypermodified adenosine derivatives as selective adenosine A3 receptor ligands. Bioorg Med Chem 14(5):1403–1412

    Article  CAS  PubMed  Google Scholar 

  • Cosyn L, Palaniappan KK, Kim SK, Duong HT, Gao ZG, Jacobson KA, Van Calenbergh S (2006b) 2-Triazole-substituted adenosines: a new class of selective A3 adenosine receptor agonists, partial agonists, and antagonists. J Med Chem 49(25):7373–7383

    Article  CAS  PubMed  Google Scholar 

  • DeNinno MP, Masamune H, Chenard LK, DiRico KJ, Eller C, Etienne JB, Tickner JE, Kennedy SP, Knight DR, Kong J, Oleynek JJ, Tracey WR, Hill RJ (2003) 3′-Aminoadenosine-5′-uronamides: discovery of the first highly selective agonist at the human adenosine A3 receptor. J Med Chem 46(3):353–355

    Article  CAS  PubMed  Google Scholar 

  • DeNinno MP, Masamune H, Chenard LK, DiRico KJ, Eller C, Etienne JB, Tickner JE, Kennedy SP, Knight DR, Kong J, Oleynek JJ, Tracey WR, Hill RJ (2006) The synthesis of highly potent, selective, and water-soluble agonists at the human adenosine A3 receptor. Bioorg Med Chem Lett 16(9):2525–2527

    Google Scholar 

  • Eckle T, Krahn T, Grenz A, Köhler D, Mittelbronn M, Ledent C, Jacobson MA, Osswald H, Thompson LF, Unertl K, Eltzschig HK (2007) Cardioprotection by ecto-5′-nucleotidase (CD73) and A2B adenosine receptors. Circulation 115(12):1581–1590

    Article  CAS  PubMed  Google Scholar 

  • Elzein E, Palle V, Wu Y, Maa T, Zeng D, Zablocki J (2004) 2-Pyrazolyl-N 6-substituted adenosine derivatives as high affinity and selective adenosine A3 receptor agonists. J Med Chem 47(19):4766–4773

    Article  CAS  PubMed  Google Scholar 

  • Fredholm BB, IJzerman AP, Jacobson KA, Klotz KN, Linden J (2001) International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev 53(4):527–552

    CAS  PubMed  Google Scholar 

  • Gallo-Rodriguez C, Ji X-D, Melman N, Siegman BD, Sanders LH, Orlina J, Fischer B, Pu Q-L, Olah ME, van Galen PJM, Stiles GL, Jacobson KA (1994). Structure–activity relationships of N 6-benzyladenosine-5′-uronamides as A3-selective adenosine agonists. J Med Chem 37(5):636–646

    Google Scholar 

  • Gao ZG, Van Muijlwijk-Koezen JE, Chen A, Müller CE, Ijzerman AP, Jacobson KA (2001) Allosteric modulation of A3 adenosine receptors by a series of 3-(2-pyridinyl)isoquinoline derivatives. Mol Pharmacol 60(5):1057–1063

    CAS  PubMed  Google Scholar 

  • Gao ZG, Kim SG, Soltysiak KA, Melman N, Ijzerman AP, Jacobson KA (2002a) Selective allosteric enhancement of agonist binding and function at human A3 adenosine receptors by a series of imidazoquinoline derivatives. Mol Pharmacol 62(1):81–89

    Article  CAS  PubMed  Google Scholar 

  • Gao ZG, Kim SK, Biadatti T, Chen W, Lee K, Barak D, Kim SG, Johnson CR, Jacobson KA (2002b) Structural determinants of A3 adenosine receptor activation: nucleoside ligands at the agonist/antagonist boundary. J Med Chem 45(20):4471–84

    Article  CAS  PubMed  Google Scholar 

  • Gao ZG, Chen A, Barak D, Kim SK, Müller CE, Jacobson KA (2002c) Identification by site-directed mutagenesis of residues involved in ligand recognition and activation of the human A3 adenosine receptor. J Biol Chem 277(21):19056–19063

    Article  CAS  PubMed  Google Scholar 

  • Gao ZG, Blaustein J, Gross AS, Melman N, Jacobson KA (2003) N 6-Substituted adenosine derivatives: selectivity, efficacy, and species differences at A3 adenosine receptors. Biochem Pharmacol 65(10):1675–1684

    Article  CAS  PubMed  Google Scholar 

  • Gao ZG, Mamedova L, Chen P, Jacobson KA (2004) 2-Substituted adenosine derivatives: affinity and efficacy at four subtypes of human adenosine receptors. Biochem Pharmacol 68(10):1985–1993

    Article  CAS  PubMed  Google Scholar 

  • Gao ZG, Kim SK, IJzerman AP, Jacobson KA (2005) Allosteric modulation of the adenosine family of receptor. Mini Rev Med Chem 5(6):545–553

    Article  CAS  PubMed  Google Scholar 

  • Gao ZG, Jacobson KA (2008) Translocation of arrestin induced by human A3 adenosine receptor ligands in an engineered cell line: comparison with G protein-dependent pathways. Pharmacol Res 57(4):303–311

    Article  CAS  PubMed  Google Scholar 

  • Gao ZG, Ye K, Göblyös A, IJzerman AP, Jacobson KA (2008) Flexible modulation of agonist efficacy at the human A3 adenosine receptor by an imidazoquinoline allosteric enhancer LUF6000 and its analogues. BMC Pharmacol 8:20

    Article  PubMed  Google Scholar 

  • Gao ZG, Teng B, Wu H, Joshi BV, Griffiths GL, Jacobson KA (2009) Synthesis and pharmacological characterization of [125I]MRS1898, a high affinity, selective radioligand for the rat A3 adenosine receptor. Purinergic Signalling, 5:31–37

    Article  PubMed  Google Scholar 

  • Göblyös A, Gao ZG, Brussee J, Connestari R, Neves Santiago S, Ye K, IJzerman AP, Jacobson KA (2006) Structure activity relationships of 1H-imidazo[4, 5-c]quinolin-4-amine derivatives new as allosteric enhancers of the A3 adenosine receptor. J Med Chem 49(11):3354–3361

    Article  PubMed  Google Scholar 

  • Gessi S, Merighi S, Varani K, Leung E, Mac Lennan S, Borea PA (2008) The A3 adenosine receptor: an enigmatic player in cell biology. Pharmacol Ther 117(1):123–140

    Article  CAS  PubMed  Google Scholar 

  • Haskó G, Linden J, Cronstein B, Pacher P (2008) Adenosine receptors: therapeutic aspects for inflammatory and immune diseases. Nat Rev Drug Discov 7(9):759–770

    Article  PubMed  Google Scholar 

  • Heitman LH, Göblyös A, Zweemer AM, Bakker R, Mulder-Krieger T, van Veldhoven JP, de Vries H, Brussee J, Ijzerman AP (2009) A series of 2,4-disubstituted quinolines as a new class of allosteric enhancers of the adenosine A3 receptor. J Med Chem 52(4):926–931

    Google Scholar 

  • Jaakola VP, Griffith MT, Hanson MA, Cherezov V, Chien EY, Lane JR, Ijzerman AP, Stevens RC (2008) The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science 322(5905):1211–1217

    Google Scholar 

  • Jacobson KA, Nikodijevic O, Shi D, Gallo-Rodriguez C, Olah ME, Stiles GL, Daly JW (1993) A role for central A3-adenosine receptors: mediation of behavioral depressant effects. FEBS Lett 336(1):57–60

    Article  CAS  PubMed  Google Scholar 

  • Jacobson KA, von Lubitz DKJE, Daly JW, Fredholm BB (1996) Adenosine receptor ligands: differences with acute and chronic treatment. Trends Pharmacol Sci 17(3):108–113

    Article  CAS  PubMed  Google Scholar 

  • Jacobson KA, Ji X-D, Li AH, Melman N, Siddiqui MA, Shin KJ, Marquez VE, Ravi RG (2000) Methanocarba analogues of purine nucleosides as potent and selective adenosine receptor agonists. J Med Chem 43(11):2196–2203

    Google Scholar 

  • Jacobson KA, Gao ZG (2006) Adenosine receptors as therapeutic targets. Nat Rev Drug Discov 5(3):247–264

    Article  CAS  PubMed  Google Scholar 

  • Jeong LS, Jin DZ, Kim HO, Shin DH, Moon HR, Gunaga P, Chun MW, Kim YC, Melman N, Gao Z-G, Jacobson KA (2003) N 6-Substituted D-4′-thioadenosine-5′-methyluronamides: Potent and selective agonists at the human A3 adenosine receptor. J Med Chem 46(18):3775–3777

    Google Scholar 

  • Jeong LS, Lee HW, Jacobson KA, Kim HO, Shin DH, Lee JA, Gao ZG, Lu C, Duong HT, Gunaga P, Lee SK, Jin DZ, Chun MW, Moon HR (2006a) Structure–activity relationships of 2-chloro-N 6-substituted-4′-thioadenosine-5′-uronamides as highly potent and selective agonists at the human A3 adenosine receptor. J Med Chem 49(1):273–281

    Article  CAS  PubMed  Google Scholar 

  • Jeong LS, Lee HW, Kim HO, Jung JY, Gao ZG, Duong HT, Rao S, Jacobson KA, Shin DH, Lee JA, Gunaga P, Lee SK, Jin DZ, Chun MW (2006c) Design, synthesis, and biological activity of N 6-substituted-4′-thioadenosines at the human A3 adenosine receptor. Bioorg Med Chem 14(14):4718–4730

    Google Scholar 

  • Jeong LS, Pal S, Choe SA, Choi WJ, Jacobson KA, Gao ZG, Klutz AM, Hou X, Kim HO, Lee HW, Lee SK, Tosh DK, Moon HR (2008) Structure activity relationships of truncated D- and L-4′-thioadenosine derivatives as species-independent A3 adenosine receptor antagonists. J Med Chem 51(20):6609–6613

    Article  CAS  PubMed  Google Scholar 

  • Kim HO, Ji X-d., Siddiqi SM, Olah ME, Stiles GL, Jacobson KA (1994a). 2-Substitution of N 6-benzyladenosine-5′-uronamides enhances selectivity for A3-adenosine receptors. J Med Chem 37(21):3614–3621

    Google Scholar 

  • Kim SK, Gao Z-G, Van Rompaey P, Gross AS, Chen A, Van Calenbergh S, Jacobson KA (2003) Modeling the adenosine receptors: Comparison of binding domains of A2A agonist and antagonist. J Med Chem 46(23):4847–4859

    Google Scholar 

  • Kim SK, Gao ZG, Jeong LS, Jacobson KA (2006) Docking studies of agonists and antagonists suggest an activation pathway of the A3 adenosine receptor. J Mol Graph Model 25(4):562–577

    Article  CAS  PubMed  Google Scholar 

  • Kim Y, Klutz AM, Jacobson KA (2008) Systematic investigation of polyamidoamine dendrimers surface-modified with poly(ethylene glycol) for drug delivery applications: synthesis, characterization, and evaluation of cytotoxicity. Bioconjug Chem 19(8):1660–1672

    Article  CAS  PubMed  Google Scholar 

  • Kim Y, de Castro S, Gao ZG, IJzerman AP, Jacobson KA (2009) Novel 2- and 4-substituted 1H-imidazo[4, 5-c]quinolin-4-amine derivatives as allosteric modulators of the A3 adenosine receptor. J Med Chem 52(7):2098–2108

    Article  CAS  PubMed  Google Scholar 

  • Lee K, Ravi RG, Ji X-d, Marquez VE, Jacobson KA (2001). Ring-constrained (N)-methanocarba-nucleosides as adenosine receptor agonists: Independent 5′-uronamide and 2′-deoxy modifications. Bioorg Med Chem Lett 11(10):1333–1337

    Google Scholar 

  • Lopes LV, Rebola N, Pinheiro PC, Richardson PJ, Oliveira CR, Cunha RA (2003) Adenosine A3 receptors are located in neurons of the rat hippocampus. NeuroReport 14(12):1645–1648

    Article  CAS  PubMed  Google Scholar 

  • Marquez VE, Siddiqui MA, Ezzitouni A, Russ P, Wang J, Wagner RW, Matteucci MD (1996) Nucleosides with a twist. Can fixed forms of sugar ring pucker influence biological activity in nucleosides and oligonucleotides. J Med Chem 39(19):3739–3747

    Google Scholar 

  • Matot I, Weininger CF, Zeira E, Galun E, Joshi BV, Jacobson KA (2006) A3 Adenosine receptors and mitogen activated protein kinases in lung injury following in-vivo reperfusion. Crit Care 10(2):R65

    Article  PubMed  Google Scholar 

  • Melman A, Gao ZG, Kumar D, Wan TC, Gizewski E, Auchampach JA, Jacobson KA (2008a) Design of (N)-methanocarba adenosine 5′-uronamides as species-independent A3 receptor-selective agonists. Bioorg Med Chem Lett 18(9):2813–2819

    Article  CAS  PubMed  Google Scholar 

  • Melman A, Wang B, Joshi BV, Gao ZG, de Castro S, Heller CL, Kim SK, Jeong LS, Jacobson KA (2008b). Selective A3 adenosine receptor antagonists derived from nucleosides containing a bicyclo[3.1.0]hexane ring system. Bioorg Med Chem 16(18):8546–8556

    Google Scholar 

  • Meyerhof W, Müller-Brechlin R, Richter D (1991) Molecular cloning of a novel putative G-protein coupled receptor expressed during rat spermiogenesis. FEBS Lett 284(2):155–160

    Article  CAS  PubMed  Google Scholar 

  • Müller CE (2003) Medicinal chemistry of adenosine A3 receptor ligands. Curr Topics Med Chem 3(4):445–462

    Article  Google Scholar 

  • Ohana G, Bar-Yehuda S, Barer F, Fishman P (2001) Differential effect of adenosine on tumor and normal cell growth: focus on the A3 adenosine receptor. J Cell Physiol 186(1):19–23

    Google Scholar 

  • Ohno M, Gao ZG, Van Rompaey P, Tchilibon S, Kim SK, Harris BA, Gross AS, Duong HT, Van Calenbergh S, Jacobson KA (2004) Modulation of adenosine receptor affinity and intrinsic efficacy in nucleosides substituted at the 2-position. Bioorg Med Chem 12(11):2995–3007

    Article  CAS  PubMed  Google Scholar 

  • Pal S, Choi WJ, Choe SA, Heller CL, Gao ZG, Chinn M, Jacobson KA, Hou X, Lee SK, Kim HO, Jeong LS (2009) Structure–activity relationships of truncated adenosine derivatives as highly potent and selective human A3 adenosine receptor antagonists. Bioorg Med Chem 17:3733–3788

    Google Scholar 

  • Salvatore CA, Jacobson MA, Taylor HE, Linden J, Johnson RG (1993) Molecular cloning and characterization of the human A3 adenosine receptor. Proc Natl Acad Sci U S A 90(21):10365–10369

    Article  CAS  PubMed  Google Scholar 

  • Shneyvays V, Mamedova L, Zinman T, Jacobson KA, Shainberg A (2001) Activation of A3 adenosine receptor protects against doxorubicin-induced cardiotoxicity. J Mol Cell Cardiol 33(6):1249–1261

    Article  CAS  PubMed  Google Scholar 

  • Schulte G, Fredholm BB (2003) Signalling from adenosine receptors to mitogen-activated protein kinases. Cell Signal 15(9):813–827

    Article  CAS  PubMed  Google Scholar 

  • Strickler J, Jacobson KA, Liang BT (1996) Direct preconditioning of cultured chick ventricular myocytes: novel functions of cardiac adenosine A2A and A3 receptors. J Clin Invest 98(8):1773–1779

    Article  CAS  PubMed  Google Scholar 

  • Tchilibon S, Kim SK, Gao ZG, Harris BA, Blaustein J, Gross AS, Melman N, Jacobson KA (2004) Exploring distal regions of the A3 adenosine receptor binding site: sterically-constrained N 6-(2-phenylethyl)adenosine derivatives as potent ligands. Bioorg Med Chem 12(9):2021–2034

    Article  CAS  PubMed  Google Scholar 

  • Tchilibon S, Joshi BV, Kim SK, Duong HT, Gao ZG, Jacobson KA (2005) (N)-Methanocarba 2, N6-disubstituted adenine nucleosides as highly potent and selective A3 adenosine receptor agonists. J Med Chem 48(6):1745–1758

    Article  CAS  PubMed  Google Scholar 

  • Tracey WR, Magee WP, Oleynek JJ, Hill RJ, Smith AH, Flynn DM, Knight DR (2003) Novel N6-substituted adenosine 5′-N-methyluronamides with high selectivity for human adenosine A3 receptors reduce ischemic myocardial injury. Am J Physiol-Heart Circ Physiol 285(6):H2780–H2787

    CAS  PubMed  Google Scholar 

  • van Galen PJ, Nissen P, van Wijngaarden I, Ijzerman AP, Soudijn W (1991) 1H-imidazo[4, 5-c]quinolin-4-amines: novel non-xanthine adenosine antagonists. J Med Chem 34(3):1202–1206

    Article  PubMed  Google Scholar 

  • van Galen PJ, van Bergen AH, Gallo-Rodriguez C, Melman N, Olah ME, Ijzerman AP, Stiles GL, Jacobson KA (1994) A binding site model and structure–activity relationships for the rat A3 adenosine receptor. Mol Pharmacol 45(6):1101–1111

    PubMed  Google Scholar 

  • Van Rompaey P, Jacobson KA, Gross AS, Gao ZG, Van Calenbergh S (2005) Exploring human adenosine A3 receptor complementarity and activity for adenosine analogues modified in the ribose and purine moiety. Bioorg Med Chem 13(4):973–983

    Article  PubMed  Google Scholar 

  • van Tilburg EW, von Frijtag Drabbe Kunzel J, de Groote M, IJzerman AP (2002) 2, 5’-Disubstituted adenosine derivatives: evaluation of selectivity and efficacy for the adenosine A1, A2A, and A3 receptor. J Med Chem 45(2):420–429

    Article  PubMed  Google Scholar 

  • Volpini R, Costanzi S, Lambertucci C, Taffi S, Vittori S, Klotz KN, Cristalli G (2002) N 6-alkyl-2-alkynyl derivatives of adenosine as potent and selective agonists at the human adenosine A3 receptor and a starting point for searching A2B ligands. J Med Chem 45(15):3271–3279

    Article  CAS  PubMed  Google Scholar 

  • Volpini R, Dal Ben D, Lambertucci C, Taffi S, Vittori S, Klotz KN, Cristalli GJ (2007) N 6-methoxy-2-alkynyladenosine derivatives as highly potent and selective ligands at the human A3 adenosine receptor. J Med Chem 50(6):1222–1230

    Article  CAS  PubMed  Google Scholar 

  • Yaar R, Lamperti ED, Toselli PA, Ravid K (2002) Activity of the A3 adenosine receptor gene promoter in transgenic mice: characterization of previously unidentified sites of expression. FEBS Lett 532(3):267–272

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Avila MY, Peterson-Yantorno K, Coca-Prados M, Stone RA, Jacobson KA, Civan MM (2005) The cross-species A3 adenosine-receptor antagonist MRS1292 inhibits adenosine-triggered human nonpigmented ciliary epithelial cell fluid release and reduces mouse intraocular pressure. Curr Eye Res 30(9):747–754

    Article  CAS  PubMed  Google Scholar 

  • Zhou QY, Li C, Olah ME, Johnson RA, Stiles GL, Civelli O (1992) Molecular cloning and characterization of an adenosine receptor: the A3 adenosine receptor. Proc Natl Acad Sci U S A 89(16):7432–7436

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported in part by the Intramural Research Program of the National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth A. Jacobson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Jacobson, K.A., Gao, ZG., Tosh, D.K., Sanjayan, G.J., de Castro, S. (2010). A3 Adenosine Receptor Agonists: History and Future Perspectives. In: Borea, P. (eds) A3 Adenosine Receptors from Cell Biology to Pharmacology and Therapeutics. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3144-0_6

Download citation

Publish with us

Policies and ethics